

Accelerating Dynamic Time Warping Clustering with a Novel
Admissible Pruning Strategy

Nurjahan Begum Liudmila Ulanova Jun Wang1 Eamonn Keogh

University of California, Riverside University of Texas at Dallas
1

{nbegu001, lulan001, eamonn}@cs.ucr.edu wangjun@utdallas.edu
1

ABSTRACT

Clustering time series is a useful operation in its own right, and an

important subroutine in many higher-level data mining analyses,

including data editing for classifiers, summarization, and outlier

detection. While it has been noted that the general superiority of

Dynamic Time Warping (DTW) over Euclidean Distance for

similarity search diminishes as we consider ever larger datasets,

as we shall show, the same is not true for clustering. Thus,

clustering time series under DTW remains a computationally

challenging task. In this work, we address this lethargy in two

ways. We propose a novel pruning strategy that exploits both

upper and lower bounds to prune off a large fraction of the

expensive distance calculations. This pruning strategy is

admissible; giving us provably identical results to the brute force

algorithm, but is at least an order of magnitude faster. For datasets

where even this level of speedup is inadequate, we show that we

can use a simple heuristic to order the unavoidable calculations in

a most-useful-first ordering, thus casting the clustering as an

anytime algorithm. We demonstrate the utility of our ideas with

both single and multidimensional case studies in the domains of

astronomy, speech physiology, medicine and entomology.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Application – Data Mining

Keywords

Clustering; Time Series; Anytime Algorithms

1. INTRODUCTION
Given the ubiquity of time series data in scientific, medical and

financial domains, the research community has made substantial

efforts to create efficient algorithms for classification, clustering,

rule discovery, and anomaly detection for this data type [1]

[3][11][16][27]. In particular, time series clustering is useful, both

as an exploratory technique and also as a sub-module for solving

higher-level data mining problems. As a concrete example,

consider Figure 1, which illustrates a subset of a cluster we

discovered in a social media dataset [32]. This clustering allows

us to at least partly address two problems:

 Synonym Discovery: In this example, we have the hashtag

#Michael. It is not clear to whom this refers to: Michael

Phelps? Michael Caine? However, by noting that this cluster

also contains #MichaelJackson, this ambiguity is resolved.

Figure 1: A cluster of four Twitter hashtag usage time series

(normalized for volume) over ~6 days starting from June 12,

2009 [32]. (Best viewed in color.)

 Association Discovery: Here we see that #kanyewest and

#taylorswift have highly similar time series representations, but

are clearly not synonyms. If we test to see whether this

relationship existed prior to the illustrated timeframe, we find it

does not. This suggests the existence of an event that caused

this temporary association, and with a little work we can

discover the famous “I'mma let you finish” event at the 2009

Video Music Awards [35].

In this example, the knowledge gleaned is clearly trivial; however,

similar ideas have been used to track the levels of disease activity

and public concern during the recent influenza A H1N1 pandemic

[26]. Note that while we discovered this example using DTW, it

might have been discovered with the computationally efficient

Euclidean distance. However, in some cases there may be a causal

relationship (rather than just an association) between events,

resulting in a local lag between peaks. DTW is an ideal way to

capture/be invariant to such out-of-sync relationships.

We begin by demonstrating that the problem we plan to address,

robustly clustering large time series datasets with invariance to

irrelevant data, has not been solved in previous work.

For most time series data mining algorithms, the quality of the

output depends almost exclusively on the distance measure used

[27]. A consensus has emerged that the Dynamic Time Warping

(DTW) distance measure is the best in most domains, almost

always outperforming the Euclidean Distance (ED) [27]. As a

concrete example, consider the two clusterings of three randomly

chosen mammals shown in Figure 2. The input data is the

mitochondrial DNA after it was converted to a time series

representation (converting DNA to time series is a commonly

used operation [18][19]). Two types of DNA mutations, insertions

and deletions, have the effect of “warping” the time series. At

least in this case, we can see that DTW is invariant to these

mutations and correctly unites Bos taurus (cattle) and Hyperoodon

ampullatus (bottlenose whale), with Talpa europaea (mole) as the

out-group.

#kanyewest

#Michael

#MichaelJackson

#taylorswift
0 40 80 120

hours

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

KDD '15, August 11 - 14, 2015, Sydney, NSW, Australia

© 2015 ACM. ISBN 978-1-4503-3664-2/15/08…$15.00

DOI: http://dx.doi.org/10.1145/2783258.2783286

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2783258.2783286

Figure 2: Single-linkage hierarchical clusterings of DNA

using DTW (left) and Euclidean distance (right).

While this example1 is on a small and somewhat specialized

dataset, in Section 6 we will show that the superiority of DTW

extends to large datasets in many domains.

1.1 Why This Problem Is Hard
Given that DTW is intrinsically slow because of its quadratic time

complexity, there are two ideas that are commonly used to

mitigate the problem of using such a slow distance measure [19].

We briefly discuss them here only to dismiss them as solutions to

the task at hand.

 The convergence of DTW and Euclidean distance results for

increasing data sizes. It has been noted that for many

problems, including motif discovery [16] and classification

[27], the results returned by DTW and Euclidean distance tend

to become increasingly similar as the dataset sizes increase.

This suggests that we can simply use the more efficient

Euclidean distance to cluster large datasets.

 The increasing effectiveness of lower-bounding pruning for

increasing data sizes. For some problems, notably similarity

search, the lower-bounding pruning of unnecessary

calculations is the main technique used to produce speedup.

The effectiveness of this lower-bounding tends to improve for

larger datasets [19].

Unfortunately, neither of these observations helps us for

clustering under DTW. To demonstrate why the first observation

does not help, we performed a simple experiment in which we

measured the leave-one-out training error of 1NN classification

using both DTW and ED, for various numbers (50 to 2000) of

exemplars from the CBF dataset [13]. With 50 objects, the error

rates differ by a factor of 4.6 (7% and 1.75%, respectively), but as

shown in Figure 3.top, by the time we consider the 2000 object

dataset, this difference is essentially zero.

This effect is well known for time series classification [22][27],

and it might be imagined that this applies to clustering. To show

that this is not the case, we performed a parallel experiment in

which we clustered the same objects and measured the

performance using the Rand Index [21]. As shown in Figure

3.bottom, DTW clustering maintains its superiority over

Euclidean distance as the datasets get larger.

Similarly, the second observation above does not help

significantly. It is true that lower bounds are increasingly effective

for larger datasets when attempting a similarity search. This is

because for larger datasets, we can expect to have a smaller best-

so-far early on, allowing more effective pruning [19][22][27].

