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Abstract—Perhaps the most basic query made by a data 

analyst confronting a new data source is “Show me some 

representative/typical data.” Answering this question is trivial in 

many domains, but surprisingly, it is very difficult in large time 

series datasets. The major difficulty is not time or space 

complexity, but defining what it means to be representative data in 

this domain. In this work, we show that the obvious candidate 

definitions: motifs, shapelets, cluster centers, random samples etc., 

are all poor choices.  Thus motivated, we introduce time series 

snippets, a novel representation of typical time series 

subsequences. Beyond their utility for visualizing and 

summarizing massive time series collections, we show that time 

series snippets have utility for high-level comparison of large time 

series collections. 

Keywords—time series, motifs, sampling, diversification 

I. INTRODUCTION  

In many domains, a common analytical query is “Show me 
some representative/typical data.” This query might be issued 
by a human, attempting to explore a massive archive, or it might 
be issued by an algorithm as a subroutine in some higher-level 
analytics. There are definitions and algorithms to answer this 
question for a plethora of datatypes, including images [25], sets 
[16], words [21], graphs [12], videos [4], tweets [20], etc.  

Surprisingly, to the best of our knowledge, the problems of 
finding representative time series subsequences has not been 
solved despite the ubiquity of time series in almost all human 
endeavors. Moreover, as we will show, the obvious candidates 
for this task: motifs, shapelets, cluster centers, and random 
samples, will not generally produce meaningful results. We 
propose an algorithm to discover such representative patterns, 
which we will call time series snippets, or just snippets, where 
there is no ambiguity.  

We would like snippets to have the following properties: 

• Scalable Computability: We wish to find snippets in 
datasets that defy rapid human inspection. Such datasets will 
be large. While we can often offload snippet discovery to 
offline batch preprocessing, we clearly cannot afford an 
algorithm that requires a large time or space overhead. 

• Diversity: The top-1 snippet should clearly be the single 
most representative pattern. Clearly, the 2nd and subsequent 
snippets should not be redundant with previous snippets.   

• Diminishing Returns: As an implication of diversity, the 
earlier k-snippets have the greatest coverage, just as the 
dimensions in Multidimensional scaling are sorted by their 
rapidly diminishing ability to “explain” the variability of the 
original data. 

• Quantifiability: Suppose the top-1 snippet for a sleep study 
shows some typical healthy heartbeats. It may be that all the 
data looks like that, or it may be that there were also regions 
of arrhythmias. Thus, we need some metadata to tell us how 
much of the data each snippet can explain/represent. 

• Domain Agnosticism: For specialized domains it may be 
possible to leverage domain knowledge and/or training data 
to achieve all of the above; however, we wish to have a 
general purpose algorithm to support data exploration.  

In this work we introduce an algorithm, Snippet-Finder, 
which can discover snippets with all such properties. Fig. 1 
shows one potential use of snippets: integrating summarizations 
of files directly into an operating system. 

 

Fig. 1. One use of time series snippets is to replace standard file icons with 

icons that show snippets reflecting the file’s content. This can allow an 

analyst to spot patterns and anomalies at a glance [11]. This is real data, 

see Section IV.C for more context for this example. 

Another potential use of snippets is in the production of 
automatically generated reports. For example, one could 
compactly summarize a sleep study [1] with a report like this: 

Patient Smith slept for 7.2 hours. This ten-second 
snippet ( ) accounts for 78% of his respiration, 
and this ( ) ten-second snippet accounts for 17% 
of his respiration. His maximum temperature was 98.7°… 

Beyond the algorithm’s utility for visualization and 
summarization [27], snippets can be used to support a host of 
higher-level tasks, including the comparison of massive data 
collections. 

The rest of this paper is organized as follows. In Section II 
we briefly review related work and background material, then 
formally define time series snippets. We introduce an ultra-fast 
algorithm to compute time series snippets in Section III. Section 
IV shows the utility of time series snippet discovery. Finally, in 
Section V we offer conclusions and directions for future work. 
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II. RELATED WORK AND BACKGROUND 

A. Dismissing Apparent Solutions 

As noted above, the task at hand invites many apparent 
solutions. Here we take the time to dismiss them. 

Motif Discovery: At first glance, motif discovery seems like 
an obvious solution to our problem [26][28]. Consider Fig. 2, 
and imagine we are tasked with finding the time series snippet 
of length 300, or snippet300. 

 

Fig. 2. A synthetic dataset. There are three repeated patterns embedded in 

a random walk; the best snippet300 appears obvious to the naked eye.  

Surprisingly, even in the face of such an apparently simple 
dataset, motif discovery will not produce a satisfactory answer. 
Consider the clustering shown in Fig. 3. 

 

Fig. 3. bottom) The dataset shown in Fig. 2 annotated by the subjectively 

correct answer. top) The dataset divided into seven equal length regions, 

and clustered using complete linkage hierarchical clustering. 

The three periodic elements are no more similar to each other 
under Euclidean distance than they are to random walks. One 
might imagine that the solution to this issue is to use a different 
distance measure, say Dynamic Time Warping (DTW). 
However, while DTW can be invariant to warping and find A 
and C similar, it cannot warp eight periods to ten periods. Two 
periods must be “unexplained” and accumulate a large error. 
Thus, B is still no closer to A or C than it is to random walks 
under DTW. 

