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ABSTRACT 

Clustering time series is a useful operation in its own right, and an 

important subroutine in many higher-level data mining analyses, 

including data editing for classifiers, summarization, and outlier 

detection.  While it has been noted that the general superiority of 

Dynamic Time Warping (DTW) over Euclidean Distance for 

similarity search diminishes as we consider ever larger datasets, 

as we shall show, the same is not true for clustering. Thus, 

clustering time series under DTW remains a computationally 

challenging task. In this work, we address this lethargy in two 

ways. We propose a novel pruning strategy that exploits both 

upper and lower bounds to prune off a large fraction of the 

expensive distance calculations. This pruning strategy is 

admissible; giving us provably identical results to the brute force 

algorithm, but is at least an order of magnitude faster. For datasets 

where even this level of speedup is inadequate, we show that we 

can use a simple heuristic to order the unavoidable calculations in 

a most-useful-first ordering, thus casting the clustering as an 

anytime algorithm. We demonstrate the utility of our ideas with 

both single and multidimensional case studies in the domains of 

astronomy, speech physiology, medicine and entomology.   

Categories and Subject Descriptors 

H.2.8 [Information Systems]: Database Application – Data Mining 
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Clustering; Time Series; Anytime Algorithms 

1. INTRODUCTION 
Given the ubiquity of time series data in scientific, medical and 

financial domains, the research community has made substantial 

efforts to create efficient algorithms for classification, clustering, 

rule discovery, and anomaly detection for this data type [1] 

[3][11][16][27]. In particular, time series clustering is useful, both 

as an exploratory technique and also as a sub-module for solving 

higher-level data mining problems. As a concrete example, 

consider Figure 1, which illustrates a subset of a cluster we 

discovered in a social media dataset [32]. This clustering allows 

us to at least partly address two problems: 

 Synonym Discovery: In this example, we have the hashtag 

#Michael. It is not clear to whom this refers to: Michael 

Phelps? Michael Caine? However, by noting that this cluster 

also contains #MichaelJackson, this ambiguity is resolved. 

 

 

Figure 1: A cluster of four Twitter hashtag usage time series 

(normalized for volume) over ~6 days starting from June 12, 

2009 [32]. (Best viewed in color.) 

 Association Discovery: Here we see that #kanyewest and 

#taylorswift have highly similar time series representations, but 

are clearly not synonyms. If we test to see whether this 

relationship existed prior to the illustrated timeframe, we find it 

does not. This suggests the existence of an event that caused 

this temporary association, and with a little work we can 

discover the famous “I'mma let you finish” event at the 2009 

Video Music Awards [35].  

In this example, the knowledge gleaned is clearly trivial; however, 

similar ideas have been used to track the levels of disease activity 

and public concern during the recent influenza A H1N1 pandemic 

[26]. Note that while we discovered this example using DTW, it 

might have been discovered with the computationally efficient 

Euclidean distance. However, in some cases there may be a causal 

relationship (rather than just an association) between events, 

resulting in a local lag between peaks. DTW is an ideal way to 

capture/be invariant to such out-of-sync relationships.  

We begin by demonstrating that the problem we plan to address, 

robustly clustering large time series datasets with invariance to 

irrelevant data, has not been solved in previous work. 

For most time series data mining algorithms, the quality of the 

output depends almost exclusively on the distance measure used 

[27].  A consensus has emerged that the Dynamic Time Warping 

(DTW) distance measure is the best in most domains, almost 

always outperforming the Euclidean Distance (ED) [27]. As a 

concrete example, consider the two clusterings of three randomly 

chosen mammals shown in Figure 2. The input data is the 

mitochondrial DNA after it was converted to a time series 

representation (converting DNA to time series is a commonly 

used operation [18][19]). Two types of DNA mutations, insertions 

and deletions, have the effect of “warping” the time series. At 

least in this case, we can see that DTW is invariant to these 

mutations and correctly unites Bos taurus (cattle) and Hyperoodon 

ampullatus (bottlenose whale), with Talpa europaea (mole) as the 

out-group. 
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Figure 2: Single-linkage hierarchical clusterings of DNA 

using DTW (left) and Euclidean distance (right). 

While this example1 is on a small and somewhat specialized 

dataset, in Section 6 we will show that the superiority of DTW 

extends to large datasets in many domains. 

1.1 Why This Problem Is Hard   
Given that DTW is intrinsically slow because of its quadratic time 

complexity, there are two ideas that are commonly used to 

mitigate the problem of using such a slow distance measure [19]. 

We briefly discuss them here only to dismiss them as solutions to 

the task at hand. 

 The convergence of DTW and Euclidean distance results for 

increasing data sizes. It has been noted that for many 

problems, including motif discovery [16] and classification 

[27], the results returned by DTW and Euclidean distance tend 

to become increasingly similar as the dataset sizes increase. 

This suggests that we can simply use the more efficient 

Euclidean distance to cluster large datasets. 

 The increasing effectiveness of lower-bounding pruning for 

increasing data sizes. For some problems, notably similarity 

search, the lower-bounding pruning of unnecessary 

calculations is the main technique used to produce speedup. 

The effectiveness of this lower-bounding tends to improve for 

larger datasets [19].  

Unfortunately, neither of these observations helps us for 

clustering under DTW. To demonstrate why the first observation 

does not help, we performed a simple experiment in which we 

measured the leave-one-out training error of 1NN classification 

using both DTW and ED, for various numbers (50 to 2000) of 

exemplars from the CBF dataset [13]. With 50 objects, the error 

rates differ by a factor of 4.6 (7% and 1.75%, respectively), but as 

shown in Figure 3.top, by the time we consider the 2000 object 

dataset, this difference is essentially zero.  

This effect is well known for time series classification [22][27], 

and it might be imagined that this applies to clustering. To show 

that this is not the case, we performed a parallel experiment in 

which we clustered the same objects and measured the 

performance using the Rand Index [21]. As shown in Figure 

3.bottom, DTW clustering maintains its superiority over 

Euclidean distance as the datasets get larger.  

Similarly, the second observation above does not help 

significantly. It is true that lower bounds are increasingly effective 

for larger datasets when attempting a similarity search. This is 

because for larger datasets, we can expect to have a smaller best-

so-far early on, allowing more effective pruning [19][22][27]. 