However, in clustering, we need to know the distance between all

pairs [11], or at least all distances within a certain range,

rendering the typical use of lower-bounding pruning ineffective.

1 We defer a discussion of our experimental philosophy until Section 5,

but we note that all experiments in this work are made reproducible by

our unrestricted sharing of code/data.

Figure 3: top) The classification error rates of DTW and ED
tend to converge as we see more training data. bottom) In
contrast, for clustering, DTW retains its great superiority
over ED for increasingly large datasets.

1.2 Why Existing Work Is Not the Answer
More generally, many clustering algorithms achieve scalability by

exploiting a spatial access method. For example, the scalable

version of the ubiquitous DBSCAN uses an R*tree [6]. However,

because DTW is not a metric, it is very difficult to index,

especially for long (i.e., high-dimensional) time series objects.

Beyond the need to scalably support DTW, we note the need for a

clustering algorithm that supports invariance to outliers. That is to

say, unlike some clustering methods such as k-means, which

attempt to explain all the data, we believe it is critical to allow the

clustering algorithm the freedom to ignore some data.

Consider the example in Figure 4. We took twelve objects from a

heraldic shield dataset [36], and clustered them using k-means and

DP, the algorithm we propose to augment (described in detailed in

Section 4.1). Because we are using the (non-metric) DTW

measure, which may prevent k-means from converging, we used

the variant in [10] which performs k-means clustering using the

all-pair distance matrix. Note that for ease of visualization, we

used multidimensional scaling to cast high-dimensional time

series objects to two dimensions. After we ran the algorithms,

both of them gave the perfect Rand Index. We then inserted a

single outlier object (object 13) from this dataset, and reran the

algorithms. As we can see from Figure 4.bottom.left), k-means

assigned objects 8-12 to the cluster of the outlier object. In

addition to this, k-means falsely identified objects 1 and 2 as a

separate cluster from the cluster of objects 3-6. In contrast, from

Figure 4.bottom.right) we can see that DP only clustered object 8

in the cluster of the outlier object, but did not change the cluster

labels of the rest of the dataset.

This toy example is contrived and anecdotal, but conformed by

more rigorous experiments on real data [37].

Figure 4: top.left) Leaf 18V of a 15th-century book, Treatises
on Heraldry[36]. top.right) The colorful heraldic shields can
be converted to 3D RGB “time series” of color distribution.
bottom.left) Even the insertion of a single outlier can confuse

Bos taurus

Hyperoodon
ampullatus

Talpa
europaea

Bos taurus

Hyperoodon
ampullatus

Talpa
europaea

Cetartiodactyla

0 1000 2000

0.01

0.03

0.05

0.07

1
-N

N
 e

rr
o

r
ra

te

Size of training set

Euclidean

DTW

0 1000 2000
0.6

0.7

0.8

0.9

Dataset Size

R
a
n

d
 I

n
d

e
x

DTW

Euclidean

1

2

3

4

5

6

7

8

9 10

11

12

13

1

2

3

4

5

6

7

8

9 10

11

12

13

Mislabeled

by k-means

Outlier

k-means. bottom.right) In contrast, the performance of the
DP algorithm is not sensitive to outliers.

In this work, we address all the considerations above. We adapt

DP (Density Peaks), a relatively new clustering framework that is

able to ignore outlying data points [24]. While robust to outliers,

DP is relatively slow, as it requires O(N2) DTW calculations. We

augment DP such that it can exploit both DTW upper and lower

bounds, to compute only the absolutely necessary DTW

calculations, and do so in a best-first manner, giving our algorithm

the desirable anytime algorithm behavior [2][34].

2. RELATED WORK
The field of clustering is vast, and even the subfield of clustering

time series has an enormous literature [1][11][31][33]. Much of

the works on time series clustering are concerned with clustering

based on time series features [31], which are at best tangentially

related to our goals. Here, we are only interested in clustering

based on time series shapes. In the latter case, there are two

important and interrelated choices that define most of the

literature: the choice of distance measure, and the choice of

clustering algorithm.

Most of the literature on time series shape-based clustering uses

metric measures like Euclidean distance [31]. The ubiquity of

Euclidean distance seems to derive more from its familiarity and

ease of indexing than any data-driven assessment of its

effectiveness. As Figure 3.top illustrates on a single representative

example, the general superiority of DTW over ED is well

understood in the community (cf. [27]), at least for classification.

As Figure 3.bottom hints at, and as we later empirically confirm

on many diverse datasets, the dominance of DTW over ED for

clustering is, if anything, greater.

The plethora of shape-based clustering algorithms [11][20][33]

can be divided at the highest level into those that insist on

explaining (i.e., clustering) all the data [33] vs. those that have the

representational power to leave some data unclustered (a small

minority) [20]. We believe that this distinction is

underappreciated and critical to the success of most efforts. For

clarity, consider the following analogy: If we were clustering

people, then surely every person in our database would belong to

some group, even if (due to the small size of our sample) the size

of some groups were just one. In contrast, imagine we are

clustering subsequences from a speech articulation database (see

Section 6.1). We hope that the subsequences will cluster into well-

defined words or phrases. However, it is highly likely that we will

have some examples of coughing, sneezing or harrumphing. Such

sequences are likely to be very dissimilar to the rest of the

database. It is not just the case that we do not want/need them to

be clustered; we do not want them to affect the clustering of the

clusterable words or phrases (recall Figure 4). However k-means

and its variants insist on explaining these instances, and because

of k-means’s sum of squares objective function, these highly

dissimilar items have a huge effect on the overall clustering.

There exist works [15] in the literature that perform clustering on

top of DBSCAN [6]. The problems with such approaches are the

inheritance of the non-determinism of DBSCAN, and the use of

only lower bounds to prune expensive distance calculations. A

handful of research efforts [33] have attempted to mitigate the

slow performance of DTW clustering by casting it to an anytime

framework. Most such efforts reduce to the following: Until there

is a user interrupt, these frameworks keep replacing the (fast to

compute) approximate DTW distances with true (slow to

compute) DTW distances. If there is no user interrupt, such

frameworks would calculate the full distance matrix (generally in

some clever “most-likely-to-be-useful” order), and return the

exact clustering. Our proposed algorithm goes beyond this in

several ways. Most importantly, we show that calculating the full

distance matrix is unnecessary in the general case. By exploiting

both upper and lower bounds to DTW, and, more critically, by

exploiting the relationship between these bounds, we can compute

the exact clustering while only calculating a tiny fraction of the

full distance matrix.