There are other reasons why motif discovery is not suitable 
to the task at hand. Consider the dataset shown in Fig. 4.top. At 
this scale, it is difficult to even guess its content. It is exactly the 
type of data that could benefit from snippet-based 
summarization. This dataset represents fifty-five minutes of 
Arterial Blood Pressure (ABP) collected during an experiment 
in which a volunteer strapped to a gimbal was subjected to 
sudden changes of orientation [7]. However, as Fig. 4.bottom 
shows, this dataset has an occasional sensor fault. When the 
sensor is not receiving true medical data, it instead sends a 
square wave calibration signal. 

                                                           
1 In a sense midnight is not arbitrary, as it marks the midpoint between sunset and 

sunrise. However, due to time zones and daylight-savings time, it rarely coincides 

with 12 midnight on the clock. Midnight is really an arbitrary cultural artifact. 

 
Fig. 4. top) Fifty-five minutes of APB data, taken from an individual 

experiencing occasional involuntary rapid changes in orientation [17]. 

bottom) A minute-long zoom-in starting at about the twelfth minute.  

If we defined snippets based on time series motifs, then the 
five identical regions of such data would be the top snippet, even 
though such data only represents 0.14% of the dataset. However, 
there are snippets that are clearly much more representative of 
the data. For example, as the highlighted regions in Fig. 4.bottom 
suggest, normal ABP makes up the majority of this dataset, 
while a significant minority comprises of an ABP with an 
increased heart-rate induced by a change in gravity [14]. 

The issue can be summarized as the following: While motifs 
reward fidelity of conservation, we need a measure that also 
rewards coverage.  Informally, coverage is some measure of 
how much of the data is explained or represented by a given 
snippet. 

     Representative Trends: By title, the highly cited research 

effort on “Identifying Representative Trends in Massive Time 

Series Data Sets...” [9], seems like it may offer a solution, or at 

least insight to the task at hand. However, the authors of this 

work are assuming that the time series has well-defined periods; 

for example, exactly twenty-four hours, and a well-defined 

starting point, say midnight. However, choosing another 

starting point, such as 1:00 am, could produce arbitrarily 

different results. Moreover, while the well-defined periods 

assumption might hold for traffic (both in the web and in 

automobile sense) and other quotidian human activities, it does 

not hold for most of the medical and scientific domains we are 

interested in. For example, the periodicity of heartbeats can 

vary by at least a factor of five, in just a few minutes. At a higher 

level, cardiac events clearly do not align themselves to 

midnight, 8:00 am, or any other arbitrary time frame1.   

Clustering: In many cases, summarizing a dataset into the K 
best exemplars is as simple as running K-means clustering and 
reporting the K centers (or the K exemplars closest to the 
centers). However, it is well understood that one cannot 
meaningfully cluster time series subsequences, with any 
distance measure, or with any algorithm [10]. This (at the time) 
surprising result was controversial a decade ago, but has since 
become universally accepted (see [10] and the references 
therein); we will avoid repeating the arguments here. In Section 
IV, we make a best faith effort to fix this issue, and compare to 
a K-means based algorithm. 
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Time Series Shapelets: Time series shapelets are defined as 
subsequences that are maximally representative of a class [26]. 
This sounds superficially like time series snippets, however 
shapelets are supervised, and we require an unsupervised 
technique. Moreover, shapelets are generally biased to be as 
short as possible. In contrast, we want snippets to be longer, to 
intuitively capture the “flavor” of the time series. By analogy 
with text, to distinguish between English and Lithuanian 
chapters of J. K. Rowling’s famous heptalogy, it is sufficient to 
see the letter “Č”, this is the equivalent of a shapelet. However, 
to summarize the latter with representative text, it would be 
much more informative to see something like “Haris Poteris”, 
the equivalent of a snippet.  

Random Sampling: Simple random sampling (SRS) has 
many desirable properties that makes it useful and competitive 
in many domains. There are clearly cases in which it would be 
sufficient. For example, if a time series dataset consists solely of 
normal regular heartbeats, then any random two-beat region we 
extract would summarize the data (two beats because 
cardiologists are used to visualizing beats from a fixed starting 
point, two beat will include that point). However, as we shall 
see, even cardiological datasets can have surprising variability, 
and random sampling would have to be very lucky to hit one 
each of, say, three diverse regions. Nevertheless, we will include 
random sampling as a baseline in our experimental section.    

B. Related Work 

Our review of related work is brief. To the best of our 
knowledge, there are simply no ideas closely related to domain 
agnostic in the time series domain. 

In recent work, it was demonstrated how to exploit 
representative electrocardiogram heartbeat morphologies based 
on the CUR matrix decomposition technique [8]. Given a matrix 
A, CUR technique selects a subset of rows and columns of A to 
construct matrices C and R. Matrix U is computed in a way that 
makes the multiplication of C, U, and R the best approximation 
of A. However, this study is specific to a particular type of data, 
and requires substantial human effort to align data. 

There is a significant work on the automated extraction of 

music snippets (also called music thumbnails) [15]. However, 

that literature addresses a specialized and limited form of time 

series data. Most songs are richly structured into some variant 

of intro, verse, chorus, bridge, and outro. Moreover, most 

songs are only a few minutes in length, or a few thousand time 

series data points in an MFCC representation. In contrast, we 

wish to consider unstructured datasets with tens of millions of 

data points.  

Other related work was reviewed in Section II.A; we will 

not duplicate that here. 

C. Time Series Notation 

Before we formally define time series snippets, we need to 
review some related definitions (Definitions 1 to 3), and create 
some new ones (Definitions 4 to 6). 

The data type of interest is time series: 

Definition 1: A time series T is a sequence of real-valued 
numbers ti: T = t1, t2, ..., tn where n is the length of T. 