However, in clustering, we need to know the distance between all 

pairs [11], or at least all distances within a certain range, 

rendering the typical use of lower-bounding pruning ineffective. 

                                                                 
1 We defer a discussion of our experimental philosophy until Section 5, 

but we note that all experiments in this work are made reproducible by 

our unrestricted sharing of code/data. 

 

Figure 3: top) The classification error rates of DTW and ED 
tend to converge as we see more training data. bottom) In 
contrast, for clustering, DTW retains its great superiority 
over ED for increasingly large datasets. 

1.2 Why Existing Work Is Not the Answer 
More generally, many clustering algorithms achieve scalability by 

exploiting a spatial access method. For example, the scalable 

version of the ubiquitous DBSCAN uses an R*tree [6]. However, 

because DTW is not a metric, it is very difficult to index, 

especially for long (i.e., high-dimensional) time series objects.  

Beyond the need to scalably support DTW, we note the need for a 

clustering algorithm that supports invariance to outliers. That is to 

say, unlike some clustering methods such as k-means, which 

attempt to explain all the data, we believe it is critical to allow the 

clustering algorithm the freedom to ignore some data.  

Consider the example in Figure 4. We took twelve objects from a 

heraldic shield dataset [36], and clustered them using k-means and 

DP, the algorithm we propose to augment (described in detailed in 

Section 4.1). Because we are using the (non-metric) DTW 

measure, which may prevent k-means from converging, we used 

the variant in [10] which performs k-means clustering using the 

all-pair distance matrix. Note that for ease of visualization, we 

used multidimensional scaling to cast high-dimensional time 

series objects to two dimensions. After we ran the algorithms, 

both of them gave the perfect Rand Index. We then inserted a 

single outlier object (object 13) from this dataset, and reran the 

algorithms. As we can see from Figure 4.bottom.left), k-means 

assigned objects 8-12 to the cluster of the outlier object. In 

addition to this, k-means falsely identified objects 1 and 2 as a 

separate cluster from the cluster of objects 3-6. In contrast, from 

Figure 4.bottom.right) we can see that DP only clustered object 8 

in the cluster of the outlier object, but did not change the cluster 

labels of the rest of the dataset. 

This toy example is contrived and anecdotal, but conformed by 

more rigorous experiments on real data [37]. 

 

Figure 4: top.left) Leaf 18V of a 15th-century book, Treatises 
on Heraldry[36]. top.right) The colorful heraldic shields can 
be converted to 3D RGB “time series” of color distribution. 
bottom.left) Even the insertion of a single outlier can confuse 
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k-means. bottom.right) In contrast, the performance of the 
DP algorithm is not sensitive to outliers. 

In this work, we address all the considerations above. We adapt 

DP (Density Peaks), a relatively new clustering framework that is 

able to ignore outlying data points [24]. While robust to outliers, 

DP is relatively slow, as it requires O(N2) DTW calculations. We 

augment DP such that it can exploit both DTW upper and lower 

bounds, to compute only the absolutely necessary DTW 

calculations, and do so in a best-first manner, giving our algorithm 

the desirable anytime algorithm behavior [2][34].  

2. RELATED WORK  
The field of clustering is vast, and even the subfield of clustering 

time series has an enormous literature [1][11][31][33]. Much of 

the works on time series clustering are concerned with clustering 

based on time series features [31], which are at best tangentially 

related to our goals. Here, we are only interested in clustering 

based on time series shapes. In the latter case, there are two 

important and interrelated choices that define most of the 

literature: the choice of distance measure, and the choice of 

clustering algorithm. 

Most of the literature on time series shape-based clustering uses 

metric measures like Euclidean distance [31]. The ubiquity of 

Euclidean distance seems to derive more from its familiarity and 

ease of indexing than any data-driven assessment of its 

effectiveness. As Figure 3.top illustrates on a single representative 

example, the general superiority of DTW over ED is well 

understood in the community (cf. [27]), at least for classification. 

As Figure 3.bottom hints at, and as we later empirically confirm 

on many diverse datasets, the dominance of DTW over ED for 

clustering is, if anything, greater.  

The plethora of shape-based clustering algorithms [11][20][33] 

can be divided at the highest level into those that insist on 

explaining (i.e., clustering) all the data [33] vs. those that have the 

representational power to leave some data unclustered (a small 

minority) [20]. We believe that this distinction is 

underappreciated and critical to the success of most efforts. For 

clarity, consider the following analogy: If we were clustering 

people, then surely every person in our database would belong to 

some group, even if (due to the small size of our sample) the size 

of some groups were just one. In contrast, imagine we are 

clustering subsequences from a speech articulation database (see 

Section 6.1). We hope that the subsequences will cluster into well-

defined words or phrases. However, it is highly likely that we will 

have some examples of coughing, sneezing or harrumphing. Such 

sequences are likely to be very dissimilar to the rest of the 

database. It is not just the case that we do not want/need them to 

be clustered; we do not want them to affect the clustering of the 

clusterable words or phrases (recall Figure 4). However k-means 

and its variants insist on explaining these instances, and because 

of k-means’s sum of squares objective function, these highly 

dissimilar items have a huge effect on the overall clustering.  

There exist works [15] in the literature that perform clustering on 

top of DBSCAN [6]. The problems with such approaches are the 

inheritance of the non-determinism of DBSCAN, and the use of 

only lower bounds to prune expensive distance calculations. A 

handful of research efforts [33] have attempted to mitigate the 

slow performance of DTW clustering by casting it to an anytime 

framework. Most such efforts reduce to the following: Until there 

is a user interrupt, these frameworks keep replacing the (fast to 

compute) approximate DTW distances with true (slow to 

compute) DTW distances. If there is no user interrupt, such 

frameworks would calculate the full distance matrix (generally in 

some clever “most-likely-to-be-useful” order), and return the 

exact clustering. Our proposed algorithm goes beyond this in 

several ways. Most importantly, we show that calculating the full 

distance matrix is unnecessary in the general case. By exploiting 

both upper and lower bounds to DTW, and, more critically, by 

exploiting the relationship between these bounds, we can compute 

the exact clustering while only calculating a tiny fraction of the 

full distance matrix. 

