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Abstract—In recent years the data mining community has 

largely coalesced around the idea that many problems in time 

series analytics essentially reduce to finding and then reasoning 

about repeated structure in time series. Existing tools can find 

conserved structure within a single time series (motifs) and 

between pairs of time series (joins). However, to date there are no 

tools to find repeated structure in sets of time series, an idea we 

call time series consensus motifs in recognition of their similarity 

to their discrete analogs in DNA strings. In this work we introduce 

a definition of time series consensus motifs and a scalable 

algorithm to discover them in large data collections. We further 

show that given this new primitive, we can solve multiple higher-

level problems in time series data mining. We demonstrate the 

utility of our ideas with case studies in domains as diverse as 

animal motion studies, human behavior, medicine and energy 

disaggregation. 

Keywords—time series, motif discovery, conserved 

patterns 

I. INTRODUCTION 

There is a growing consensus that many problems in time 

series analytics essentially reduce to finding and reasoning 

about repeated structure in time series. For example, 

segmentation [8], summarization [20], and anomaly detection, 

can all be framed as algorithms that exploit repeated structure. 

There are existing tools to find repeated structure within a 

single time series (motifs) and between a pair of time series 

(joins) [19][21]. However, to the best of our knowledge, there 

are no tools to find repeated structure among sets of time series. 

The analog of this task in discrete strings such as DNA is called 

consensus or conserved motifs.  These approximately repeated 

strings are at the heart of much of molecular genetics and are 

an active area of research [15]. We call repeated structure in 

sets of time series data, time series consensus motifs, 

acknowledging their similarity to their discrete analogs in DNA 

strings [2][18]. We can best illustrate the task at hand by 

considering the analog problem in text strings, using Hamming 

distance as a proxy for the Euclidean Distance. Consider the 

following strings: 

 

    ooogmisxeturingjkeatanankgokeyomtegoooooolotyshemfgsa 

    lotoogmishejrecytygorcheturingxpoutporstyim 

    eloterdocegtpogindauryheblaiteturingyoorloungmekeqpbd 

    itxpeeturingyougrinatecrsthedinarupoooougwcuing 

Is there any conserved pattern of length six, that appears in 

each string? Even in this tiny dataset, the answer, turing, is 

not immediately apparent. If we restrict ourselves to exact 

matches, this problem can be solved in linear time with a suffix 

tree. However, if we wish to be invariant to even a single 

character mismatch, say one occurrence of turing is 

misspelled as tuning, then the problem explodes in 

complexity. 

Fig. 1 shows an example of the real-valued version of this 

problem in a dataset of electrooculograph (eye movement) data, 

created by a volunteer modeling communication by a disabled 

individual with Locked In Syndrome [7]. 

 

Fig. 1: Nine time series corresponding to different sentences (in Japanese) 
spelled out by the eye movements of an individual modeling Locked In 
Syndrome. Just the vertical axis is shown. Is there a well conserved one second 
long pattern in all nine traces? 

We now ask the corresponding question, is there any 
conserved pattern, covering a one second interval, which 
appears in each time series? The optimal answer, under the 
definition we propose in this work, is shown in Fig. 2. 

 

Fig. 2: The one second long consensus motif in the set of time series is shown 
in Fig. 1 (colors are preserved between plots). One time series is shown with a 
thicker and bolder line because it is the most central or seed time series, as will 
be explained in detail later. 
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The pattern is unexpectedly well conserved and suggests an 
underlying mechanism that created faithful conservation. In 
fact, if we examine the annotation that accompanies this data, 
we find that the pattern shown in Fig. 2 corresponds to the 

Japanese Katakana character ア . Moreover, ア  is the only 

character that is common to all nine sentences.  

In some cases, finding the most conserved pattern might be 
an end in itself. However, in other cases, it might just be the 
beginning of further analytics. Consider the similar experiment 
conducted with a different individual shown in Fig. 3. 

 

Fig. 3: (left) The consensus motif from an individual (different than the person 
in Fig. 1) modeling Locked In Syndrome. While there is clearly high 
conservation, our subjective color coding, and the hierarchical clustering (right) 
suggest that there is evidence of hierarchical structure here. 

Once again there is a well conserved pattern, and once again 

we find that it corresponds to a single Katakana character, this 

time ガ. However, this time there is a strong suggestion that 

there are two distinct ways in which this individual produced 

this word. Perhaps this is an example of orthography for eye 

movement communication, just as the written word “read” can 

be pronounced either reed or red, depending on whether it 

refers to the present or the past tense. Or perhaps it simply 

reflects two sessions, one in which the participant is 

communicating more rapidly and fluidly, the other in which she 

was tired or distracted. In either case, this example shows that 

finding such patterns can hint at unexpected regularities.  

In this work we introduce time series consensus motifs as a 

novel primitive for time series data mining. The rest of this 

paper is organized as follows. In Section II we introduce all 

necessary definitions and notation. We introduce a brute force 

algorithm to find consensus motifs in Section III, and then in 

Section IV we address its poor scalability with our novel 

algorithm, Ostinato. We conduct an extensive empirical 

analysis of our ideas in Section V. We review and contrast with 

related work in Section VI. Conclusions and directions for 

future work are presented in Section VII.  