A local region of time series is called a subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a 
continuous subset of the values from T of length m starting from 
position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1≤  i ≤  n-m+1. 

If we “slide” a window of length m across T we produce n-
m+1 subsequences. However, we can also produce a set of non-
overlapping subsequences:  

Definition 3: A non-overlapping subsequence Si of a time 
series T is a continuous subset of the values from T of length m, 
starting from the position (𝑖 − 1) × 𝑚 + 1 and ending at the 
position 𝑖 × 𝑚 , in which the value of i is an integer number 
chosen from 𝑖 = 1: 𝑛/𝑚. When 𝑛/𝑚 is not an integer number, 
zeros are padded to the end of the time series until 𝑛/𝑚 becomes 
an integer number. 

Note that the number of non-overlapping subsequences is 
much smaller than the sliding windows, just ⌊n/m⌋. For virtually 
any task, if working with Euclidean distance, you must use 
sliding windows. Otherwise, the higher-level algorithm would 
be brutally sensitive to the starting point [10]. In contrast, as we 
will show in Section III, using the much smaller set of non-
overlapping subsequences is inconsequential if we use the 
MPdist, which we review in the next section. 

We can now define time series snippets:  

Definition 4: A time series snippet is a subsequence of T. 
Snippets are arranged in an ordered list of C, with the ith snippet 
denoted as Ci.  

We can access some useful metadata from the snippet, such 
as its location within T, and the fraction of T that it is said to 
represent, by Ci.index and Ci.frac respectively.  

Note that our definition means that the snippets are actual 
subsequences of T. This need not have been the case. For 
example, consider the related problem of finding representative 
strings. The most common solution, variants of consensus 
strings [23], can produce a string that is optimal under some 
definition, but never actually appears in the data.    

D. A Brief Review of MPdist 

MPdist is a recently introduced distance measure which 
considers two time series to be similar if they share many similar 
subsequences, regardless of the order of matching subsequences 
[6]. It was demonstrated in [6] that MPdist is robust to spikes, 
warping, linear trends, dropouts, wandering baseline and 
missing values, issues that are common outside of benchmark 
datasets. The MPdist requires a single parameter called a 
subsequence length, S. We denote the value of this parameter 
with a subscript, as in MPdist50. In the limit, when 𝑆 is equal to 
the full length of the query, the MPdist degenerates to the special 
case of the classic Euclidean distance. The time complexity of 
MPdist in the worst case is O(𝑛2) , however its amortized 
complexity for the subsequences similarity search is just 
O(𝑛 × (queryLength + 𝑚 − 1)).   



Consider the small toy example of a time series shown in 
Fig. 5, which we will use as a running example. 

 

Fig. 5. A toy time series. The highlighted section, from 201 to 400, will be 

used in subsequent examples. 

We can use the MPdist to create an MPdist-profile: 

Definition 5: An MPdist-profile of time series T is a vector 
of the MPdist distances between a given query subsequence Ti,m, 
and each subsequence in time series T. Formally, MPDi = [di,1, 
di,2,..., di,n-m+1], where di,j (1 ≤ i, j ≤ n − m + 1) is the distance 
between Ti,m and Tj,m.  

While there is no ambiguity, we will refer to MPdist-profiles 
simply as profiles. Consider the profile for the time series shown 
in Fig. 5, using the highlighted region as the query. The 
subsequence length of this query is L = 200. The result is shown 
in Fig. 6. Notice that the length of the profile is shorter than the 
length of the time series by the length of query. Furthermore, 
note that the distance is exactly zero in the region from which 
the query was extracted, since the MPdist between an object and 
itself must be zero. 

 

Fig. 6. The profile of the query highlighted in Fig. 5 using MPdist70.  

As we shall show in the next section, our snippet discovery 
algorithm essentially reduces to “reasoning” about these 
profiles. 

Our desired properties of diversity and diminishing returns 
suggests that we frame snippet discovery in a familiar “top-k” 
framework, much like k-itemsets or k-frequent items, etc. 
However, there is a caveat. It may be that there are as few as one 
snippet in a dataset, such as when the time series is comprised 
solely of a pure sine wave.  Therefore, we will also need to 
provide some metadata for each snippet to quantify how well it 
represents the data. 

III. DISCOVERING TIME SERIES SNIPPETS 

We begin with a demonstration that both previews our 
method for discovering time series snippets, and shows why the 
MPdist is critically needed for this task. 

Consider again our running example time series shown in 
Fig. 7:  this time series is annotated with two subsequences, 
which the reader will appreciate might serve as good snippets 
for this dataset. 

 

Fig. 7. A toy time series that will be used as a running example. The two 

highlighted sections, from 201 to 400 and from 1201 to 1400, will be used 

in subsequent examples. 

Let us extract the two highlighted subsequences and then 
compute their profiles. The results are shown in Fig. 8. 

 

Fig. 8. The profiles of the two queries highlighted in Fig. 7. Note their 

mutually exclusive nature, when one in high, the other is low. 

Note that these profiles offer strong clues to the locations of 
potential time series snippets. They are both approximately 
“step” functions with their respective low region corresponding 
to a region that contains subsequences that are similar to our two 
query patterns.  

Furthermore, note that these profiles are “mutually 
exclusive;” that is to say, when the red one is low, the cyan one 
is high, and vice versa. This suggests that these two hand-chosen 
snippets would meet the diversity requirement listed in the 
introduction, as they both “explain” different and non-
overlapping regions of the data. 