3. BACKGROUND  
There has been significant research on clustering datasets that are 

too large to fit in main memory [4]. This problem setting typically 

assumes inexpensive distance measures, but costly disk accesses 

[4]. However, the problem we wish to solve exploits DTW, which 

itself is a very expensive distance measure. Therefore, in 

situations when even the data can be stored in main memory, the 

time needed to do the clustering may be on the order of 

days/weeks. The problem we are interested in is therefore, CPU 

constrained, not I/O constrained. 

3.1 Anytime Algorithms 
For most clustering algorithms, it is well known that not all 

distance measurements contribute equally to the final clustering 

assignments. For example, a recent paper on hierarchical 

clustering demonstrates (under some mild assumptions) that it is 

possible to capture the true structure of the clustering with just 

carefully chosen O(n log2 n) distance computations [14]. This fact 

that some distance computations are more important than others 

immediately suggests the use of anytime algorithms, assuming 

only that we can find an efficient and (even somewhat) effective 

test to identify these influential distance computations.  

Recall that anytime algorithms are algorithms that can return a 

valid solution to a problem, even if interrupted before ending 

[33][34]. Starting with a negligibly small amount of setup time, 

these algorithms always have a best-so-far answer available and 

the quality of the answer improves with the increase of execution 

time. The desirable properties of anytime algorithms are 

interruptibility, monotonicity, measurable quality, diminishing 

returns, preemptibility, and low overhead [34]. Note that this is a 

very brief introduction to anytime algorithms; we refer the 

interested reader to [34], which contains an excellent survey. As 

Figure 5 shows, anytime algorithms are in essence optimizing the 

tradeoff between execution time and quality of the solution.  

 

Figure 5: An abstract illustration of an anytime algorithm. 
The three curves show a comparison of the possible 
performances of three hypothetical anytime algorithms. The 
bottommost curve (pink) is only improving linearly over time, 
but the topmost curve (green) demonstrates diminishing 
returns, making most of its improvements early on. 

For clarity, we reiterate that the anytime algorithm approach is 

just one of the two contributions of this paper. We propose to 

make the clustering absolutely faster by admissible pruning. This 

is in addition to rearranging the order the non-prunable 
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calculations are considered to produce the best possible 

diminishing returns anytime algorithm behavior. We are now in a 

position to explain the DP framework. 

4. ALGORITHM 

4.1 Density Peaks Algorithm Overview 
Our proposed solution is inspired by DP, the density-based 

clustering algorithm recently proposed in [24]. We chose to 

augment the DP framework for solving large time series 

clustering problems because of the following: 

    Recent literature [20] and our own experience on real 

datasets (cf. Section 6) suggest that the successful clustering of 

time series requires the ability to ignore some data objects. It is 

not merely that anomalous objects themselves are unclusterable; 

it is that the presence of these objects can affect the labels of 

objects that are clusterable in unpredictable ways. The DP 

algorithm has been shown to be able to ignore anomalous data 

points. 

   The DP algorithm is able to handle datasets whose clusters 

can form arbitrary shapes. This is in contrast to k-means and 

related algorithms which assume the clusters are “balls” in 

space. This observation is particularly important for DTW, 

which is not a metric. While we cannot exactly visualize DTW 

clusters in a metric space, it is clear that some classes of objects 

under DTW form complex manifolds in DTW “space.” 

   Many clustering algorithms require the user to set many 

parameters. In contrast, the DP algorithm requires only two. 

Moreover, they are relatively intuitive and not particularly 

sensitive to user choice.  

  Finally, it happens to be the case that the DP algorithm is 

amiable to optimization and conversion to an anytime 

algorithm.  

For concreteness, we will take the time to explain the clustering 

algorithm [24] we adapt and augment in our framework. The DP 

algorithm assumes that the cluster centers are surrounded by 

lower local density neighbors and are at a relatively higher 

distance from any point with a higher local density. Therefore, for 

each point i in the dataset, the DP algorithm computes two 

quantities:  

   Local density (ρi) 

   Distance from points with higher local density (δi). 

We can formally define these two quantities: 

Definition 1 The Local Density ρi of point i is the number of 

points that are closer to it than some cutoff distance dc. 

Definition 2 The Distance from Points of Higher Density is the 

minimum distance δi from point i to all the points of higher 

density. For the special case of the highest density point, this 

distance is the maximum of the distances of all the points from 

their higher density points. 

We give the algorithm to compute ρi in Table 1 and δi in Table 2. 

Table 1: Local Density Calculation Algorithm  

I
n
p
u
t
 

D,all-pair distance matrix 

dc, cutoff distance  

Out

put 

ρ,the local density vector for all n points in the 

dataset  

1 

2 

3 

for i = 1:n 

    ρ(i) = count(D(i,otherObjects)<dc) 

end 

Given the all-pair distance matrix D and a cutoff distance dc, for 

each point i in the dataset, ρi is calculated in lines 1-3 of Table 1. 

In Table 2, using the local densities ρ from Table 1, for each point 

i, the list of the points with higher densities is calculated (line 2).  

In line 4, this list is sorted in descending order. From lines 5 – 7, 

for each point in the sorted order, the distances from their higher 

density points are calculated. For the special case of the highest 

density point (which by definition does not have a higher density 

neighbor), this distance is calculated in line 8. 

Given the ρi and δi for each object i¸ the DP algorithm calculates 

the cluster centers χ, and performs the cluster assignments based 

on these centers. 

Table 2: Distance to Higher Density Points Algorithm  

I
n
p
u
t
 

D,all-pair distance matrix 

ρ,the local density vector 

Out

put 

δ,NN distance vector of higher density points    

1 

2 

3 

4 

5 

6 

7 

8 

for i = 1:n 

     δ_list(i) = findHigherDensityItems(i,ρ) 

end 

[sorted_δ_list, sortIndex] = sort(δ_list,’descend’) 

for j = 2:n 

  δ(sortIndex(j)) = NNDist(sorted_δ_list(j)) 

end 

δ(sortIndex(1)) = max(δ(2:n)) 

The cluster centers are selected using a simple heuristic: points 

with higher values of (ρi×δi) are more likely to be centers. We 

give the cluster center selection algorithm in Table 3. 