3. BACKGROUND
There has been significant research on clustering datasets that are

too large to fit in main memory [4]. This problem setting typically

assumes inexpensive distance measures, but costly disk accesses

[4]. However, the problem we wish to solve exploits DTW, which

itself is a very expensive distance measure. Therefore, in

situations when even the data can be stored in main memory, the

time needed to do the clustering may be on the order of

days/weeks. The problem we are interested in is therefore, CPU

constrained, not I/O constrained.

3.1 Anytime Algorithms
For most clustering algorithms, it is well known that not all

distance measurements contribute equally to the final clustering

assignments. For example, a recent paper on hierarchical

clustering demonstrates (under some mild assumptions) that it is

possible to capture the true structure of the clustering with just

carefully chosen O(n log2 n) distance computations [14]. This fact

that some distance computations are more important than others

immediately suggests the use of anytime algorithms, assuming

only that we can find an efficient and (even somewhat) effective

test to identify these influential distance computations.

Recall that anytime algorithms are algorithms that can return a

valid solution to a problem, even if interrupted before ending

[33][34]. Starting with a negligibly small amount of setup time,

these algorithms always have a best-so-far answer available and

the quality of the answer improves with the increase of execution

time. The desirable properties of anytime algorithms are

interruptibility, monotonicity, measurable quality, diminishing

returns, preemptibility, and low overhead [34]. Note that this is a

very brief introduction to anytime algorithms; we refer the

interested reader to [34], which contains an excellent survey. As

Figure 5 shows, anytime algorithms are in essence optimizing the

tradeoff between execution time and quality of the solution.

Figure 5: An abstract illustration of an anytime algorithm.
The three curves show a comparison of the possible
performances of three hypothetical anytime algorithms. The
bottommost curve (pink) is only improving linearly over time,
but the topmost curve (green) demonstrates diminishing
returns, making most of its improvements early on.

For clarity, we reiterate that the anytime algorithm approach is

just one of the two contributions of this paper. We propose to

make the clustering absolutely faster by admissible pruning. This

is in addition to rearranging the order the non-prunable

Time

Q
u

al
it

y
 o

f
S

o
lu

ti
o

n

Setup Time

0% 100%

calculations are considered to produce the best possible

diminishing returns anytime algorithm behavior. We are now in a

position to explain the DP framework.

4. ALGORITHM

4.1 Density Peaks Algorithm Overview
Our proposed solution is inspired by DP, the density-based

clustering algorithm recently proposed in [24]. We chose to

augment the DP framework for solving large time series

clustering problems because of the following:

 Recent literature [20] and our own experience on real

datasets (cf. Section 6) suggest that the successful clustering of

time series requires the ability to ignore some data objects. It is

not merely that anomalous objects themselves are unclusterable;

it is that the presence of these objects can affect the labels of

objects that are clusterable in unpredictable ways. The DP

algorithm has been shown to be able to ignore anomalous data

points.

 The DP algorithm is able to handle datasets whose clusters

can form arbitrary shapes. This is in contrast to k-means and

related algorithms which assume the clusters are “balls” in

space. This observation is particularly important for DTW,

which is not a metric. While we cannot exactly visualize DTW

clusters in a metric space, it is clear that some classes of objects

under DTW form complex manifolds in DTW “space.”

 Many clustering algorithms require the user to set many

parameters. In contrast, the DP algorithm requires only two.

Moreover, they are relatively intuitive and not particularly

sensitive to user choice.

 Finally, it happens to be the case that the DP algorithm is

amiable to optimization and conversion to an anytime

algorithm.

For concreteness, we will take the time to explain the clustering

algorithm [24] we adapt and augment in our framework. The DP

algorithm assumes that the cluster centers are surrounded by

lower local density neighbors and are at a relatively higher

distance from any point with a higher local density. Therefore, for

each point i in the dataset, the DP algorithm computes two

quantities:

 Local density (ρi)

 Distance from points with higher local density (δi).

We can formally define these two quantities:

Definition 1 The Local Density ρi of point i is the number of

points that are closer to it than some cutoff distance dc.

Definition 2 The Distance from Points of Higher Density is the

minimum distance δi from point i to all the points of higher

density. For the special case of the highest density point, this

distance is the maximum of the distances of all the points from

their higher density points.

We give the algorithm to compute ρi in Table 1 and δi in Table 2.

Table 1: Local Density Calculation Algorithm

I
n
p
u
t

D,all-pair distance matrix

dc, cutoff distance

Out

put

ρ,the local density vector for all n points in the

dataset

1

2

3

for i = 1:n

 ρ(i) = count(D(i,otherObjects)<dc)

end

Given the all-pair distance matrix D and a cutoff distance dc, for

each point i in the dataset, ρi is calculated in lines 1-3 of Table 1.

In Table 2, using the local densities ρ from Table 1, for each point

i, the list of the points with higher densities is calculated (line 2).

In line 4, this list is sorted in descending order. From lines 5 – 7,

for each point in the sorted order, the distances from their higher

density points are calculated. For the special case of the highest

density point (which by definition does not have a higher density

neighbor), this distance is calculated in line 8.

Given the ρi and δi for each object i¸ the DP algorithm calculates

the cluster centers χ, and performs the cluster assignments based

on these centers.

Table 2: Distance to Higher Density Points Algorithm

I
n
p
u
t

D,all-pair distance matrix

ρ,the local density vector

Out

put

δ,NN distance vector of higher density points

1

2

3

4

5

6

7

8

for i = 1:n

 δ_list(i) = findHigherDensityItems(i,ρ)

end

[sorted_δ_list, sortIndex] = sort(δ_list,’descend’)

for j = 2:n

 δ(sortIndex(j)) = NNDist(sorted_δ_list(j))

end

δ(sortIndex(1)) = max(δ(2:n))

The cluster centers are selected using a simple heuristic: points

with higher values of (ρi×δi) are more likely to be centers. We

give the cluster center selection algorithm in Table 3.

Table 3: Cluster Center Selection Algorithm

I
n
p
u
t

δ,NN distance vector of higher density points

ρ,the local density vector

k, number of clusters

Out

put

χ, cluster centers

1 χ = topK(sort(ρ*.δ, ‘descend’),k)

Given the sorted values of (ρi×δi) in descending order, the top k

items are selected as cluster centers (line 1). The value of k can be

specified by the user, or found automatically using a “knee-

finding” type of algorithm [24].

The final step of the DP algorithm is the cluster assignment. Each

data item gets the cluster label of its nearest neighbor (NN) from

the list of points with higher local densities than it has. We give

the cluster assignment algorithm in Table 4.