 Note that the shapes of these two profiles are very robust to 
both location, from which we extract the pattern, and to the 
query pattern’s length. To see this, in Fig. 9 we recomputed the 
profiles for both a shifted and a longer version of our query. 

 
Fig. 9. The profiles of after: Shifting the queries 50 points to the right, and 

making the queries longer (extracted from 201 to 500, and from 1201 to 

1500 respectively).   

This result offers hope for an algorithm that is not too 
sensitive to the location or length of the candidate snippets. To 
see why this is a significant finding, Fig. 10 shows what happens 
if we computed these profiles with the Euclidean distance 
instead.  

 
Fig. 10. The Euclidean Distance Profiles of after: Shifting the queries 50 

points to the right, and making the queries longer (extracted from 201 to 

500, and from 1201 to 1500 respectively). Contrast with Fig. 9. 

In contrast to the MPdist-Profile, the Euclidean distance 
Profiles are more sensitive to the length and offset of the 
subsequence. More importantly, they only have a low value 
when the matching pattern is exactly in phase. Thus, in contrast 
to the MPdist-Profile, it is difficult to “reason” about them, to 
understand how large a region they could represent as a 
prototype. 

A. Snippet-Finder: Time Series Snippet Discovery 

We are finally in a position to explain our Snippet-Finder 
algorithm. Given a time series, a subsequence length, and the 
maximum number of snippets that user wishes to find, the 
Snippet-Finder algorithm is to identify k snippets, and the 
fraction of data that each snippet covers. Note that the fraction 
of data covered by a single snippet is not necessarily contiguous. 
For example, an accelerometer dataset may consist of bouts of 
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“walk-run-walk-cycle-walk;” a snippet of walking would 
represent all three regions of the slower gait. 

We begin with the following intuition. Recall that Fig. 7 
showed a time series with two subsequences highlighted. Those 
subsequences would clearly make intuitive snippets for that 
dataset. Recall also that Fig. 8 showed two profiles that offer 
strong clues that these subsequences would be excellent top-2 
snippets. Together, their respective low-value regions cover 
almost the entire length of the time series, swapping over at 
about location 950.  

In contrast, suppose instead we had made a poor choice of 
two snippets for this dataset. As shown in Fig. 11, if we selected 
both snippets from the first half of the data, they would be highly 
redundant with each other, and this would be reflected in the 
high correlation of their profiles. 

 
Fig. 11. (contrast with fig 7 and fig 8). top) Revisiting our running example, 

we extracted two similar snippets (highlighted). bottom) The redundancy 

of the snippets is revealed in the high correlation of the profiles. 

This observation immediately suggests an objective function 
that we can use to score choices of top-k snippets. Consider a 
non-empty set of profiles. Create a new curve, M, by taking the 
minimum value from all k profiles at each location. This new 
curve allows an objective function: 

Definition 6: The area under the curve M is denoted as O, 
and is an objective function where 0 ≤ O. We will refer to the 
area under the curve of profile as the ProfileArea. 

This function rewards a snippet’s fidelity and coverage 
exactly as required. Fidelity is rewarded by the snippet having a 
small distance to at least some of the T, lowering the profile and 
reducing the area under the curve in the corresponding region. 
Coverage is rewarded by the snippet representing large regions 
of T. Note that O has the intuitive property wherein if we used 
every non-overlapping subsequence as a snippet, its value would 
be exactly zero. Of course, we hope that in most cases, using just 
a few snippets will get us close to zero, achieving significant 
“compression” or more correctly, numerosity reduction. 

In the simple example shown in Fig. 7, we found a low 
scoring value for O simply by using common sense to pick one 
snippet from each of the repeated patterns. More generally, if we 
had computed all of the non-overlapping profiles, we would 
have the “tangle” of profiles shown in Fig. 12. 

 
Fig. 12. All the non-overlapping profiles for the time series shown in Fig. 

7. 

For a more realistic dataset, finding the k profiles that 

minimize O from the k-choose-P possibilities (𝑘
𝑃

)  would be 

untenable. Thus, we frame the snippet discovery problem as a 

classic search problem. An exhaustive combinatorial search is 
infeasible, so below we outline a greedy search strategy.  

The main algorithm for Snippet-Finder is outlined in 
TABLE I, and its subroutine that computes profiles of each non-
overlapping window is outlined in TABLE II.  

The main algorithm begins in line 1 by initializing the list 

of snippets C. In line 2, we calculate the profile of each non-

overlapping window with the time series (see TABLE II). At 

each iteration we calculate the minimum of each profile with 

the profiles within the snippet list C, and for each one, we find 

the area under the curve ProfileArea. For 𝑘 = 1 , the 

ProfileArea is simply equal to the area under the curve of each 

profile. The profile that has the minimum ProfileArea will be 

added to the snippet list C. We also add the location of each 

snippet within T. This is done in lines 4 to 15. We evaluate the 

terminal condition when we reached the number of snippets the 

user requested in line 16 to 18. After finding the top-k snippets, 

in line 20 we compute the minimum value from all k profiles 

totalmin. In line 21 to 24, we compare the top-k snippet profiles 

with totalmin. The number of points that these two curves have 

the same value, f, gives us the fraction of data each snippet 

represents Ci.frac. Finally, when the algorithm terminates, the list 

of snippets C, the fraction of data that ith snippet represents, the 

data Ci.frac and the location of snippet within the time series 

Ci,index is returned. 