Table 3: Cluster Center Selection Algorithm 

I
n
p
u
t
 

δ,NN distance vector of higher density points    

ρ,the local density vector 

k, number of clusters 

Out

put 

χ, cluster centers  

1 χ = topK(sort(ρ*.δ, ‘descend’),k) 

Given the sorted values of (ρi×δi) in descending order, the top k 

items are selected as cluster centers (line 1). The value of k can be 

specified by the user, or found automatically using a “knee-

finding” type of algorithm [24]. 

The final step of the DP algorithm is the cluster assignment. Each 

data item gets the cluster label of its nearest neighbor (NN) from 

the list of points with higher local densities than it has. We give 

the cluster assignment algorithm in Table 4. 

Table 4: Cluster Assignment Algorithm 

I
n
p
u
t
 

χ, cluster centers 

δ,NN distance vector of higher density points    

sortIndex, sorted index of items based on 

descending ρ 

Out

put 

C, clusters 

1 

2 

3 

4 

5 

6 

7 

8 

for i = 1:size(χ) 

  C(χ(i)) = i //assign cluster labels for centers 

end 

for j = 1:n 

  if C(sortIndex(j)) == empty //no cluster label yet 

     C(sortIndex(j)) = C(NN(sortIndex(j))) 

  end if 

end 

In lines 1-3 the cluster labels of the centers are assigned. After this 

initialization, each of the points in the dataset (other than the 

centers themselves) gets the cluster label of its nearest neighbor 

from the higher density list in the descending order of local 

density (lines 4-8). It is important to note that this algorithm 

allows the clusters to have arbitrary, possibly non-convex shapes, 

unlike k-means and its variants, which are restricted to a Voronoi 



 

partitioning of the input space. We are now in a position to 

describe our augmented version of the DP framework. 

4.2 TADPole: Our Proposed Algorithm 
We call our algorithm, TADPole (Time-series Anytime DP). As 

stated in Section 1, in order for the original DP algorithm to 

cluster a dataset, we need to know the distances between all pairs. 

The time needed to compute these all-pair distances becomes 

untenable for a quadratic time distance measure such as DTW.  In 

order to mitigate this undesirable time complexity, our thoughts 

naturally turn to attempts to speed up other (non-clustering) 

algorithms that need to compute DTW frequently. Most such 

algorithms exploit linear time lower bounds like LB_Keogh [12], 

LB_Kim, LB_Yi [31], etc. Moreover, some algorithms exploit the 

fact that ED is an upper bound to DTW, and can also be computed 

in O(n) time.  

In our TADPole algorithm, we augment the DP clustering 

framework and exploit the upper and lower bounds of DTW to 

prune unnecessary distance computations, resulting in at least an 

order of magnitude speedup. For datasets where even this level of 

speedup is inadequate, we show that we can use a simple heuristic 

to order the unavoidable calculations in a most-useful-first 

ordering. As a result, our algorithm can be cast to an anytime 

clustering framework, quickly producing a good answer, and 

rapidly refining it until it converges to the exact answer.  

The inputs to the TADPole algorithm are the lower bound and 

upper bound matrices for the true DTW distances of all the 

objects of the dataset. Note that the time needed to compute these 

is inconsequential (<1%) relative to the overall clustering time.    

The only parameters we need are the cutoff distance (dc) and 

optionally, the number of clusters (k), if the user wishes to specify 

this value rather than use the knee-finding heuristic suggested in 

[24]. Note that our use of these two additional upper bound and 

lower bound matrices increases the space complexity of the 

algorithm by 200%. However, this is not an issue because: 

 The DP algorithm (especially when using DTW or another 

expensive measure) is CPU bound, not space bound. 

 If really necessary, we could greatly mitigate this space 

overhead. The lower bound matrix will have many elements 

that are zeros, and thus would be amiable to encoding as a 

sparse matrix.  

For clarity of presentation, we present our contributions in two 

different sections, although the final algorithm incorporates both 

ideas. In Sections 4.2.1 to 4.2.4, we show how to accelerate the 

TADPole algorithm by admissibly pruning the distance 

computations during the calculation of local densities (ρ) and NN 

distances (δ) from a higher density list for each item. In Section 

4.2.5, we show how to reorder these computations to give us the 

diminishing returns property of anytime algorithms [2][34].  

4.2.1 Pruning during Local Density Calculation 
Consider the four cases shown in Figure 6. 

In this step of the TADPole algorithm, the inputs are the fully 

computed lower (LBMatrix) and upper bound (UBMatrix) matrix. For 

each object pair (i,j), while calculating their local densities (lines 1 

to 3 in Table 1), we prune their distance (Dij) computation 

according to the following four cases shown in Figure 6: 

Case A: Objects i and j are identical 

The DTW distance of two identical objects, i and j, is equal to 

their ED distance. It is a simple lookup in the upper bound 

distance matrix, and requires no actual DTW distance 

computation. This case is logically possible but very rare (Figure 

6.A)). 

 

Figure 6: The four mutually exclusive and exhaustive cases 
of distance computation pruning during local density 
calculation. Note that the cutoff distance dc, represented by 
the purple line at the top, applies to all four cases below it. 
Case A is difficult to visually represent, as i and j coincide. 

Case B: UBMatrix(i,j) < dc 

If the upper bound distance between objects i and j is less than the 

cutoff distance (dc), then i and j are definitely within dc distance to 

each other (Figure 6.B)). Therefore, we can prune the DTW 

distance computation of these two objects. 

Case C: LBMatrix(i,j) > dc 

If the lower bound distance of i and j is greater than the cutoff 

distance, then these two objects are definitely not within dc 

distance to each other (Figure 6.C)). We can therefore admissibly 

prune their DTW distance computation. 

Case D: LBMatrix(i,j) < dc and UBMatrix(i,j) > dc 

In this case, we cannot tell whether or not the actual DTW 

distance between i and j is within dc. Therefore, only in this case 

do we need to compute Dij (Figure 6.D)).  

With this intuition in mind, we specify the formal distance 

pruning algorithm during the local density calculation in Table 5. 

As we can see from Table 5, in lines 5 - 21, for all the object pairs 

in the data, the TADPole algorithm checks which of the four cases  

applies in order to determine whether or not these objects are 

within the cutoff distance.  

The occurrence of case B tells us that the object pair in question 

are definitely within dc (lines 10 -11) without having to calculate 

the expensive true DTW distance. Cases A (lines 8 -9) and C 

(lines 12 -13) specify that the object pair is not within dc. It is only 

the occurrence of case D that forces the algorithm to calculate the 

true DTW distance of the object pair in question (lines 14 -19).   