II. DEFINITIONS AND NOTATION 

We begin by outlining the necessary definitions and 

notation. The data type of interest is time series: 

Definition 1: A time series T is a sequence of real-valued 

numbers T = t1, t2, ..., tn where n is the length of the time series. 

In a sequence of k time series, the ith time series will be referred 

to as Ti. 

In shape-based time series analysis [8][19], we are typically 

only interested in local similarity between small sections of the 

data known as subsequences: 

Definition 2: A subsequence of length m is a sequence of m 
contiguous elements in a time series T. A subsequence in time 
series T which starts from position i and ends at position i + m 
– 1 is referred to as Ti,m.  

If we envision all subsequences in the set of k time series as 
points in m-dimensional space, then there exists an m-ball with 
minimum distance surrounding each subsequence in each of the 
k time series which encompasses at least one subsequence from 
each of the remaining k – 1 time series. We call this distance 
the radius: 

Definition 3: The radius r of a subsequence Ti
j,m of time 

series Ti  with respect to a sequence of time series T1…Tk is the 
maximum distance between Ti

j,m and its nearest neighbor in 
each of T1…Tk. 

Fig. 4 offers a visual intuition of this notation. 

 

Fig. 4: The subsequences of three time series, A ⚫, B  and C ◼ exist as points 
in a m-dimensional space. A hypersphere can be centered at each of the 
subsequences and have its radius r expanded until it includes at least one of 
each of the time series. The subsequence that has the smallest such r is the 
consensus motif. 

In any set of time series, we expect to see highly varying 
degrees of conservation across different subsequences as 
demonstrated by their induced radii. We refer to the time series 
subsequence with the smallest such radius as the time series 
consensus motif: 

Definition 4: The time series consensus motif is the 
subsequence taken from one of a sequence of k time series 
T1…Tk, which possesses the smallest radius of any 
subsequence appearing in any of time series T1…Tk.  

As Fig. 2 and Fig. 3 suggest, this definition assumes that 
some highly conserved structure is present in all k time series 
considered, but this assumption may not always hold true. This 
is especially the case for our initial forays into a data collection 
when doing exploratory data mining. For clarity, suppose that 
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we augmented the four discrete strings shown in the 
introduction with a fifth outlier string: 

atgcatgcatgcatgcatgcatgcatgcatgcatgcatgcatgcatgc 

Clearly this string does not contain the otherwise conserved 
string turing, however we may still wish to find this pattern, 

which appears in most of the strings. Returning to the same 
problem in time series, up until this point, we have assumed that 
the number of time series in our set is equal to the number that 
must be considered to compute a radius. Definition 5 
generalizes Definition 4 to allow the case where the k time 
series, which determine a subsequence radius, may be chosen 
as any subset of a set of P time series. This notion allows us to 
omit consideration of P - k potential outlier time series. 

Definition 5: The k of P consensus motif is the consensus 
motif with the smallest radius that can be found using any 
subset of k time series from a sequence of P time series. 

Choosing k time series from P allows us to simultaneously 
exclude P – k outlier time series.  

As we will show, when computing the radius of each 
subsequence, we can prune the search space by computing a 
lower bound. We accomplish this using an A-to-B join or 
ABJoin.  

Definition 6: An ABJoin is a meta time series annotating 
each overlapping subsequence Ai,m in A, with the distance to its 
nearest neighbor in B.   

ABjoins were introduced in [19], using the notation JAB. 
Below we will detail the algorithms for time series consensus 
motifs. The extension to the discovery of the k of P case is 
obvious. We provide code for the k of P version on the website 
[22]. 

III.BRUTE FORCE CONSENSUS MOTIF DISCOVERY 

In order to find a consensus motif as defined in Definition 
4, we need to find which subsequence from the k time series 
induces the smallest radius. To help explain our proposed 
solution, we begin by considering a simple brute force solution. 

We begin by concatenating all k time series into a single 

time series T, with null markers in between them to mark the 

transitions from one time series to the next. Let us denote the 

length of this long time series as N. We can use this long time 

series to compute a distance matrix D containing every pairwise 

distance between all z-normalized subsequences of length m in 

T. Here each candidate subsequence represents a possible 

consensus motif.  

We can then search for the consensus motif by keeping track 

of a best-so-far candidate motif for O(N) steps. At step j, we 

find the minimum row value of D in column j and compare that 

to our best-so-far. We require O(N2) distance calculations to 

populate D, followed by O(N2) comparison step. Naively, each 

distance calculation requires O(m) operations, and the distance 

matrix as shown in Fig. 5 requires O(N2) space.  

Fig. 5 depicts this for a toy example with k = 3, the time 

series T1, T2 and T3. Note that the constituent time series can be 

of different lengths, so long as each has a length greater or equal 

to the length m, which is the user’s choice of motif length. 