Table 4: Cluster Assignment Algorithm

I
n
p
u
t

χ, cluster centers

δ,NN distance vector of higher density points

sortIndex, sorted index of items based on

descending ρ

Out

put

C, clusters

1

2

3

4

5

6

7

8

for i = 1:size(χ)

 C(χ(i)) = i //assign cluster labels for centers

end

for j = 1:n

 if C(sortIndex(j)) == empty //no cluster label yet

 C(sortIndex(j)) = C(NN(sortIndex(j)))

 end if

end

In lines 1-3 the cluster labels of the centers are assigned. After this

initialization, each of the points in the dataset (other than the

centers themselves) gets the cluster label of its nearest neighbor

from the higher density list in the descending order of local

density (lines 4-8). It is important to note that this algorithm

allows the clusters to have arbitrary, possibly non-convex shapes,

unlike k-means and its variants, which are restricted to a Voronoi

partitioning of the input space. We are now in a position to

describe our augmented version of the DP framework.

4.2 TADPole: Our Proposed Algorithm
We call our algorithm, TADPole (Time-series Anytime DP). As

stated in Section 1, in order for the original DP algorithm to

cluster a dataset, we need to know the distances between all pairs.

The time needed to compute these all-pair distances becomes

untenable for a quadratic time distance measure such as DTW. In

order to mitigate this undesirable time complexity, our thoughts

naturally turn to attempts to speed up other (non-clustering)

algorithms that need to compute DTW frequently. Most such

algorithms exploit linear time lower bounds like LB_Keogh [12],

LB_Kim, LB_Yi [31], etc. Moreover, some algorithms exploit the

fact that ED is an upper bound to DTW, and can also be computed

in O(n) time.

In our TADPole algorithm, we augment the DP clustering

framework and exploit the upper and lower bounds of DTW to

prune unnecessary distance computations, resulting in at least an

order of magnitude speedup. For datasets where even this level of

speedup is inadequate, we show that we can use a simple heuristic

to order the unavoidable calculations in a most-useful-first

ordering. As a result, our algorithm can be cast to an anytime

clustering framework, quickly producing a good answer, and

rapidly refining it until it converges to the exact answer.

The inputs to the TADPole algorithm are the lower bound and

upper bound matrices for the true DTW distances of all the

objects of the dataset. Note that the time needed to compute these

is inconsequential (<1%) relative to the overall clustering time.

The only parameters we need are the cutoff distance (dc) and

optionally, the number of clusters (k), if the user wishes to specify

this value rather than use the knee-finding heuristic suggested in

[24]. Note that our use of these two additional upper bound and

lower bound matrices increases the space complexity of the

algorithm by 200%. However, this is not an issue because:

 The DP algorithm (especially when using DTW or another

expensive measure) is CPU bound, not space bound.

 If really necessary, we could greatly mitigate this space

overhead. The lower bound matrix will have many elements

that are zeros, and thus would be amiable to encoding as a

sparse matrix.

For clarity of presentation, we present our contributions in two

different sections, although the final algorithm incorporates both

ideas. In Sections 4.2.1 to 4.2.4, we show how to accelerate the

TADPole algorithm by admissibly pruning the distance

computations during the calculation of local densities (ρ) and NN

distances (δ) from a higher density list for each item. In Section

4.2.5, we show how to reorder these computations to give us the

diminishing returns property of anytime algorithms [2][34].

4.2.1 Pruning during Local Density Calculation
Consider the four cases shown in Figure 6.

In this step of the TADPole algorithm, the inputs are the fully

computed lower (LBMatrix) and upper bound (UBMatrix) matrix. For

each object pair (i,j), while calculating their local densities (lines 1

to 3 in Table 1), we prune their distance (Dij) computation

according to the following four cases shown in Figure 6:

Case A: Objects i and j are identical

The DTW distance of two identical objects, i and j, is equal to

their ED distance. It is a simple lookup in the upper bound

distance matrix, and requires no actual DTW distance

computation. This case is logically possible but very rare (Figure

6.A)).

Figure 6: The four mutually exclusive and exhaustive cases
of distance computation pruning during local density
calculation. Note that the cutoff distance dc, represented by
the purple line at the top, applies to all four cases below it.
Case A is difficult to visually represent, as i and j coincide.

Case B: UBMatrix(i,j) < dc

If the upper bound distance between objects i and j is less than the

cutoff distance (dc), then i and j are definitely within dc distance to

each other (Figure 6.B)). Therefore, we can prune the DTW

distance computation of these two objects.

Case C: LBMatrix(i,j) > dc

If the lower bound distance of i and j is greater than the cutoff

distance, then these two objects are definitely not within dc

distance to each other (Figure 6.C)). We can therefore admissibly

prune their DTW distance computation.

Case D: LBMatrix(i,j) < dc and UBMatrix(i,j) > dc

In this case, we cannot tell whether or not the actual DTW

distance between i and j is within dc. Therefore, only in this case

do we need to compute Dij (Figure 6.D)).

With this intuition in mind, we specify the formal distance

pruning algorithm during the local density calculation in Table 5.

As we can see from Table 5, in lines 5 - 21, for all the object pairs

in the data, the TADPole algorithm checks which of the four cases

applies in order to determine whether or not these objects are

within the cutoff distance.

The occurrence of case B tells us that the object pair in question

are definitely within dc (lines 10 -11) without having to calculate

the expensive true DTW distance. Cases A (lines 8 -9) and C

(lines 12 -13) specify that the object pair is not within dc. It is only

the occurrence of case D that forces the algorithm to calculate the

true DTW distance of the object pair in question (lines 14 -19).

At the end of this section of TADPole, for each object i we have

all the local densities (ρi) computed. Using lines 1 - 3 of Table 2,

we can now find the δ list, the list of the points with higher

densities. Next we will describe our pruning strategy for this step.