At the end of this section of TADPole, for each object i we have 

all the local densities (ρi) computed. Using lines 1 - 3 of Table 2, 

we can now find the δ list, the list of the points with higher 

densities. Next we will describe our pruning strategy for this step. 

Table 5: Pruning Algorithm during Local Density Calculation  

I
n
p
u
t
 

LBMatrix, full computed lower bound matrix 

UBMatrix, full computed upper bound matrix 

Data, the dataset 

dc, cutoff distance  

Out

put 

ρ,local density vector for all points in dataset 

DSparse, partially filled distance matrix  

j

LBMatrix(i,j)

Dij

UBMatrix(i,j)

LBMatrix(i,j)
Dij

UBMatrix(i,j)

dc

LBMatrix(i,j)
Dij

UBMatrix(i,j)

B)

C)

D)

i j

i

i

j

j

i Dij = 0A)



 

1 

2 
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DSparse = empty  

for i = 1:size(Data) 

 objectsWithin_dc = empty  

    for j = 1: size(Data) 

    if i == j 

        continue; 

    else 

      if LBMatrix(i,j) == UBMatrix(i,j) //case A) 

        continue 

      elseif UBMatrix(i,j) < dc           //case B) 

        objectsWithin_dc = [objectsWithin_dc j] 

      elseif LBMatrix(i,j) > dc          // case C)       
        continue 

      //case D) 

      elseif LBMatrix(i,j) < dc and UBMatrix(i,j) > dc 
        DSparse(i,j) = calculateDist(Data(i),Data(j)) 

        if DSparse(i,j) < dc 

           objectsWithin_dc = [objectsWithin_dc j] 

        end if                     

      end if 

    end if 

  end for 

  ρ(i) = length(objectsWithin_dc) 

end for 

4.2.2 Pruning during NN Distance Calculation from 

Higher Density List  
Our pruning strategy for this step works in two phases. First, for 

each item we find an upper bound of the NN distance from its 

higher density list. In the second phase we perform the actual 

pruning based on these upper bounds. The distance computation 

of TADPole terminates when for all objects in the dataset, we are 

done finding their actual NN distance from their respective higher 

density lists. 

Phase 1: Upper bound calculation 

Given DSparse and ρi for each item i, we initialize the upper bound 

of its NN distance from its higher density list, ubi, to inf. For 

each item j in the higher density list of i, we either have the actual 

DTW distance (Dij) computed already or have access to the upper 

bound (UBMatrix(i,j)) to this distance. We scan the higher density 

list of item i, and if the current ubi > Dij or ubi > UBMatrix(i,j), we 

update the current ubi to Dij (if available already), or to 

UBMatrix(i,j) otherwise. Therefore, we can guarantee that the NN 

distance from the higher density list for item i can be no larger 

than ubi. We give a visual intuition of this upper bound 

calculation in Figure 7. 

 

Figure 7: An illustration of the distance pruning during the 
NN distance calculation from a higher density list of an 
object. From object i, the elements in the higher density list 
are j1 – j4. After Phase 1, ubi will be UBMatrix(i,j4). In Phase 2, 
the distance computations of Dij2 and Dij3 are pruned. 

In Figure 7, the elements on object i’s higher density list are j1 – 

j4. Assume that we only know the DTW distances from object i to 

objects j1 and j3, (D1 and D3 respectively, shown in blue). Because 

we do not know D2 and D4, we have shown these distances in gray 

in Figure 7. When Phase 1 starts, ubi is initialized to inf. Now 

our TADPole algorithm scans object j1 and updates ubi to D1.  

Because UBMatrix(i,j2) and D3 are both are greater than ubi, we do 

not need to update ubi. In the last step, given that UBMatrix(i,j4) < 

ubi, we update ubi to UBMatrix(i,j4). This ubi is an upper bound of 

the NN distance from object i’s higher density list. 

We give the upper bound calculation algorithm for the NN 

distance computation from a higher density list in Table 6. We 

initialize the upper bound vectors of NN distances of objects from 

their higher density list, ub to inf (line 1).  Next, considering 

each of the item on the higher density list of an object i, 

δ_listi(j),we check whether i’s current upper bound can be 

tightened (lines 5 -13). In lines 5 - 8 we see if the actual distance 

between i and δ_listi(j) has been computed already, then whether 

or not this distance can tighten ubi. If the distance has not been 

computed yet, then in lines 10 - 12 we check whether we can 

tighten ubi by replacing it with the upper bound distance between i 

and δ_listi(j). 

Table 6: Upper Bound Calculation Algorithm for NN Distance 

Computation from Higher Density List  

I
n
p
u
t
 

UBMatrix, full computed upper bound matrix 

Data, the dataset 

DSparse, partially filled distance matrix 

δ_list, list of the points with higher densities 

Out

put 

ub, upper bound vector of NN distances from higher 

density points    

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

ub = inf(size(Data)) 

for i = 1:size(Data) 

  for j = 1:size(δ_listi) 

    highDensityItem = δ_listi(j) 

    if DSparse(i, highDensityItem)≠ empty 

      if ubi > DSparse(i, highDensityItem) 

        ubi = DSparse(i, highDensityItem) 

      end if 

    else 

      if ubi > UBMatrix(i,highDensityItem) 

        ubi = UBMatrix(i,highDensityItem) 

      end if 

    end if 

  end for 

end for   

At the end of this phase of TADPole, we have ub, the upper 

bound vector of NN distances from higher density points, 

computed. We now describe exploiting ub to prune the distance 

calculations during the computation of the higher density list.    

Phase 2: Pruning 

We give the pruning algorithm during the computation of NN 

distances from the higher density lists of all objects in Table 7.  

We begin by scanning the higher density list of each of the objects 

again. In line 5 of Table 7, for an object i, we test whether 

LBMatrix(i, δ_listi(j)) is greater than ubi we calculated in Table 6 . If 

this is the case, we prune the distance computation (line 6) for 

δ_listi(j). Otherwise, if the true distance between i and δ_listi(j) is 

already calculated, then we consider this distance as one of the 

potential NN distances from i’s higher density list (line 9). If the 

true distance is not yet known, only then do we compute it (line 11-

12). Finally, we compute the NN distance vector for all objects 

from their higher density lists (line 17).  