We can use the methods of computing ABJoins developed 

in [19][21] to make our first improvement to time complexity. 

We note that given a particular choice of j, we can find the 

radius of all subsequences in time series Tj by finding the 

elementwise maximum of ABJoin(Tj, T1)…ABJoin(Tj,Tk) [19]. 

This reduces our time and space requirements to O(N2) 

operations and O(N) memory.  

 
Fig. 5: We can search for the consensus motif by sweeping across all columns 

of the pairwise distance matrix (visualized by the red line) and finding the 

minimum value in each of the k (here, k = 3) regions. The maximum of these k 

values is the radius of the corresponding subsequence, and the smallest such radius 
is found at the consensus motif. 

Referring back to Fig. 4, the brute force algorithm can be 

seen as visiting each point in the m-dimensional space, and 

finding its nearest neighbor in each of the other “colors”, 

recording the maximum such distance as the radius r. Each 

ABJoin represents a reduction over the columns spanning a 

single tile in  Fig. 5. For completeness, and because we will use 

it later as a starting point to explain our new algorithm, we take 

the time to outline the brute force algorithm in TABLE 1.  

The description of our brute force algorithm uses a distance 
matrix representation to describe our search space, as visualized 
in Fig. 5. We interpret T as a time series formed by 
concatenation of time series T1…Tn. Here D is a distance matrix 
containing the distance between every pair of subsequences of 
length m in time series T. 

In TABLE 1, line 1 initializes the best-so-far radius, time 

series index, and subsequence index. The time series and 

subsequence indices indicate the location of the subsequence 

with minimum known radius. In line 2, we loop over each time 

series T1…Tk. Line 3 initializes an array for the radius of each 
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subsequence in time series Tj. Line 4 begins a loop over T1…Tk 

excluding Tj. Line 5 updates the radius calculations for Tj using 

an ABJoin algorithm. In Line 6, we find the subsequence with 

the minimum radius in Tj. Lines 7 and 8 compare the minimum 

radius found in any subsequence in Tj to the minimum radius 

found overall and updates our best-so-far candidate. In line 9, 

we return the radius, time series index, and subsequence index 

of the subsequence with the smallest radius in T1…Tk.   

TABLE 1: THE BRUTE FORCE CONSENSUS MOTIF ALGORITHM 

Function: BruteForceConsensusSearch(T1…Tk, D, m) 

Input: T1…Tk - Sequence of Time series 

       m - Subsequence Length 

Output: 

       bsfRad – best so far radius which is found 

       tsIndex – index of time series with best so far radius  

       ssIndex – index of subsequence with best so far radius 

1 

2 

3 

4 

5 

6 

7 

8 

9 

{bsfRad, tsIndex, ssIndex} ← {inf, 0, 0}  

for j ← 1 to k 

  Radii ← zeros(length(Tj) — m + 1) 

  for i ← 1 to k except j   

    Radii ← elementwise_max(Radii, ABJoin(Tj, Ti)) 

  {minRadius, minRadIndex} ← {min, argmin} (Radii) 

  if minRadius < bsfRad 

    {bsfRad, tsIndex, ssIndex} ← minRadius, i, minRadIndex} 

  return {bsfRad, tsIndex, ssIndex}  

IV.OSTINATO: CONSENSUS MOTIF DISCOVERY 

Having shown the brute force algorithm for consensus motif 

discovery, we are now in a position to show how to speed it up.  

A. An Exploitable Observation 

Consider Fig. 6, which shows the same toy dataset shown 

in Fig. 4, but before the consensus motif was discovered. Recall 

that in TABLE 1 line 1, the value of best-so-far-r is initialized 

to inf. In line 2, we begin to process each subsequence. In Fig. 

6.top we show that B1 is the first candidate subsequence to be 

completely evaluated, and thus updated for best-so-far-r from 

infinity to a finite number. 

In Fig. 6.center we show that B2 is the next point to be 

evaluated. We begin by computing the distance from the 

subsequence B to its nearest neighbor in A (red dashed circle), 

which happens to be A17. Naively we would then compute the 

distance from the subsequence B to its nearest neighbor in C. 

However, we can easily see here that this will be fruitless. 

Because B1.r is less than the distance between B2 and its nearest 

neighbor in A, the distance to C is now inconsequential. Even 

if it was zero, we know we still have B1.r < B2.r. Thus we can 

admissibly prune B1.r from further consideration. 

B. Ostinato: Fast Consensus Motif Search 

We call our consensus motif search algorithm Ostinato. 

Ostinato first computes a lower bound for each candidate 

subsequence considered by the brute force method. This 

sequence of lower bounds is used to both order our search, and 

to admissibly prune unpromising candidates.   

Ostinato begins by computing a lower bound on the radius 

of each subsequence in each time series in the form of an 

ABJoin. This covers all comparisons over a single block 

diagonal section as displayed in Fig. 5. Using a fast ABJoin 

method [19], this requires O(N2/k) operations to cover the k time 

series.  