Table 5: Pruning Algorithm during Local Density Calculation

I
n
p
u
t

LBMatrix, full computed lower bound matrix

UBMatrix, full computed upper bound matrix

Data, the dataset

dc, cutoff distance

Out

put

ρ,local density vector for all points in dataset

DSparse, partially filled distance matrix

j

LBMatrix(i,j)

Dij

UBMatrix(i,j)

LBMatrix(i,j)
Dij

UBMatrix(i,j)

dc

LBMatrix(i,j)
Dij

UBMatrix(i,j)

B)

C)

D)

i j

i

i

j

j

i Dij = 0A)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

DSparse = empty

for i = 1:size(Data)

 objectsWithin_dc = empty

 for j = 1: size(Data)

 if i == j

 continue;

 else

 if LBMatrix(i,j) == UBMatrix(i,j) //case A)

 continue

 elseif UBMatrix(i,j) < dc //case B)

 objectsWithin_dc = [objectsWithin_dc j]

 elseif LBMatrix(i,j) > dc // case C)
 continue

 //case D)

 elseif LBMatrix(i,j) < dc and UBMatrix(i,j) > dc
 DSparse(i,j) = calculateDist(Data(i),Data(j))

 if DSparse(i,j) < dc

 objectsWithin_dc = [objectsWithin_dc j]

 end if

 end if

 end if

 end for

 ρ(i) = length(objectsWithin_dc)

end for

4.2.2 Pruning during NN Distance Calculation from

Higher Density List
Our pruning strategy for this step works in two phases. First, for

each item we find an upper bound of the NN distance from its

higher density list. In the second phase we perform the actual

pruning based on these upper bounds. The distance computation

of TADPole terminates when for all objects in the dataset, we are

done finding their actual NN distance from their respective higher

density lists.

Phase 1: Upper bound calculation

Given DSparse and ρi for each item i, we initialize the upper bound

of its NN distance from its higher density list, ubi, to inf. For

each item j in the higher density list of i, we either have the actual

DTW distance (Dij) computed already or have access to the upper

bound (UBMatrix(i,j)) to this distance. We scan the higher density

list of item i, and if the current ubi > Dij or ubi > UBMatrix(i,j), we

update the current ubi to Dij (if available already), or to

UBMatrix(i,j) otherwise. Therefore, we can guarantee that the NN

distance from the higher density list for item i can be no larger

than ubi. We give a visual intuition of this upper bound

calculation in Figure 7.

Figure 7: An illustration of the distance pruning during the
NN distance calculation from a higher density list of an
object. From object i, the elements in the higher density list
are j1 – j4. After Phase 1, ubi will be UBMatrix(i,j4). In Phase 2,
the distance computations of Dij2 and Dij3 are pruned.

In Figure 7, the elements on object i’s higher density list are j1 –

j4. Assume that we only know the DTW distances from object i to

objects j1 and j3, (D1 and D3 respectively, shown in blue). Because

we do not know D2 and D4, we have shown these distances in gray

in Figure 7. When Phase 1 starts, ubi is initialized to inf. Now

our TADPole algorithm scans object j1 and updates ubi to D1.

Because UBMatrix(i,j2) and D3 are both are greater than ubi, we do

not need to update ubi. In the last step, given that UBMatrix(i,j4) <

ubi, we update ubi to UBMatrix(i,j4). This ubi is an upper bound of

the NN distance from object i’s higher density list.

We give the upper bound calculation algorithm for the NN

distance computation from a higher density list in Table 6. We

initialize the upper bound vectors of NN distances of objects from

their higher density list, ub to inf (line 1). Next, considering

each of the item on the higher density list of an object i,

δ_listi(j),we check whether i’s current upper bound can be

tightened (lines 5 -13). In lines 5 - 8 we see if the actual distance

between i and δ_listi(j) has been computed already, then whether

or not this distance can tighten ubi. If the distance has not been

computed yet, then in lines 10 - 12 we check whether we can

tighten ubi by replacing it with the upper bound distance between i

and δ_listi(j).

Table 6: Upper Bound Calculation Algorithm for NN Distance

Computation from Higher Density List

I
n
p
u
t

UBMatrix, full computed upper bound matrix

Data, the dataset

DSparse, partially filled distance matrix

δ_list, list of the points with higher densities

Out

put

ub, upper bound vector of NN distances from higher

density points

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ub = inf(size(Data))

for i = 1:size(Data)

 for j = 1:size(δ_listi)

 highDensityItem = δ_listi(j)

 if DSparse(i, highDensityItem)≠ empty

 if ubi > DSparse(i, highDensityItem)

 ubi = DSparse(i, highDensityItem)

 end if

 else

 if ubi > UBMatrix(i,highDensityItem)

 ubi = UBMatrix(i,highDensityItem)

 end if

 end if

 end for

end for

At the end of this phase of TADPole, we have ub, the upper

bound vector of NN distances from higher density points,

computed. We now describe exploiting ub to prune the distance

calculations during the computation of the higher density list.

Phase 2: Pruning

We give the pruning algorithm during the computation of NN

distances from the higher density lists of all objects in Table 7.

We begin by scanning the higher density list of each of the objects

again. In line 5 of Table 7, for an object i, we test whether

LBMatrix(i, δ_listi(j)) is greater than ubi we calculated in Table 6 . If

this is the case, we prune the distance computation (line 6) for

δ_listi(j). Otherwise, if the true distance between i and δ_listi(j) is

already calculated, then we consider this distance as one of the

potential NN distances from i’s higher density list (line 9). If the

true distance is not yet known, only then do we compute it (line 11-

12). Finally, we compute the NN distance vector for all objects

from their higher density lists (line 17).

In Figure 7, we see that both LBMatrix(i,j2) and LBMatrix(i,j3) are

greater than ubi. Therefore, we can prune D2 and D3. In this

example, we assumed we know D1; therefore, after the pruning

done by Phase 2, we only need to calculate D4.

LBMatrix(i,j1)

D1

UBMatrix(i,j1)

D2

UBMatrix(i,j2)

D3

UBMatrix(i,j3)

A)

B)

C)

i j1

i

i

j2

j3

D4

UBMatrix(i,j4)

i j4

D)

LBMatrix(i,j2)

LBMatrix(i,j4)

LBMatrix(i,j3)

Table 7: Pruning Algorithm during the Computation of the

NN Distances from the Higher Density Lists of All Objects

I
n
p
u
t

LBMatrix, full computed lower bound matrix

Data, the dataset

DSparse, partially filled distance matrix

δ_list, list of the points with higher densities

ub, upper bound vector of NN distances from higher

density points

Out

put

δ,NN distance vector of higher density points

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

for i = 1:size(Data)

 temp_δ = empty

 for j = 1:size(δ_listi)

 highDensityItem = δ_listi(j)

 if LBMatrix(i,highDensityItem)> ubi

 continue //prune distance computation

 else

 if DSparse(i, highDensityItem)≠ empty

 temp_δ = [temp_δ DSparse(i, highDensityItem]

 else // calculate distance

 DSparse(i, highDensityItem) =

 calculateDist(Data(i),Data(highDensityItem))

 temp_δ = [temp_δ DSparse(i, highDensityItem]

 end if

 end if

 end for

 δ(i) = min(temp_δ)

end for

After this phase of TADPole, for each item i we have access to the

NN distance from points with higher local densities (δi). At this

point, given ρi and δi for each object i¸ the TADPole algorithm

calculates the cluster centers χ using the algorithm in Table 3, and

performs the cluster assignments based on these centers according

to the algorithm in Table 4.