In Figure 7, we see that both LBMatrix(i,j2) and LBMatrix(i,j3) are 

greater than ubi. Therefore, we can prune D2 and D3. In this 

example, we assumed we know D1; therefore, after the pruning 

done by Phase 2, we only need to calculate D4. 

LBMatrix(i,j1)
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Table 7: Pruning Algorithm during the Computation of the 

NN Distances from the Higher Density Lists of All Objects 

I
n
p
u
t
 

LBMatrix, full computed lower bound matrix 

Data, the dataset 

DSparse, partially filled distance matrix 

δ_list, list of the points with higher densities 

ub, upper bound vector of NN distances from higher 

density points    

Out

put 

δ,NN distance vector of higher density points   

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

for i = 1:size(Data) 

  temp_δ = empty 

  for j = 1:size(δ_listi) 

    highDensityItem = δ_listi(j) 

    if LBMatrix(i,highDensityItem)> ubi 

      continue //prune distance computation 

    else 

     if DSparse(i, highDensityItem)≠ empty 

      temp_δ = [temp_δ DSparse(i, highDensityItem] 

     else      // calculate distance 

      DSparse(i, highDensityItem) =  

      calculateDist(Data(i),Data(highDensityItem))   

      temp_δ = [temp_δ DSparse(i, highDensityItem] 

     end if 

    end if 

   end for 

   δ(i) = min(temp_δ)  

end for 

After this phase of TADPole, for each item i we have access to the 

NN distance from points with higher local densities (δi). At this 

point, given ρi and δi for each object i¸ the TADPole algorithm 

calculates the cluster centers χ using the algorithm in Table 3, and 

performs the cluster assignments based on these centers according 

to the algorithm in Table 4.  

4.2.3 Multidimensional Time Series Clustering 
While most of the research efforts on time series clustering have 

considered only single-dimensional cases [11][20], the increasing  

prevalence of medical sensors (c.f. Section 6.2) and wearable 

devices [23] (c.f. Section 6.1) has given urgency to the need to 

support  multidimensional clustering [28]. Fortunately, our 

extension of TADPole to the multidimensional case requires 

changing only a single line of code. For clarity, we highlight these 

changes for multidimensional clustering for Table 5 and Table 7 

in Table 8 and  Table 9, respectively. 

Table 8: Pruning Algorithm during Local Density Calculation 

for Multidimensional Data (see Table 5)  

I
n
p
u
t
 

LBMatrix, full computed lower bound matrix along d 

dimensions 

UBMatrix, full computed upper bound matrix along d 

dimensions 

Data, the dataset 

dc, cutoff distance  

 

16 

 

... 

DSparse(i,j) =                                         
       

... 

 Table 9: Pruning Algorithm during NN Distance Computation 

from Higher Density List, Multidimensional Case (see Table 7) 

Recall that in Table 5, we gave the full lower bound and upper 

bound distance matrices as inputs to the algorithm. To perform 

multidimensional clustering, for each dimension we wish to 

consider, we calculate the corresponding lower/upper bound 

distance matrices independently along those dimensions. We take 

the sum of all lower bound matrices/upper bound matrices and 

give these cumulative matrices as inputs to our algorithm 

described in Table 5. In addition, when we actually calculate the 

distances (line 16 in Table 5 and lines 10-12 in Table 7), we take 

the summation of the distances along all the dimensions. All other 

components of TADPole will remain the same.  

As we shall show empirically now, by using the pruning method 

described so far, TADPole can obtain at least an order of 

magnitude speedup over the original DP algorithm. 

4.2.4 How Effective Is Our Pruning? 
Before generalizing to allow anytime behavior in the next section, 

in this section we will demonstrate just the utility of our pruning 

strategy. In order to intuitively calibrate the effectiveness of our 

pruning, we compare to the best and worst possible cases: 

 In order to perform clustering, the DP algorithm needs the 

all-pair distance matrix computed [24]. Therefore, in terms of 

distance computation, the brute force DP algorithm itself is 

the obvious worst-case strawman.  

 The best possible variant of DP is the one that performs a 

distance computation only when it is necessary. Therefore, 

during density computation, this variant of DP considers only 

those distance computations that contribute to the actual 

density of an object. In addition to this, during the 

computation of the NN distance from the higher density list 

of an object, this variant considers only the actual NN 

distances. We call this algorithm the oracle variant of DP. 

Note that we obviously cannot compute this in real-time, but 

only by doing an expensive post-hoc study. 

We compare the amount of distance pruning we achieve against 

these two variants of the DP algorithm. For this experiment, we 

consider the StarLightCurves dataset [13]. We vary the number of 

objects in the dataset we need to cluster (by randomly sampling) 

and record the number of true DTW distance computations. As 

we can see from Figure 8.left), the number of distance 

computations increases quadratically using the brute force 

algorithm. In contrast, the oracle algorithm requires very few 

distance computations; moreover, we can see that our TADPole 

algorithm performs almost as well as the oracle algorithm.  

 

Figure 8: A comparison of the amount of pruning TADPole 
achieves compared to an oracle and the brute force 
algorithm.  TADPole is very close to the oracle algorithm.  

This claim is reinforced in Figure 8.right, in which we see that the 

percentage of distance computations TADPole requires is very 

close to the oracle algorithm. As we can see, as the datasets get 

larger, TADPole converges closer and closer to the oracle 

algorithm. 

Also note that a similar performance is observed in all datasets we 

considered (archived in [37] for brevity). Moreover, we obtain 

similar results if we measure the CPU time instead.  As we can 

see from Figure 9, to cluster the StarLightCurves data, TADPole 

requires only 9 minutes, whereas the DP algorithm needs 9 hours. 

In spite of these very promising results, demonstrating a sixty-fold 

speedup, there exist datasets where even this amount of speedup is 

not adequate. In order to address similar scalability issues for 

other types of data mining analyses, including classification [29] 

and outlier detection [2][3], researchers have attempted to create 

anytime versions of their algorithms [2][33]. One significant 

advantage of the DP algorithm (and our modifications to it) is that 
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    else      // calculate distance 

      DSparse(i, highDensityItem) =  

                                                            
                   



 

it is particularly amiable to casting as an anytime framework. In 

essence, the computations discussed in this section can be 

computed in any order. Thus far, we have simply computed them 

in a top-to-bottom, left-to-right order.  However, we should expect 

that not all such computations of the true DTW are equally 

significant in terms of their impact on the final clustering, and that 

if we could find even an approximate “most-significant-first” 

order, we could converge more quickly. In the next section, we 

describe such an ordering heuristic. 