 
Fig. 6: (cf. Fig. 5) A visual intuition of the time series consensus motif discovery 

process. Key: A ⚫, B , C ◼. 

This first step is followed by k searches corresponding to 

the k time series. In each search, candidate subsequences from 

a single time series are ordered by increasing the lower bound 

on their radii. We find the best possible candidate from within 

that time series by evaluating candidates until the known lower 

bound on the radius of the next candidate exceeds bsfRad, our 

best current candidate. At that point we admissibly prune the 

remaining candidates in that time series from our search space.  

The algorithm is outlined in TABLE 2 below. 

TABLE 2: THE OSTINATO ALGORITHM 

Function: Ostinato(T1…Tk,m) 

Input: T1…Tk - Sequence of Time series  

       m - Subsequence Length 

Output: bsfRad – best so far radius which is found 

        tsIndex – index of time series with best so far radius 

        ssIndex – index of subsequence with best so far radius 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

{bsfRad, tsIndex, ssIndex} ← {inf, 0, 0} 

for j ← 1 to k 

  h ← (j + 1) if (j < k), else 1 

  MP ← ABJoin(Tj,Th) 

  SI ← sortAndIndex(MP) 

  for each value q in SI 

    radius ← MPq 

    if radius ≥ bsfRad 

      break loop           

    for i ← 1 to k except j and h 

      radius ← max(radius, min(EuclideanDist(Ti, Tjq,m))) 

      if radius ≥ bsfRad 

        break loop       

    if radius < bsfRad 

      {bsfRad, tsIndex, ssIndex} ← {radius, j, q} 

return {bsfRad, tsIndex, ssIndex} 

 

In line 1, we initialize the radius, time series index, and 

subsequence index of our consensus motif using sentinel 

values. Line 4 computes a lower bound on the radius of every 

subsequence in time series Tj using an ABJoin, and line 5 
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produces an index map of Tj in order to increase radius lower 

bound. We initialize the radius of each subsequence to its 

greatest known lower bound in line 7. If the lower bound on the 

radius of any subsequence exceeds that of any already 

computed radius, we admissibly abandon the search over 

remaining candidates in Tj in line 9. Line 10 loops over each 

time series, excluding the one which contains our current 

candidate. In lines 12 and 13, we abandon our current candidate 

if its maximum known lower bound exceeds the radius of any 

other previously evaluated candidate. Line 11 updates the 

radius of our current candidate subsequence using the distance 

between it and its nearest neighbor in the next time series, with 

the last wrapping around to the first.  

Lines 14 and 15 update the current best-so-far. Finally, line 

16 returns the candidate with the smallest radius as a triple 

consisting of its radius, the index of the time series where it was 

found, and its subsequence index within the time series.   

For simplicity, we have shown just the top-1 algorithm. The 

algorithm can be generalized to compute the top-k motifs by 

creating a top-k best-so-far list in Line 1, adjusting the 

comparison and update methods in lines 8, 12, 14, and 15, and 

returning the full list in line 17.   

V. EXPERIMENTAL EVALUATION 

To ensure that our experiments are reproducible, we provide 
a website containing all data, code, and spreadsheets for the 
results [22]. This commitment to reproducibility extends to all 
the examples in the prior sections.   

Before showing formal experimental evaluations of the 
scalability and robustness of our ideas, we will introduce three 
examples of consensus motifs in very diverse domains to show 
the generality of our ideas. 

A. Demonstrations of Generality 

V.A.1 Electrical Power Demand 

Data mining of household electrical energy demand is an 

active research area [14]. The fundamental problem is that the 

meters measure the aggregate energy consumption of the entire 

building. However, appliance-by-appliance consumption 

information is much more valuable than aggregate data for a 

variety of tasks, including reducing energy demand and 

improving load forecasting for the electrical grid. Thus, much 

of the research in this area focuses on the task of 

disaggregation, teasing out the demand patterns of individual 

devices.  In Fig. 7 we show a random two-day trace from this 

data type. The reader will appreciate that it is noisy and 

complex domain. 

 

Fig. 7: Two days of electrical power demand from the REFIT Electrical Load 

Measurements dataset, H-1 [14]. 

To demonstrate that we can find semantically meaningful 
consensus motifs even in the face of such noisy data, we 
conducted the following experiment. We extracted seven 
sample time series with the length of 20,000 data points. The 
slightly variable sampling rate of this dataset is roughly eight to 
ten seconds. Thus, 20,000 data points is about two days. We 
searched for the consensus motif with a length of 800, or 
approximately two hours. In Fig. 8 we show the consensus 
motif discovered.  

 

Fig. 8: left) The consensus motif discovered in the power demand data set. The 

overall shape is conserved, in spite of noise and spikes caused by short-lived 
high-power demands (hair dryer, kettle). right) A clustering of the patterns 

makes their similarity more evident.  

Could we do something similar with classic motif 
discovery? Classic motif discovery asks, what pattern is 
conserved anywhere in this data[19]? In contrast, our query 
asks, what pattern happens at least once every two days? This 
latter query maps better to most disaggregation algorithms, as 
it finds quotidian behaviors rather than well-conserved but 
possibly rare behaviors, such as putting a dishwasher into its 
self-cleaning cycle every week.      