4.2.3 Multidimensional Time Series Clustering
While most of the research efforts on time series clustering have

considered only single-dimensional cases [11][20], the increasing

prevalence of medical sensors (c.f. Section 6.2) and wearable

devices [23] (c.f. Section 6.1) has given urgency to the need to

support multidimensional clustering [28]. Fortunately, our

extension of TADPole to the multidimensional case requires

changing only a single line of code. For clarity, we highlight these

changes for multidimensional clustering for Table 5 and Table 7

in Table 8 and Table 9, respectively.

Table 8: Pruning Algorithm during Local Density Calculation

for Multidimensional Data (see Table 5)

I
n
p
u
t

LBMatrix, full computed lower bound matrix along d

dimensions

UBMatrix, full computed upper bound matrix along d

dimensions

Data, the dataset

dc, cutoff distance

16

...

DSparse(i,j) =

...

 Table 9: Pruning Algorithm during NN Distance Computation

from Higher Density List, Multidimensional Case (see Table 7)

Recall that in Table 5, we gave the full lower bound and upper

bound distance matrices as inputs to the algorithm. To perform

multidimensional clustering, for each dimension we wish to

consider, we calculate the corresponding lower/upper bound

distance matrices independently along those dimensions. We take

the sum of all lower bound matrices/upper bound matrices and

give these cumulative matrices as inputs to our algorithm

described in Table 5. In addition, when we actually calculate the

distances (line 16 in Table 5 and lines 10-12 in Table 7), we take

the summation of the distances along all the dimensions. All other

components of TADPole will remain the same.

As we shall show empirically now, by using the pruning method

described so far, TADPole can obtain at least an order of

magnitude speedup over the original DP algorithm.

4.2.4 How Effective Is Our Pruning?
Before generalizing to allow anytime behavior in the next section,

in this section we will demonstrate just the utility of our pruning

strategy. In order to intuitively calibrate the effectiveness of our

pruning, we compare to the best and worst possible cases:

 In order to perform clustering, the DP algorithm needs the

all-pair distance matrix computed [24]. Therefore, in terms of

distance computation, the brute force DP algorithm itself is

the obvious worst-case strawman.

 The best possible variant of DP is the one that performs a

distance computation only when it is necessary. Therefore,

during density computation, this variant of DP considers only

those distance computations that contribute to the actual

density of an object. In addition to this, during the

computation of the NN distance from the higher density list

of an object, this variant considers only the actual NN

distances. We call this algorithm the oracle variant of DP.

Note that we obviously cannot compute this in real-time, but

only by doing an expensive post-hoc study.

We compare the amount of distance pruning we achieve against

these two variants of the DP algorithm. For this experiment, we

consider the StarLightCurves dataset [13]. We vary the number of

objects in the dataset we need to cluster (by randomly sampling)

and record the number of true DTW distance computations. As

we can see from Figure 8.left), the number of distance

computations increases quadratically using the brute force

algorithm. In contrast, the oracle algorithm requires very few

distance computations; moreover, we can see that our TADPole

algorithm performs almost as well as the oracle algorithm.

Figure 8: A comparison of the amount of pruning TADPole
achieves compared to an oracle and the brute force
algorithm. TADPole is very close to the oracle algorithm.

This claim is reinforced in Figure 8.right, in which we see that the

percentage of distance computations TADPole requires is very

close to the oracle algorithm. As we can see, as the datasets get

larger, TADPole converges closer and closer to the oracle

algorithm.

Also note that a similar performance is observed in all datasets we

considered (archived in [37] for brevity). Moreover, we obtain

similar results if we measure the CPU time instead. As we can

see from Figure 9, to cluster the StarLightCurves data, TADPole

requires only 9 minutes, whereas the DP algorithm needs 9 hours.

In spite of these very promising results, demonstrating a sixty-fold

speedup, there exist datasets where even this amount of speedup is

not adequate. In order to address similar scalability issues for

other types of data mining analyses, including classification [29]

and outlier detection [2][3], researchers have attempted to create

anytime versions of their algorithms [2][33]. One significant

advantage of the DP algorithm (and our modifications to it) is that

D
is

ta
n
c

e
 C

a
lc

u
la

ti
o
n

s

0 3500

1

3

5

7 x 10
6

TADPole

Number of objects

Absolute
Number

0 35000

100

Number of objects

Brute force

TADPole

Percentage

10

11

12

 else // calculate distance

 DSparse(i, highDensityItem) =

it is particularly amiable to casting as an anytime framework. In

essence, the computations discussed in this section can be

computed in any order. Thus far, we have simply computed them

in a top-to-bottom, left-to-right order. However, we should expect

that not all such computations of the true DTW are equally

significant in terms of their impact on the final clustering, and that

if we could find even an approximate “most-significant-first”

order, we could converge more quickly. In the next section, we

describe such an ordering heuristic.

Figure 9: A comparison of the CPU time spent by TADPole
against an oracle and the brute force algorithm to cluster the
StarLightCurves dataset. As before, the performance of
TADPole is very close to the oracle algorithm.

4.2.5 Distance Computation-Ordering Heuristic
Recall from the above that the DP algorithm may be considered a

two-step algorithm; calculating the local densities (Table 1) first,

and then finding the NN distances from the higher density lists

(Table 2) of the objects. Only the latter step is amiable to anytime

ordering; the former step may be regarded as the setup time

[2][29][33].

Before attempting to create an anytime ordering function, it will

be instructive to consider two baselines: what is the best we could

possibly do, and what would we have to do in order to claim we

are beating the most obvious strawmen?

 The best ordering heuristic we consider is an oracle ordering.

We can compute this by allowing the algorithm to cheat. In

each step of the algorithm, this order chooses the object that

maximizes the current Rand Index. The algorithm is

cheating, because by definition, a clustering algorithm

normally does not have access to class labels.

 The most basic strawman is top-to-bottom, left-to-right

ordering, but that is brittle to “luck”. A random ordering is

much less so, so we consider random ordering as the baseline
we would like to improve upon.

To understand the performance of these two algorithms, we took

the Insect dataset from [13] and measured the Rand Index, as the

two algorithms above refined the mixture of true DTW distances

and upper bound distances that we have at the end of phase 1 (i.e.,

Table 6), into the set of all necessary DTW computations needed

(i.e., Table 7). The results are shown in Figure 10 (for the

moment, ignore the blue line). For completeness, we also show

the accuracy achieved using the Euclidean distance with the DP

algorithm. If the Euclidean distance was competitive, it would be

fruitless to waste time computing expensive DTW calculations.