 

 

Figure 9: A comparison of the CPU time spent by TADPole 
against an oracle and the brute force algorithm to cluster the 
StarLightCurves dataset. As before, the performance of 
TADPole is very close to the oracle algorithm. 

4.2.5 Distance Computation-Ordering Heuristic 
Recall from the above that the DP algorithm may be considered a 

two-step algorithm; calculating the local densities (Table 1) first, 

and then finding the NN distances from the higher density lists 

(Table 2) of the objects. Only the latter step is amiable to anytime 

ordering; the former step may be regarded as the setup time 

[2][29][33]. 

Before attempting to create an anytime ordering function, it will 

be instructive to consider two baselines: what is the best we could 

possibly do, and what would we have to do in order to claim we 

are beating the most obvious strawmen? 

 The best ordering heuristic we consider is an oracle ordering. 

We can compute this by allowing the algorithm to cheat. In 

each step of the algorithm, this order chooses the object that 

maximizes the current Rand Index. The algorithm is 

cheating, because by definition, a clustering algorithm 

normally does not have access to class labels.  

 The most basic strawman is top-to-bottom, left-to-right 

ordering, but that is brittle to “luck”. A random ordering is 

much less so, so we consider random ordering as the baseline 
we would like to improve upon. 

To understand the performance of these two algorithms, we took 

the Insect dataset from [13] and measured the Rand Index, as the 

two algorithms above refined the mixture of true DTW distances 

and upper bound distances that we have at the end of phase 1 (i.e., 

Table 6), into the set of all necessary DTW computations needed 

(i.e., Table 7). The results are shown in Figure 10 (for the 

moment, ignore the blue line). For completeness, we also show 

the accuracy achieved using the Euclidean distance with the DP 

algorithm. If the Euclidean distance was competitive, it would be 

fruitless to waste time computing expensive DTW calculations. 

The results clearly show that in this dataset, DTW is needed.  

After initially getting worse, the random ordering linearly (in a 

stepwise fashion) converges on the true clustering. In contrast, the 

oracle algorithm achieves a perfect Rand Index after calculating 

the true DTW distances for the NN list of just five objects.  

As impressive as the oracle’s performance is, we can actually 

come very close to it, as shown by the blue curve in Figure 10. 

The ordering heuristic TADPole exploits is the descending order 

of the local density (ρ) × the upper bound distance (ub) from the 

higher density list of the objects. 

With a little introspection, it is easy to see why our distance 

computation-ordering heuristic is as close as the oracle ordering. 

Recall from Section 4.1 that points with higher values of ρ×δ are 

more likely to become cluster centers. Until we calculate all the 

NN from each object’s higher density list, we do not have access 

to their δ. However, we can estimate δ by the tight upper bound 

ub to δ. Our distance computation-order heuristic exploits ub to 

prioritize distance computations for items that are more likely to 

be centers. Because the centers are selected earlier, we achieve a 

higher Rand Index with very few actual distance computations.  

 

Figure 10: top) A comparison of different distance 
computation-order heuristics on the Insect dataset [13]. An 
oracle ordering (green) converges stunningly quickly. The 
random ordering (pink) converges very slowly. Our 
proposed ordering (blue) is very close to the oracle. bottom) 
A zoomed-in view of the figure shown at the top). 

From Figure 10.top) we see that in conjunction with all the 

pruning strategies described in Sections 4.2.1 and 4.2.2, TADPole 

achieves a perfect Rand Index after doing only ~6% of all possible 

distance computations. Of course, it does not “realize” this, and 

must compute ~10% of all possible distance computations before 

admissibly terminating.    

5. EXPERIMENTAL EVALUATION 
All experiments in this paper (including the ones above) are 

completely reproducible. We have archived all experimental code, 

parameter settings and data at [37]. The goal of our experiments is 

to show that our algorithm is more efficient and effective than 

current algorithms. We also show that our algorithm is not 

particularly sensitive to the only parameter choice we have to 

make. In addition to this, we demonstrate the utility of our 

approach on three real-world case studies. 

5.1 Comparison with State-of-the-Art 

Clustering Algorithms 
The principle strawman we need to compare to is the brute force 

version of DP with DTW. This comparison is explicitly encoded 

in Figure 10 and the similar figures below. In these experiments 

we also replace DTW with Euclidean distance to demonstrate that 

DTW is really necessary. In Table 10, we show a comparison of 

the clustering performance of TADPole to some well-known 

state-of-the-art clustering algorithms (which we carefully tuned) 

under DTW in five randomly chosen datasets from [13]. As we 

can see, the cluster quality returned by TADPole is usually better 

than the best-performing clustering algorithm. Note that we are 

not claiming DP is always superior, rather we chose DP because it 

is at least competitive with the state-of-the-art, and amiable to 

acceleration as we have demonstrated. 

The greatly superior accuracy of TADPole makes the timing 

results somewhat irrelevant, but TADPole is at least an order of 

magnitude faster than the rival methods (exact numbers at [37]).  
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Table 10: Clustering Quality (in Terms of Rand Index) of 

TADPole vs. Some State-of-the-Art Clustering Algorithms 

Dataset TADPoleDTW 

(TADPoleED) 

k-means[10] 
DTWversion 

Hierarchical 

DTWversion 

DBSCAN [6] 
DTWversion 

Spectral [17] 
DTWversion 

CBF 1 (0.66) 0.78 0.73 0.77 0.76 

FacesUCR 0.92 (0.86) 0.87 0.85 0.77 0.94 

MedicalImages 0.66 (0.67) 0.67 0.62 0.65 0.69 

Symbols 0.98 (0.81) 0.93 0.78 0.91 0.95 

uWaveGesture_Z 0.86 (0.84) 0.85 0.83 0.8 0.86 

The greatly superior accuracy of TADPole makes the timing 

results somewhat irrelevant, but TADPole is at least an order of 

magnitude faster than the rival methods (exact numbers at [37]).  