V.A.2 Mitochondrial DNA 

It is well understood that we can often produce better 
clusters by only clustering the subset of the data that is most 
amenable to clustering. There are several ways that we can 
attempt to resolve this chicken-and-egg paradox, and here we 
show that consensus motifs offer such a possibility. 

To see this, let us consider a domain for which we can obtain 
unambiguous ground truth. DNA is normally processed using 
string comparisons. However, it can sometimes be fruitful to 
convert it into a real-valued time series. Here we use the simple 
conversion algorithm outlined in Appendix A to convert the 
Mitochondrial DNA (mtDNA) of four randomly chosen 
animals to time series. The mtDNA of all species are just over 
16,000 data points. We truncate them to exactly 16,000 to allow 
the clustering under Euclidean distance in Fig. 9.left.     
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Fig. 9: The clustering of the mtDNA of Python bivittatus, Hippopotamus 

amphibius, Pteropus scapulatus, Lama pacos.  left) using all the mtDNA gives 
incorrect results. However, using just the consensus motif of length 1,000 (right) 

gives the correct taxonomic relationship. 

This clustering is clearly incorrect. For example, it suggests 

that the hippo is more closely related to the python than to the 

alpaca, which is a fellow even-toed ungulate (Artiodactyla). To 

address this problem, we can simply compute the consensus 

motifs of a short subset of the data. Here we arbitrarily choose 

a subsequence length of 1,000 and use only the discovered 

subsequences to cluster the data. As Fig. 9.right shows, this 

produces reasonable results. 

V.A.3 Insect EPG Telemetry 

The Asian citrus psyllid (Diaphorina citri) is an insect 

vector of the pathogen that causes citrus greening disease, 

causing billions of dollars of loss to the citrus industry in the 

last decade. To understand the behavior of this insect, 

entomologists use a device called an electrical penetration 

graph (EPG) to collect data reflecting the insect’s interaction 

with plants [11][12]. As shown in Fig. 10.left such data is 

typically complex and noisy.  

 
Fig. 10: left) Four time series of insect telemetry. right) The top eight-second-long 

consensus motif is well conserved and corresponds to “phloem salivation” 

behavior. 

One basic question entomologists are interested in is, what 

insect behaviors are conserved when something in the 

environment has been changed [12]? For example, it was 

recently discovered, by manual inspection of EPGs, that the 

feeding behavior of the white-backed planthopper (Sogatella 

furcifera) could be changed by infecting rice plants with a 

special virus [11]. Such findings are useful because they 

sometimes suggest a control mechanism [12]. As shown in Fig. 

10.right, our algorithm can recover conserved behaviors in this 

data in spite of how noisy and large it is. 

To demonstrate a scenario in which consensus motif 

discovery could be useful to a research entomologist, let us 

consider EPG from a different insect, a silverleaf whitefly 

(Bemisia tabaci). As Fig. 11 shows, this is a tiny insect, about 

the size of the period at the end of this sentence. In spite of its 

small size, this insect is an important agricultural pest. While 

the silverleaf whitefly had been known in the United States 

since 1896, in the mid-1980s a virulent strain (strain B) 

appeared in poinsettia crops in Florida. Less than a year after 

its initial identification, strain B was found in tomatoes and 

other fruit and vegetable crops. The silverleaf whitefly caused 

over one hundred million dollars in damage to Texas and 

California agricultural industries within five years [6]. More 

recent estimates suggest that this insect may cause over a billion 

dollars of crop damage annually.  

 

Fig. 11: right) A life-sized image of a silverleaf whitefly shows how incredibly 

small it is. In spite of its size, skilled entomologists are still able to attach it to an 

EPG apparatus (using a solid gold wire just 12.5 μm in diameter), and record time 

series data under various conditions (left). 

There is an active worldwide community attempting to 

understand and ultimately control this insect. As part of this 

effort, they often record data under two or more conditions, e.g. 

light and dark, hot and cold, and humid and dry environments.  

One question that remains the subject of some controversy 

is whether the behavior of the insects is changed by the presence 

of oils mixed with citronellal, the chemical that gives citronella 

oil its distinctive lemon scent. To test this, we obtained seven 

recordings of the insect interact with a plant coated with a thin 

film of citronellal-infused oil and ten control recordings of the 

insect on untreated plants. We found the one-second consensus 

motif of each group independently. Fig. 12 shows the results.  

 
Fig. 12: The consensus motif (bold) and one additional sample from the motif set 

for the two classes. 

The results are highly suggestive. For the control, the 

consensus motif seems to be classic passive phloem 

ingestion. In contrast, the treatment data produced a 

consensus motif that does not seem to have been observed in 

the literature [13]. It is important to disclaim that we are not 

making any biological claims here. Our datasets are too small 

to support statistical significance testing. Our point is simply to 
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show how our tools may be used to investigate important 

problems and produce potentially actionable information.  