The results clearly show that in this dataset, DTW is needed.

After initially getting worse, the random ordering linearly (in a

stepwise fashion) converges on the true clustering. In contrast, the

oracle algorithm achieves a perfect Rand Index after calculating

the true DTW distances for the NN list of just five objects.

As impressive as the oracle’s performance is, we can actually

come very close to it, as shown by the blue curve in Figure 10.

The ordering heuristic TADPole exploits is the descending order

of the local density (ρ) × the upper bound distance (ub) from the

higher density list of the objects.

With a little introspection, it is easy to see why our distance

computation-ordering heuristic is as close as the oracle ordering.

Recall from Section 4.1 that points with higher values of ρ×δ are

more likely to become cluster centers. Until we calculate all the

NN from each object’s higher density list, we do not have access

to their δ. However, we can estimate δ by the tight upper bound

ub to δ. Our distance computation-order heuristic exploits ub to

prioritize distance computations for items that are more likely to

be centers. Because the centers are selected earlier, we achieve a

higher Rand Index with very few actual distance computations.

Figure 10: top) A comparison of different distance
computation-order heuristics on the Insect dataset [13]. An
oracle ordering (green) converges stunningly quickly. The
random ordering (pink) converges very slowly. Our
proposed ordering (blue) is very close to the oracle. bottom)
A zoomed-in view of the figure shown at the top).

From Figure 10.top) we see that in conjunction with all the

pruning strategies described in Sections 4.2.1 and 4.2.2, TADPole

achieves a perfect Rand Index after doing only ~6% of all possible

distance computations. Of course, it does not “realize” this, and

must compute ~10% of all possible distance computations before

admissibly terminating.

5. EXPERIMENTAL EVALUATION
All experiments in this paper (including the ones above) are

completely reproducible. We have archived all experimental code,

parameter settings and data at [37]. The goal of our experiments is

to show that our algorithm is more efficient and effective than

current algorithms. We also show that our algorithm is not

particularly sensitive to the only parameter choice we have to

make. In addition to this, we demonstrate the utility of our

approach on three real-world case studies.

5.1 Comparison with State-of-the-Art

Clustering Algorithms
The principle strawman we need to compare to is the brute force

version of DP with DTW. This comparison is explicitly encoded

in Figure 10 and the similar figures below. In these experiments

we also replace DTW with Euclidean distance to demonstrate that

DTW is really necessary. In Table 10, we show a comparison of

the clustering performance of TADPole to some well-known

state-of-the-art clustering algorithms (which we carefully tuned)

under DTW in five randomly chosen datasets from [13]. As we

can see, the cluster quality returned by TADPole is usually better

than the best-performing clustering algorithm. Note that we are

not claiming DP is always superior, rather we chose DP because it

is at least competitive with the state-of-the-art, and amiable to

acceleration as we have demonstrated.

The greatly superior accuracy of TADPole makes the timing

results somewhat irrelevant, but TADPole is at least an order of

magnitude faster than the rival methods (exact numbers at [37]).

500 1500 2500 3500

0.5

1.5

2.5

3.5
x 104

Number of objects

Brute force

TADPole OracleC
P

U
 T

im
e

(s
ec

o
n

d
s)

Distance Computation Percentage
100%

0.4

1

0

R
an

d
 I

n
d

ex

Euclidean

Distance

Oracle

Order

TADPole

Order

0 10%

0.4

1

Oracle Order

Random Order

TADPole Order

Random

Order

R
an

d
 I

n
d

ex

Distance Computation Percentage

Zoom-In of Above Figure

This reflects the 90% of

DTW calculations that

were admissibly pruned

This reflects the 10% of

DTW calculations that

were calculated in anytime

ordering

10%

Table 10: Clustering Quality (in Terms of Rand Index) of

TADPole vs. Some State-of-the-Art Clustering Algorithms

Dataset TADPoleDTW

(TADPoleED)

k-means[10]
DTWversion

Hierarchical

DTWversion

DBSCAN [6]
DTWversion

Spectral [17]
DTWversion

CBF 1 (0.66) 0.78 0.73 0.77 0.76

FacesUCR 0.92 (0.86) 0.87 0.85 0.77 0.94

MedicalImages 0.66 (0.67) 0.67 0.62 0.65 0.69

Symbols 0.98 (0.81) 0.93 0.78 0.91 0.95

uWaveGesture_Z 0.86 (0.84) 0.85 0.83 0.8 0.86

The greatly superior accuracy of TADPole makes the timing

results somewhat irrelevant, but TADPole is at least an order of

magnitude faster than the rival methods (exact numbers at [37]).

5.2 Parameter Sensitivity Experiments
To demonstrate that TADPole is not sensitive to parameter

choices, we took the Symbols dataset [13], and performed

TADPole on it with k = 6. We then varied the cutoff distance (dc)

parameter and measured the Rand Index obtained with the

alternative settings. As we can see from Figure 11, there is a very

wide range of choices for the values of dc, which gives high-

quality clustering.

Figure 11: A parameter sensitivity test of TADPole shows
stability of clustering over a very wide range of parameters.

6. CASE STUDIES

6.1 Electromagnetic Articulograph Dataset
The Electromagnetic Articulograph (EMA) is a device that is

increasingly used for mouth movement studies [30]. The

apparatus consists of a set of unobtrusive accelerometers that are

attached to multiple positions on the tongue, lips, jaw, nose and

forehead, and can record high-resolution 3D movement/position

data in real-time. Recent research has suggested that

articulographs may eventually allow a “silent speech” interface

that translates non-audio articulatory data to speech output, an

idea that has significant potential for facilitating oral

communication after a laryngectomy [30]. The most common use

of articulographs is in speech therapy for a plethora of speech

disorders. However, EMA use has a significant burden: setting up

the system can take up to 30 minutes per session (this time is

spent carefully gluing the sensors to the participant’s face and

tongue). Given this significant setup time, practitioners are

anxious to get the most from each session, yet the goals of the

session are not typically fixed, but change in reaction to the

participant’s progress and areas of difficulty. Thus, there is a need

to cluster the utterances of speakers in an interactive fashion, so

that sessions can be adapted on the fly. We consider a dataset of

lower-lip accelerometer time series movement data of 18 words

collected from multiple speakers, for a total of 414 objects. The

duration of utterance of each of the words is ~0.7 seconds. In

Figure 12.left), we show the data collection process for one of our

subjects. In Figure 12.right), we show two examples of the

utterances of the word “fate” by two different individuals. These

examples are clearly warped, suggesting this is an appropriate
domain for TADPole.