TABLE I. Snippet-Finder: SNIPPETS SELECTION ALGORITHM 

  Procedure: SnippetsSelectionAlgorithm (T, m, k) 

  Input: time series T, subsequence length m, number of snippets k  

  Output: list of snippets C, fraction of data that snippet represents Ci.frac       

  location of each snippet Ci.index   

 1 C ← Ø, snippetProfiles ← Ø,  Q ← Inf, n ← Length(T) 

 2 D ← GetAllProfile (T, m)                             //TABLE II 
 3 While True 

 4    minimumArea ← Inf 

 5    for i = 1:n/m 
 6       ProfileArea ← sum ( min (D [i], Q) )           // Definition 6 

 7       if minimumArea > ProfileArea 

 8          minimumArea ← ProfileArea 
 9          idx ← i 

10       end if  

11    end for  

12    Q ← min (D [idx], Q)  

13    C ← T [(idx - 1) × m + 1: idx × m] 

14    Ci.index ← idx 
15    snippetProfiles ← D [idx] 

16    if Length (C) = k       // if reaching the number of user defined snippets 

17       break                           

18    end if 

19 end While 

20 totalmin = min (snippetProfiles)   // minimum area under the profiles  
21 for i = 1:k                             

22    f ← all the points in snippetProfiles[i] which is equal to totalmin 

23    Ci.frac ← f / (n-m+1) 
24 end for 

25 return (C, Ci.frac, Ci.index) 

To calculate the profile of each non-overlapping window, 

we use the subroutine outlined in TABLE II. 

 The algorithm begins in line 1 by determining the length of 

the time series T, and initializes D to the empty list. From lines 

0 1000 2000
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0 200 400 600 800 1000 1200 1400 1600 1800 2000



2 to 4, we calculate all the profiles D, using each non-

overlapping subsequence T [(i-1) × m + 1:i × m] and the time 

series T. Finally, we return the result D in line 5. 

TABLE II.  CALCULATING DISTANCE PROFILES 

  Procedure GetAllProfiles (T, m) 

  Input: time series T, Subsequence length m 

  Output: list of profiles D 

  1 D ← Ø, n ← Length (T) 

  2   for i = 1:n/m 

  3    D ← Profile (T, T [(i-1) × m+1:i × m])   
  4 end for 

  5 return D 

B. Snippet MetaData  

In addition to computing the snippets themselves, it is useful 
to compute some metadata that reflects how well the current 
snippet set is representing the dataset in question. In this sense 
we have a close analog to how K-means clustering is used. In 
some cases, say quantizing a color space, the number of clusters 
requested of K-means may be fixed in advance, regardless of the 
data itself. This is similar to our use of snippets for creating icon 
“thumbnails,” as shown in Fig. 1. Because the operating system 
limits us to 256 by 256 pixels, we hardcoded the number of 
snippets displayed to k = 2. 

However, in other cases, we want the K-means clustering to 
reflect the “natural” clusters in the data. While the task of 
deciding what value of k best does that is outsourced to an 
external algorithm; K-means provides helpful information by 
reporting the objective function (sum of squares), a relative 
measure of how well the clustering reflects the data. We would 
like an analogous objective function for snippets. 

We propose using the area under the curve ProfileArea as 
such a measure. As Fig. 13.left shows, for increasing values of 
k, this measure shows a classic diminishing returns behavior.  

 

Fig. 13. left) The area under the curve ProfileArea for k = 1 to 9, for the 
running example shown in Fig. 7. right) For the same example we can also 
compute changek for k = 1 to 9.  

This “scree-plot”-like curve suggests a heuristic that can be 
used to recommend a value for k. Similar to many suggested 
knee-finding algorithms in the literature, for each value of k we 
can compute changek = (ProfileArea k-1/ ProfileArea k) - 1. For a 
given value of k > 1, a small value for changek suggests that 
adding the kth did not add much explanatory power; thus, we 
should use a value of k corresponding to a peak. As shown in 
Fig. 13.right, this heuristic suggests a value of k = 2 for our toy 
example, which is objectively correct. Unless otherwise stated, 
we use this simple heuristic in the rest of this work.  

C. Complexity Analysis 

The time complexity of our proposed Snippet-Finder is 
O(𝑛2 × (𝑛 − 𝑚)/𝑚) . We need O(𝑛2) for computing each 
profile and the number of non-overlapping windows is O((𝑛 −

𝑚)/𝑚). The pseudocode is optimized for simplicity, with an  
O((𝑛 − 𝑚)2/𝑚)  space complexity. However, the space 
complexity in a slightly more sophisticated implementation is 

merely O((𝑛 − 𝑚) × 𝑘).  In addition, the ProfileArea curves 

only need to be represented with one-byte precision.  

To concretely ground this analysis, consider the following. 
For typical datasets recorded at ~100 Hz (gait, ECG, insect 
telemetry, etc.), we can discover snippets many orders of 
magnitude faster than the data is collected. Moreover, even very 
large data collections can be processed using a small fraction of 
the main memory of a modern machine. Thus, computational 
resource limitations are not barriers to adoption.  

IV. EMPIRICAL EVALUATION 

We begin by stating our experimental philosophy. We have 
designed all experiments such that they are easily reproducible. 
To this end, we have built a web page [24] that contains all of 
the datasets and code used in this work as well as the 
spreadsheets containing the raw numbers. The one hundred test 
datasets we created will be archived in perpetuity independent 
of this work. We hope that the archive will grow as the 
community donates additional datasets. 