 

B. Robustness of Consensus Motifs 

The experiments above (especially Fig. 8 and Fig. 10) 

suggest that consensus motifs can be discovered in noisy and 

complex datasets. However, here we stress test the definition to 

see how much noise our approach can handle. 

We took random instances from class one of the Mallat 

dataset [5], each of which is of length 1,024, and embedded 

each of them within a random walk of length 65,536. Fig. 13 

shows an example. Given ten such time series, can we recover 

the embedded pattern? We count any extracted pattern that 

overlaps with an embedded Mallat pattern by at least fifty 

percent as a true positive. The possibility of this happening by 

chance, i.e. the default rate, is only 3.1 percent. 

 

Fig. 13: A random walk of length 216 with a single instance from the UCR archive 

Mallat dataset embedded. (inset) A zoom-in of the embedded pattern. 

We find that Ostinato can easily recover the embedded 
pattern. In order to stress test it, we repeated the experiment, 
adding increasing amounts of Gaussian noise, until we failed to 
recover the embedded pattern. Fig. 14 shows the results.  

 

Fig. 14: The recovered most central or seed subsequence as we iteratively add 

increasing amounts of Gaussian noise to the data. The rightmost blue pattern 

shows the most amount of noise our definition can tolerate.  

This result suggests that our definition is robust to 
significant amounts of noise. 

It is also natural to ask how sensitive the definition is to its 
only parameter, the length of the subsequences, m. We repeated 
the basic experiment described above, attempting to recover the 
embedded pattern from ten randomly generated instances of the 
time series shown in Fig. 13. Instead of just testing with the 
correct pattern length of m = 1,024, we searched with 
increasingly shorter and longer lengths. We discovered that we 
can recover the embedded pattern for any value of m from 74 
to 1,076, suggesting that the definition is not too sensitive to its 

 
1 The original STAMP algorithm is only directly comparable to Ostinato in the 
special case of k  = 2. We both optimized STAMP and generalized it to arbitrary 

k. 

only parameter. Note that this flexibility is asymmetric. If our 
domain knowledge or experience suggests that there might be 
conserved structure of length L, we can be very conservative 
and choose a much shorter length, say m = L/2 or even m = L/4, 
and still expect to find the conserved structure. However, if we 
are too liberal and choose a longer length, we may have a 
fruitless search. As we shall show in the next section, Ostinato 
is so fast that we can quickly search over multiple lengths and 
choose the best motifs by eyeballing an objective score 
function.  

C.  Scalability of Consensus Motif Discovery 

To measure the scalability of our proposed algorithm, we 

performed the following experiments. We created ten time 

series like the one shown in Fig. 13, but with varying lengths, 

and we then measured how long it takes to find the top-1 

consensus motif of length 1,024. We compared three 

approaches: 

• Brute Force Consensus Search: As described in 

TABLE 1. While just a strawman, we made significant effort 

to produce a highly optimized implementation.  

• STAMP: We adapted this algorithm from [19] to 

solve the task at hand. STAMP makes the algorithm’s 

performance independent of the length to the motifs. We 

created an optimized version of STAMP for this task to match 

the implementation details of Ostinato wherever possible. 

Thus our version of STAMP is significantly faster than the 

original code1. 

• Ostinato: Our proposed algorithm.  

Fig. 15 shows the results. 

 
Fig. 15: A comparison of three algorithms for consensus motif discovery. left) The 

time taken to find the top-1 motif in increasing longer datasets. right) The 

differences in performance can be better appreciated in a loglog plot. bottom) Only 
Ostinato can realistically consider datasets with millions of data points (STAMP 

experiments that required more than 24 hours are carefully extrapolated).  

We deliberately chose the best possible case for STAMP, with 
the length of each time series (n) being a power of two. 
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Nevertheless, by the time we consider n = 65,036 we are more 
than sixty-three times faster, and the gap continues to grow as 
we see larger and larger datasets.  

We demonstrate the scalability of Ostinato with a variable 
number of time series and with variable subsequence length in 
Fig. 16. 

 
Fig. 16: left) Scalability with the cardinality of the set of time series, k. Beyond k 

= 10, the time for STAMP was extrapolated, right) Scalability with the motif 

length, m.  

In Fig. 16.left, with n fixed at 65,036 and m at 1,024, we 
measure how the algorithms scale as k increases from 2 to 20. 
In Fig. 16.right, with n fixed at 65,036 and k = 10, we measure 
how the algorithm scales as m goes from 128 to 2,048.   

Note that Fig. 16.right reaffirms that the time taken is 
independent of the length of the motifs, a highly desirable 
property, which we inherit from our use of a STOMP-like 
algorithm as a core subroutine [21].   