5.2 Parameter Sensitivity Experiments 
To demonstrate that TADPole is not sensitive to parameter 

choices, we took the Symbols dataset [13], and performed 

TADPole on it with k = 6. We then varied the cutoff distance (dc) 

parameter and measured the Rand Index obtained with the 

alternative settings. As we can see from Figure 11, there is a very 

wide range of choices for the values of dc, which gives high-

quality clustering.  

 

Figure 11: A parameter sensitivity test of TADPole shows 
stability of clustering over a very wide range of parameters. 

6. CASE STUDIES 

6.1 Electromagnetic Articulograph Dataset 
The Electromagnetic Articulograph (EMA) is a device that is 

increasingly used for mouth movement studies [30]. The 

apparatus consists of a set of unobtrusive accelerometers that are 

attached to multiple positions on the tongue, lips, jaw, nose and 

forehead, and can record high-resolution 3D movement/position 

data in real-time. Recent research has suggested that 

articulographs may eventually allow a “silent speech” interface 

that translates non-audio articulatory data to speech output, an 

idea that has significant potential for facilitating oral 

communication after a laryngectomy [30]. The most common use 

of articulographs is in speech therapy for a plethora of speech 

disorders. However, EMA use has a significant burden: setting up 

the system can take up to 30 minutes per session (this time is 

spent carefully gluing the sensors to the participant’s face and 

tongue). Given this significant setup time, practitioners are 

anxious to get the most from each session, yet the goals of the 

session are not typically fixed, but change in reaction to the 

participant’s progress and areas of difficulty. Thus, there is a need 

to cluster the utterances of speakers in an interactive fashion, so 

that sessions can be adapted on the fly. We consider a dataset of 

lower-lip accelerometer time series movement data of 18 words 

collected from multiple speakers, for a total of 414 objects. The 

duration of utterance of each of the words is ~0.7 seconds. In 

Figure 12.left), we show the data collection process for one of our 

subjects. In Figure 12.right), we show two examples of the 

utterances of the word “fate” by two different individuals. These 

examples are clearly warped, suggesting this is an appropriate 
domain for TADPole. 

We tested the power set of combinations of axes, confirming that 

axis Z with axis Y gives us the best clustering, with a Rand Index 

of 0.94 (the other results are archived at [37]). 

 
Figure 12: left) One of our volunteers wearing the 
articulograph apparatus. right) Two examples of the 3D time 
series produced by enunciating the word “fate” show inter-
subject warping. The X axis is omitted here, as it only has 
useful information for patients with facial asymmetry. 

We can now ask how effective our pruning strategy is when 

performing this clustering. We show the result in Figure 13. 

 

Figure 13: The amount of distance pruning achieved by 
TADPole is ~94% for the Articulographs [30]. Moreover, the 
ordering heuristic is almost as good as the oracle ordering. 

As we can see from Figure 13, TADPole achieves ~94% pruning, 

converging almost as quickly as the oracle algorithm. In wall 

clock terms, TADPole takes only 2.89 seconds, allowing 

interactive analysis and feedback to the patient.  

6.2 Pulsus Dataset 
Pulsus Paradoxus is defined as a significant decline in the pulse 

with inspiration. It is a symptom of Cardiac Tamponade, a life-

threatening condition where high-pressure fluid fills the sac 

surrounding the heart, impairing cardiac filling and causing 

20,000 deaths per year in the USA alone. Of the several ways to 

detect Pulsus, the least invasive and simplest uses the PPG 

(PhotoPlethysmoGram) shown in Figure 14.top).   

 

Figure 14: top) PPG and Power Spectral Density (PSD) 
signal of a patient with non-severe Pulsus (top.left)) and 
severe Pulsus (top.right)). bottom) Four PSDs of four patients 
forming four different clusters within the non-Pulsus 
objects. From these four clusters, we can see the objects are 
clearly warped.  

For this case study we consider a dataset of 500 PPGs from two 

sources, the MIMIC II Waveform Database [8][25] and our 

collaborators. The latter dataset has the advantage that our 

collaborators followed up on the patients (in some case, post-

mortem); thus, we have access to unusually rich annotations and 

external knowledge to evaluate our result. As shown in Figure 

14.top), the raw PPG data is very complex, and following the 
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suggestions of Dr. John Criley (UCLA School of Medicine), we 

converted the PPGs to amplitude spectrums (Figure 14.middle) 

and clustered in that space. Dr. Criley’s intuition is that for 

Tamponade patients, the fluid that fills the sac surrounding the 

heart will cause a “shadow” signal to show up during respiration.   

For this dataset, TADPole produced a perfect clustering, with a 

pruning rate of 88%, making it an order of magnitude faster than 

brute-force.  In Figure 15.left), we show the PPG measurement 

process. From Figure 15.right), we can see that the Pulsus 

instances are within a compact cluster, and the non-Pulsus 

instances seem to form a number of sub-clusters. Our medical 

collaborator suggests this reflects the fact that there is one way to 

have Tamponade, but multiple ways to have a healthy heartbeat. 

 
Figure 15: left) A PPG apparatus. right) The Pulsus dataset 
projected into two dimensions using multidimensional 
scaling, and color coded by the output of TADPole. 

6.3 Person Re-Identification Dataset 
Person re-identification is the task of recognizing individuals 

across spatially disjointed cameras [7], and an important problem 

for understanding human behavior in areas covered by 

surveillance cameras. As shown in Figure 16, we can extract color 

histograms from the video, thus treating the problem as a 

multidimensional time series problem. We considered the PRID 

dataset [9], randomly extracting 1,000 images of 12 different 

individuals.  After we ran TADPole in this dataset to cluster the 

images of these 12 individuals, we achieved a Rand Index of 

95.4% and distance pruning of 80% (anytime plot at [37]). In 

contrast, Euclidean distance only achieves a Rand Index of 89%. 

 

Figure 16: Representative images from the dataset [9] with 

their corresponding color histograms. 

7. CONCLUSIONS 
By introducing novel pruning strategies that exploit both upper 

and lower bounds, we have produced a robust DTW clustering 

algorithm that is both absolutely faster, and able to compute the 

clustering in an anytime fashion. We have demonstrated the utility 

of our algorithms on diverse domains, including two in which our 

algorithm is currently actively deployed (EMA/Pulsus). 
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