As we noted above, to the best of our knowledge there is no 
explicit strawman other than random sampling. However, we 
can create a simple strawman based on time series clustering, 
which is the most obvious, sensible “first thing to try.” For this 
algorithm, we random sample f% of the data subsequences. We 
then cluster the subsequences with K-means. For each cluster we 
find the subsequence that has the minimum distance to all other 
subsequences in the cluster (i.e. the medoid) and report these as 
the k-snippets. This leaves open the issue of finding a good value 
for f; for simplicity we allow this algorithm to “cheat” by testing 
all values in the range 1 to 20%, and reporting only the best 
result.  

We also report the results of random sampling, which plays 
a role similar to the “default rate” for classification, setting a 
lower bound for performance.  

A. Objective Experiments 

Our task at hand, to produce “typical” time series 
subsequences, seems hopelessly subjective and difficult to 
evaluate in an objective way. However, we can convert the 
problem to one for which objective truth is available. Suppose 
we have a dataset which comprises of a minute of walking, 

followed by a minute of running. If we queried such a dataset 

for the top-2 snippets, we would surely hope to find one snippet 
from each gait type. This we count as a success, while any other 
result we count as a failure.  

Of course, here there is a ½ chance of success with random 
sampling. More generally, if the two behaviors are different 
fractions of the length of the full-time series L and R, with L + R 
= 1, the probability of random sampling returning a satisfactory 
pair of snippets is 2 × L × R.     

Thus the task is made more difficult by having an 
asymmetric length of behaviors. Nevertheless, a single 
successful experiment would not be very convincing. Thus, to 
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stress test our algorithm, we created a diverse collection of one 
hundred time series that we call MixedBag. Fig. 14 shows some 
representative examples. 

 
Fig. 14. Five examples from the MixedBag archive, aligned such that the 

behavior change takes place at the center. Note that the examples are much 

longer, as data was truncated from both ends for visual clarity.  

Some of our examples are completely natural, and we are 
confident from some external knowledge that there are only two 
behaviors, and that we have correctly identified the transition 
point. For some datasets, we slightly contrived the data to give 
us an unambiguous ground truth; for example, we took two one-
minute ECG traces of two different individuals and 
concatenated them. Our examples draw from robotics, human 
locomotion, ornithology (vocalizations), ornithology (flight), 
entomology, speech processing, pig physiology, etc.  

The scoring function is simply the sum of all successes in 
our one-hundred experiments. Table III shows the result for the 
scoring function for three different algorithms. 

Table III. The performance of three algorithms in snippet discovery 

Dataset K-means Random Sampling Snippet-Finder 

MixedBag 57 47.3* 84 

* Calculated exactly, not computed experimentally.  

While the results are impressive, we should point out that 
even the 16% of cases where we failed may not represent true 
failures. For example, consider a dataset that is labeled 
{walk|jog}, as in Fig. 14. If we reported two snippets that 

came from the walking section, our scoring function reports 
failure. However, it is possible that the walking section actually 
includes two distinct behaviors, say, walking upstairs 

and then walking downstairs, and those labels are not 

available to us. In such a case, a snippet from each of the two 
latent walking behaviors may actually represent a success.  

B. Robustness Tests 

The experiments in the previous section could justifiably be 
criticized for being too contrived. All of the data belongs to 
exactly one of two behaviors, with no “distracting” 
subsequences. However, most real data has such sections. For 
example, the PAMAP dataset is comprised mostly of walk, 

run, cycle, etc. However, there are short regions of ill-

defined and less structured data, such as when the user pauses at 
a stop light, or transitions from walking to cycling and spends a 
few ill-defined moments unlocking the bicycle and carrying it to 
the side of the road. It is natural to ask how our method fares 
when presented with such distracting regions.  

                                                           
2 The procedures were reviewed and approved by The University of Tennessee 

Institutional Review Board before the start of the study. A parent/legal guardian 

of each participant signed a written informed consent and filled out a health 

To test this, we repeated the experiment above, this time 
after concatenating regions of distracting data to the original 
time series. To ensure that the distracting data itself does not 
have patterns worthy of being summarized by a snippet, we used 
both random data, and random walk data. We considered the 
cases where distracting data of 10% and 20% of the original time 
series length was appended to the original time series.   Table IV 
shows the result for the scoring function for three different 
algorithms in these more challenging scenarios. 

Table IV. The performance of three algorithms in snippet discovery 

Dataset K-means Random Sampling Snippet-Finder 

MixedBagRandWalk10  51 39.1* 84 

MixedBagRandWalk20 50 32.8* 76 

MixedBagRand10 52 39.1* 82 

MixedBagRand20 50 32.8* 82 

 * Calculated exactly, not computed experimentally.  

We observed that our proposed algorithm is largely invariant 
to the reasonable amount of spurious distractor data. The 
performance does begin to suffer as we see large amounts 
(>10%) of random walk data, as this data has the property that 
any two randomly selected subsequences tend to be closer than 
any random subsequences of structured data (i.e. gait, heartbeats 
etc.). In [2] there is an explanation of this phenomenon, and a 
possible solution (a correction factor for the Euclidean distance). 
However, given the high performance of our simple algorithm, 
we leave such considerations for future work. 

We have established that our snippet discovery algorithm 
can robustly find typical time series in diverse settings. In the 
following sections we show some case studies that demonstrate 
the utility of snippet discovery in real world applications.  

C. Case Study: Human Behavior 

We consider a dataset collected as part of a large-scale five-
year NIH-funded project at the University of Tennessee. More 
than one hundred youths are being monitored during a semi-
structured free-living period (development group) while another 
one hundred youths are being monitored during true free-living 
activities during an after-school program and at home 
(validation group). Fig. 15 shows an example of the former data 
type. Note that for some data we have video, thus ground truth. 