D. The Utility of k of P Consensus Motifs 

To test the utility of the k of P variant of consensus motifs, 
we performed the following experiment. We created a dataset 
with exemplars like the one shown in Fig. 13. For both the k of 
P variant of consensus motifs and the regular (i.e. P of P) 
version, we tested if it could recover the embedded motif from 
these five time series. We then added an increasing number of 
random walks without embedded patterns, to test how the 
presence of spurious data affects the algorithms. For the k of P 
variant, P grows from five to ten, and k remains fixed at five. 
We repeated the process twenty times, reporting the results in 
TABLE 3, which are averaged over twenty runs. 

TABLE 3: SENSITIVITY TO SPURIOUS DATA 

P = 5 6 7 8 9 10 

(k hardcoded to 5)   

k of P 

19/20 19/20 18/20 16/20 16/20 16/20 

P of P 19/20 0/20 0/20 0/20 0/20 0/20 

In fairness, we could improve the results for the P of P 
algorithm in several ways. Smoothing the data may help, as 
would choosing a smaller value for m. Nevertheless, the results 
support the utility of the k of P variant of consensus motifs. 

The experiment above shows that the k of P variant can be 
more robust, but it assumes we know the correct value for k. 
What if we do not?  To consider this issue, we revisit the data 
type considered in Fig. 1 and Fig. 2. For another volunteer’s 
session, she created seven time series with a maximum length 
of 350. We created an additional twenty random walk time 
series of that length, for a total P of 27. We then fixed P to 27, 

and computed k of P for every k from 2 to 27, recording the 
radius at each step Fig. 17 shows the result.  

The inflection point in Fig. 17 strongly suggests that the 
correct value for k is at seven. Moreover, we confirmed that the 
seven subsequences all come from the real electrooculographs, 

and that they correspond to the Katakana characterモ. 

 

 
Fig. 17: left) The radius of the k of P consensus motif for every k from 2 to 27. 
The plot suggests the best k is seven. right) The suggested k = 7 motif corresponds 

to the syllable モ, the only syllable that appears in all seven traces.  

  Case Study: Quantifying Parkinson’s Disease 

Parkinson’s Disease (PD) is a neurodegenerative disease 
which affects gait and mobility. As hinted at in Fig. 18, one tool 
that clinicians use to assess the severity of the disease is 
telemetry from a vertical ground reaction force device [10].  

 
Fig. 18: Time series snippets from vertical ground reaction force device 

recordings, left foot only. top) An individual with moderate Parkinson’s exhibits 

some variability in her signal. bottom) A healthy individual has a more regular 

gait, except at the highlighted location.   

Clinicians can visually inspect the data and use the degree 
of variability to quantify the progression of the disease. The 
severity is typically qualified with the Hoehn and Yahr (HY) 
scale [1], with 0 indicating “no functional disability” and 3 
indicating “mild to moderate disability”. 

Objectively quantifying the gait can be difficult. One can 
envision many ways to score variability, however as shown in 
Fig. 18.bottom, when we examine the full traces of the healthy 
individuals, we typically find some irregular regions. The 
explanation for such regions is prosaic: the device used to 
measure the ground force is limited in length, and the patient 
must turn around when she reaches the end of the apparatus. 
The attending physician can annotate and ignore such regions, 
but large-scale retroactive studies typically do not have access 
to these annotations.  

Thus, we should measure the variability of only the least 
variable regions. The reader will appreciate that consensus 
motifs offer a direct way to do this. Our idea is to divide the 
time series into equal sized chunks of length L and measure the 
radius of the top-1 consensus motif of length m. Because we 
will set m ≪ L, our measure ignores the spurious irregularities 
caused by the patient turning around at end of the apparatus.  
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To test our intuition, we consider the Parkinson Disease 
dataset provided by Hausdorff group [10], which is publicly 
available in PhysioBank [9]. This dataset consists of gait force 
profiles of 23 patients with idiopathic PD (HY 3 scale) and 92 
healthy controls. The data was recorded at a sampling rate of 
100 Hz. Because the shortest length of subject walking is 3,000, 
we truncate all the other subject’s data to that length. We 
concatenate the left and right foot force profiles, then we divide 
them into six parts, each with L = 1,000. We find the radius of 
the consensus motif with length m = 300 in these partitions. 
Note that we choose 300, because it is round number, which 
approximately matches the length of an average step Fig. 19 
summarizes the results. 

 
Fig. 19: Quiver plots that summarize the distribution of radii of consensus motifs 

of the gait from both healthy (HY-0) and sick (HY-3) individuals.  

The mean for patients with a HR score of 3 is slightly 
greater than the upper quartile for the patients with a HY score 
of 0. While we made no attempt to tune L or m here, some 
domain knowledge could potentially further improve our 
results. We must disclaim that we are making no medical claims 
here. This example just serves as an illustration of the type of 
higher-level problems that consensus motifs can be applied to. 

E. Case Study: Ostinato for Segmentation 

We conclude the experimental section with an additional 
example of a higher-level algorithm that exploits the consensus 
motifs as a subroutine. As before, our goal is not to exhaustively 
tackle a new problem, but to show the potential utility of 
considering the consensus motifs as a primitive. The task we 
address is segmentation [8]. Suppose that we have a long time 
series that at some point reflects a change in the dynamics of a 
system being measured. Can we detect when the change 
happened? We propose the simple algorithm sketched out 
below. Full code is available at [22].  