 
Fig. 15. left) A participant in the Tennessee study. He is wearing a portable 

ergospirometer, and sensors on each limb. right) A small sample of the data 

collected as the participant runs around a basketball court2.  

Collecting and analyzing this massive dataset is a difficult 
task. Even beyond the scientific goals of the study, there are 
basic issues of compliance (did the participant perform his 
prescribed 30 minutes of exercise at some point today?). 

history questionnaire, and each child signed a written assent prior to 
participation in the study. 

ECG

USC-HAD/Walking Right

Walking/Jogging

PAMAP

Arterial Blood Pressure

0
160,000

A 29-minute time series of Y-axis

acceleration from a hip-mounted accelerometer



 For this experiment, we consider sensor data from a hip-
mounted accelerometer, which is collected at 90 Hz. In Fig. 16 
we show the snippets discovered.  

 

Fig. 16. top) A five-minute region of behavior for the study participant. 

While it is only a tiny fraction of the full day, it still defies quick visual 

interpretation. bottom) the top-2 snippets discovered in this dataset. 

At a quick glance at the output of Fig. 16, the study organizer 
can immediately tell that this data represents about four minutes 
of running followed about a minute of very slow “cool-down” 
walking. Note that this example was used in Fig. 1 as an example 
of the thumbnail icon summarization tool. 

 In Fig. 17 we show the profiles that were used to compute 
the top two snippets. Note that this is not a view that would be 
shown to an end-user; it is just an internal representation used 
by the snippet discovery algorithm. Here we show it to give 
context to the figures shown in Section III as we describe our 
algorithm, and to explain how we compute the “regime bar.” 

 

Fig. 17. top) The profiles that were used to compute the top two snippets. 

bottom) It is from these curves that we obtain the “regime bar,” which tells 

us which snippet explains which region of data. 

In this example, it happens that only one example of each 
regime is in the regime bar. However, that does not have to be 
the case. To see this, as shown in Fig. 18, we repeated the 
experiment with similar data from the PAMAP dataset, a widely 
used benchmark [18].  

 

Fig. 18. A ten-minute region of behavior from the PAMAP dataset [18]. 

The data is the Y-axis acceleration from a chest-worn sensor. In this 

dataset the ground truth is available from careful annotations made at the 

time. 

As shown in Fig. 19, we extracted the top-4 snippets from 
this dataset. Note that one of the snippets, snippet-3, reflect two 
non-contiguous regions. 

Note that the skipping (rope-jumping) section has several 
discontinuities, presumably because the participant caught her 
foot in the rope and had to restart. In spite of these unstructured 
regions, the top-4 snippets perfectly summarize this data set. 

 

Fig. 19. top) The top-4 snippets from the PAMAP dataset. To someone with 

familiarly with this dataset/domain, it is easy to label the four behaviors. 

bottom) As an alternative to creating a regime bar, we can simply brush 

the colors of each snippet onto the original time series.  

D. Case Study: Medicine 

Working with clinicians of the David Geffen School of 
Medicine at UCLA, we are creating a tool to summarize ICU 
(Intensive Care Unit) telemetry. In an ICU setting, for a Level-
3 patient, a typical protocol requires a nurse or doctor to go 
physically bedside once an hour and examine both the patient 
and their vital signs displayed on the bedside monitor [3][5]. The 
latter typically contains the most recent data in the sliding 
window for the last twelve seconds. However, it may be that this 
most recent data is atypical of the last hour. For example: 

• If the patient recently sneezed, this will change her 
intrathoracic pressure, decreasing the flow of blood to the 
heart, which then is forced to compensate. This can change 
the ECG, arterial blood pressure (ABP), and respiration. 

• The mere presence of medical staff may induce stress in a 
conscious patient and change their physiological readings. 

Thus, we argue instead of, or in addition to, presenting the 
last twelve seconds, we should present the top-k snippets over 
the last hour. 

We asked ICU clinicians to create datasets for which they 
know (or at least, strongly suspect) what a correct answer should 
look like, and to examine these datasets with Snippet-Finder. 
Fig. 20 shows one such example. 

 

Fig. 20. top) The ABP of a 54-year old female. bottom) The top-2 four-

second snippets discovered in the APB data.  

Note that the two snippets reflect different heart rates, at 
about 70 and 84 BPM respectively. However, this is not the 
reason why they were reported as the top-2 snippets. If we 
rescale the data to make each beat the same length, we would 
get similar snippets. To make the difference between the two 
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snippets clearer, in Fig. 21.left we show zoom-in sections of the 
individual beats. 

 

Fig. 21. left) A zoom-in to individual beats discovered in the top-2 snippets. 

right) A sensor failure in the original ABP dataset (see also Fig. 20).   

Note that beyond differences in periodicity, these beats have 
very different shapes. We can now reveal the ground truth. This 
dataset was created by researchers interested in hyperemia, and 
the difference in the two regions was actually induced by 
clinicians who manipulated the patients by changing their 
orientation on a special bed. Thus, in this case, the researchers 
can confirm that the results of Snippet-Finder are objectively 
correct and medically meaningful. 

Before moving on, there are two interesting observations for 
this case study. As shown in Fig. 21.right, the original data 
contains a small region in which the sensor failed to record 
physiological data, and instead reported a square-wave 
calibration signal [22]. As noted in Section II.A, any motif-based 
definition of a typical pattern would surely report this section. 
However, our definition rewards both coverage and fidelity, and 
while this section has perfect fidelity, it has very low coverage. 