Divide the time series into R equal-size regions, S1, S2,…,SR. 
For example, in Fig. 20.top the time series T is of length 40,000, 
and we can divide it into R = 40 subsequences, each of length 
1,000. Let us consider a value for m that is much less than the 
region of 1,000, say 200.  

 
Fig. 20: top) A time series showing the APB of a patient. At time 25,000, a 
clinician changed the patient orientation.  bottom) By examining the change in 

radius as we consider increasingly large subsets of all the regions, working both 

left-to-right and right-to-left, we can get clues as to the location of the change of 
system behavior. 

Suppose that we measure the radius produced by every 
growing set of subsequences in {S1 to Si}, for i from 2 to R. 

What would we expect to see? We should expect that this curve 
grows slowly as each newly added subsequence includes data 
from the same behavior. However, the curve will grow rapidly, 
producing an inflection point as we encounter the first 
subsequence that includes data from the new and different 
behavior. As the red curve in Fig. 20 shows, this is exactly what 
we see. 

In this example, the sum of this red curve with its “mirror 
image” (blue) curve correctly minimizes at the location where 
the system changes. In [22] we show that this simple algorithm 
is effective on dozens of datasets from diverse domains.  

VI. RELATED WORK 

We have relegated the discussion of related work to the end 
of this paper, so the reader has a better appreciation of the issues 
involved.  

The bioinformatics literature offers several definitions for 
consensus sequences/motifs [15][18], as a nucleotide sequence 
of DNA/RNA, or an amino acid sequence of proteins. However, 
these definitions do not generalize to real-valued data. For 
example, the discrete definitions have the property that the error 
the analog to our radius, cannot decrease as the length 
increases. In contrast, in the real-valued case, because of z-
normalization, a longer motif could have a smaller radius than 
a shorter motif length. Apart from anything else, consensus 
sequences are typically only 6 to 8 base-pairs long, whereas we 
have shown the need to find time series consensus motifs at 
least two orders of magnitude longer. 

In [15] the authors use the term “Consensus Sequence 
Motifs” in a time series context. However, they are working 
with a domain-dependent transformation of the time series, a 
high-level abstraction of the data (i.e. low/medium/high), and 
their method discovers motifs of intervals. The work is 
completely orthogonal to our domain independent motifs 
discovered in the raw data. 

There is significant work on finding or creating 
representative patterns in sets of time series, using averaging 
[16]. However, these works attempt to explain all the data, not 
discover just the conserved data. 

Thus, to the best of our knowledge, there is no work on 
finding conserved structure in arbitrary sets of more than two 
real-valued time series.   

VII. CONCLUSIONS 

We motivated the need for, and then introduced, the first 
known algorithm for finding repeated structure within sets of 
time series. With multiple case studies and experiments on real 
datasets from diverse domains, we demonstrated that our 
definitions and algorithms are robust enough to recover 
conserved data, even in the presence of significant amounts of 
noise or spurious data.  

Moreover, we have shown that our algorithm is surprisingly 
tractable, and we can find conserved data in datasets with tens 
of millions of datapoints in reasonable time. In particular, for 
all our experiments with electrooculography, power demand, 
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insect EPG, gait and ABP, our experiments ran much faster than 
real-time. That is to say, if the data represents X seconds, 
Ostinato took less than X seconds to find the motifs.  

There are several directions for future work. Ostinato is 
currently a batch algorithm, but [19] has shown that it can be 
fruitful to produce anytime algorithms for motif discovery 
problems. In addition, Ostinato always produces some motif, 
even in random data. It would be useful to have an objective 
score or significance test that reflects the quality or significance 
of the motifs [17]. 

Finally, as our examples Case Study: Quantifying 
Parkinson’s Disease and Case Study: Ostinato for Segmentation 
hint, we believe that there are many possibilities for novel 
higher-level algorithms that use consensus motifs as a 
primitive. The fact that there are hundreds of algorithms that 
exploit consensus motifs/consensus sequences for discrete 
strings such as nucleotides or amino acids [2][3][15][18], 
suggest that our real-valued version may find many unexpected 
uses in the time series data mining community. 
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VIII.APPENDIX A: ALGORTHM TO CONVERT DNA TO 

TIME SERIES 

This is the algorithm we used to convert DNA strings to 
time series, it is slightly adapted from an algorithm appearing 
in [4]. Echoing [4], we do not claim any biological significance 
for our results on such data. We are merely exploit the 
availability of ground truth available in evolutionary biology. 

https://sites.google.com/site/consensusmotifs/


  

 

 

T1 = 0,     for i = 1 to length(DNAstring) 

if DNAstringi = A, then Ti+1 = Ti + 2 

if DNAstringi = G, then Ti+1 = Ti + 1 

if DNAstringi = C, then Ti+1 = Ti - 1 

if DNAstringi = T, then Ti+1 = Ti – 2 

 