The second interesting observation is that most of the 
original dataset has the significant wandering baseline, while our 
top-2 snippets do not. This is a very desirable and sensible 
property. A snippet on a rising trend is a better fit to other rising 
trends, but a poorer fit to falling trends (and vice-versa). 
However, if we are to have only one snippet per “behavior,” a 
neutral trend is clearly the best compromise and most 
representative.  

E. Case Study: Electrical Power Demand  

To demonstrate the versatility of snippets, we consider a 
dataset that is four orders of magnitude longer than the datasets 
considered in the previous examples. As shown in Fig. 22, the 
Italian power demand dataset represents the hourly electrical 
power demand of a small Italian city for 1,220 days, beginning 
on Jan 1st 1995.     

 

Fig. 22. The Italian power demand dataset contains a little over three years 

of electrical demand for a small Italian city. 

To avoid “over polishing” our query with exact values query 
length, we search for the top-2 snippets of length 200. This was 
our quick “eyeballing” guess as to the length of a week, but it is 
actually about 8.3 days. As Fig. 23 shows, the returned snippets 
are not constrained by calendar conventions to start on a 
particular day. An HVAC engineer we consulted suggests that 
these profiles demonstrate that the respective households have 
high ownership rates and use of HVAC systems for cooling, but 
a low use of electrical equipment for heating in the winter. 

 
Fig. 23. The top-2 snippets from the Italian power demand dataset. left) 

snippet-1 runs from Monday to Monday (inclusive). right) snippet-2 runs 

from Sunday to Sunday (inclusive). 

However, in this case, the real power of these snippets comes 
from examining the regions they explain, as shown in Fig. 24. 
In this figure, it is clear that the snippets represent summer and 
winter regimes respectively. 

  

Fig. 24. The Italian power demand dataset. The horizontal bar shows the 

colors of each snippet onto the original time series.  

Before leaving this section, we will take this opportunity to 
reiterate our discussion of what snippet discovery is not. As 
explained in Section II.A, snippet discovery is a completely 
distinct task from clustering. Nevertheless, as a side effect, here 
we have produced an implicit clustering into seasons. Moreover, 
a brief survey of the research efforts to explicitly cluster the 
electrical profile into seasons (see [19] and the references 
therein) suggests that the algorithms specialized for this task are 
more complex, and require more domain knowledge; for 
example, the subsequences must be exactly one-week long.  

Likewise, snippet discovery is a completely distinct task 
from segmentation [13]. Once again, it happens that in this case, 
snippet discovery incidentally solves the segmentation problem 
if we consider the boundaries between the snippets. However, 
recall that the segmentation problem, as it is typically defined, is 
tasked only with finding boundary locations, not in explaining 
them, or producing representative patterns [13]. 

F. Case Study: Biology  

As a final example of the utility of snippets, we consider a 
problem for which our help was solicited by the team of 
biologists at UCR who recorded the feeding behaviors of sap-
sucking insects with an electrical penetration graph (EPG). In 
Fig. 25 we show three examples of the data in question.   

  

Fig. 25. Three examples of telemetry collected from the three individual 

Asian citrus psyllids (Diaphorina citri). Assuming that the top example is 

an ideal specimen, and that the bottom two are alternative treatments. 

How could we quantify the differences (if any) caused by the treatments?   

If they define the time series shown in the top of Fig. 25 as 
being ideal, and collect the two other examples under different 
environmental conditions, then they can ask “How do T1 and T2 
differ from the ideal specimen, if at all?” The answer does not 
appear to lie in any single number such as mean, max, variance, 
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entropy etc. We hypothesize that changes in behavior may show 
up in differences in local regions as changes in shape. However, 
given that the approximately five hours of data shown in Fig. 25 
represents less than one-thousandth of their archive, visual 
inspection of the full data archive is clearly intractable.  

The reader will readily appreciate that snippets are a 
potential way to answer this question. As shown in Fig. 26, we 
can discover the top-2 snippets for each time series, and visually 
compare them. 

  

Fig. 26. The top-2 snippets extracted from the datasets presented in Fig. 

25. Note that the snippet-2s are effectively identical, but while the snippet-

1 for I and T1 are very similar, T2’s snippet-1 appears unique. 

For all three examples, the 2nd snippets are near identical and 
represent (to the biologists) very familiar examples of “derailed 
stylet mechanics.” The 1st snippet from T1 and I appear to be 
“Xylem ingestion,” but the 1st snippet from T2 is a mystery. Its 
period is similar to that for Xylem ingestion, but the shape of the 
peaks is unfamiliarly sharp. Is this a biologically significant 
finding, or is there a more pedestrian explanation, such as a 
malfunctioning apparatus? This is currently under investigation.  
However, this experiment shows the utility of snippets in 
helping to explore and compare large datasets that would 
otherwise defy human inspection.  

V. CONCLUSIONS AND FUTURE WORK 

We have introduced a novel primitive called top-k time 
series snippets. We have further shown an algorithm that can 
robustly find snippets in large datasets, even when corrupted by 
noise, dropouts, wandering baseline, etc. We have made all our 
data and code publicly available for the community to confirm 
and extend our work [24], including a large archive of 
benchmark datasets that will allow the community to compare 
new approaches and gauge progress on this task. In future work 
we plan to generalize our algorithm to streaming settings, in 
order to maintain snippets over fast-moving streams. 
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