We tested the power set of combinations of axes, confirming that

axis Z with axis Y gives us the best clustering, with a Rand Index

of 0.94 (the other results are archived at [37]).

Figure 12: left) One of our volunteers wearing the
articulograph apparatus. right) Two examples of the 3D time
series produced by enunciating the word “fate” show inter-
subject warping. The X axis is omitted here, as it only has
useful information for patients with facial asymmetry.

We can now ask how effective our pruning strategy is when

performing this clustering. We show the result in Figure 13.

Figure 13: The amount of distance pruning achieved by
TADPole is ~94% for the Articulographs [30]. Moreover, the
ordering heuristic is almost as good as the oracle ordering.

As we can see from Figure 13, TADPole achieves ~94% pruning,

converging almost as quickly as the oracle algorithm. In wall

clock terms, TADPole takes only 2.89 seconds, allowing

interactive analysis and feedback to the patient.

6.2 Pulsus Dataset
Pulsus Paradoxus is defined as a significant decline in the pulse

with inspiration. It is a symptom of Cardiac Tamponade, a life-

threatening condition where high-pressure fluid fills the sac

surrounding the heart, impairing cardiac filling and causing

20,000 deaths per year in the USA alone. Of the several ways to

detect Pulsus, the least invasive and simplest uses the PPG

(PhotoPlethysmoGram) shown in Figure 14.top).

Figure 14: top) PPG and Power Spectral Density (PSD)
signal of a patient with non-severe Pulsus (top.left)) and
severe Pulsus (top.right)). bottom) Four PSDs of four patients
forming four different clusters within the non-Pulsus
objects. From these four clusters, we can see the objects are
clearly warped.

For this case study we consider a dataset of 500 PPGs from two

sources, the MIMIC II Waveform Database [8][25] and our

collaborators. The latter dataset has the advantage that our

collaborators followed up on the patients (in some case, post-

mortem); thus, we have access to unusually rich annotations and

external knowledge to evaluate our result. As shown in Figure

14.top), the raw PPG data is very complex, and following the

1 2 3 4 5

0.2

0.6

1

All-pair distance percentage of the objects

R
an

d
 I

n
d

ex

0 150

Y

Z

Y

Z

1 2 3 4 5 6 7

0.84

0.92

1

Distance Computation Percentage

R
an

d
 I

n
d

ex Euclidean Distance

Oracle Order

Random Order

TADPole Order

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

Patient 639 Patient 523 Patient 618 Patient 2975918

0 10 20 30 40 50 600 10 20 30 40 50 60

Normalized Respiration Rate
Normalized Heart Rate

P
o

w
er

 S
p

ec
tr

al

D
en

si
ty

Frequency

A) B)

C) D) E) F)

200 600 1000 1400 1800200 600 1000 1400 1800

Non-Severe Pulsus Severe Pulsus

P
P

G

suggestions of Dr. John Criley (UCLA School of Medicine), we

converted the PPGs to amplitude spectrums (Figure 14.middle)

and clustered in that space. Dr. Criley’s intuition is that for

Tamponade patients, the fluid that fills the sac surrounding the

heart will cause a “shadow” signal to show up during respiration.

For this dataset, TADPole produced a perfect clustering, with a

pruning rate of 88%, making it an order of magnitude faster than

brute-force. In Figure 15.left), we show the PPG measurement

process. From Figure 15.right), we can see that the Pulsus

instances are within a compact cluster, and the non-Pulsus

instances seem to form a number of sub-clusters. Our medical

collaborator suggests this reflects the fact that there is one way to

have Tamponade, but multiple ways to have a healthy heartbeat.

Figure 15: left) A PPG apparatus. right) The Pulsus dataset
projected into two dimensions using multidimensional
scaling, and color coded by the output of TADPole.

6.3 Person Re-Identification Dataset
Person re-identification is the task of recognizing individuals

across spatially disjointed cameras [7], and an important problem

for understanding human behavior in areas covered by

surveillance cameras. As shown in Figure 16, we can extract color

histograms from the video, thus treating the problem as a

multidimensional time series problem. We considered the PRID

dataset [9], randomly extracting 1,000 images of 12 different

individuals. After we ran TADPole in this dataset to cluster the

images of these 12 individuals, we achieved a Rand Index of

95.4% and distance pruning of 80% (anytime plot at [37]). In

contrast, Euclidean distance only achieves a Rand Index of 89%.

Figure 16: Representative images from the dataset [9] with

their corresponding color histograms.

7. CONCLUSIONS
By introducing novel pruning strategies that exploit both upper

and lower bounds, we have produced a robust DTW clustering

algorithm that is both absolutely faster, and able to compute the

clustering in an anytime fashion. We have demonstrated the utility

of our algorithms on diverse domains, including two in which our

algorithm is currently actively deployed (EMA/Pulsus).

8. ACKNOWLEDGEMENTS
We gratefully acknowledge the financial support for our research

provided by NSF IIS-1161997 II.

9. REFERENCES
[1] Aggarwal, C. C., & Reddy, C. K. (Eds.). Data Clustering: Algorithms and

Applications. CRC Press, 2013.

[2] Assent, I., et al. Anyout: Anytime Outlier Detection on Streaming Data.

In Database Systems for Advanced Applications, pp. 228-242, 2012.

[3] Begum, N. et al. Rare Time Series Motif Discovery from Unbounded

Streams. Proceedings of the VLDB Endowment, 8(2), 2014.

[4] Cao, F., Ester, M., Qian, W., & Zhou, A. Density-Based Clustering over an

Evolving Data Stream with Noise. SIAM SDM, 2006.

[5] Ding, R. et al. YADING: Fast Clustering of Large-Scale Time Series

Data Proceedings of the VLDB Endowment 8.5, 2015.

[6] Ester, M., Kriegel. et al. A Density-Based Algorithm for Discovering Clusters

in Large Spatial Databases with Noise. ACM SIGKDD, pp. 226-231, 1996.

[7] Gheissari, N. et al. Person Reidentification using Spatiotemporal

Appearance. IEEE CVPR, vol. 2, pp. 1528-1535, 2006.

[8] Goldberger, A. L. et al. Physiobank, Physiotoolkit, and Physionet

Components of A New Research Resource for Complex Physiologic

Signals. Circulation, 101(23), e215-e220, 2000.

[9] Hirzer, Martin, et al. Person Re-identification by Descriptive and

Discriminative Classification. Image Analysis. Springer Berlin

Heidelberg, pp. 91-102, 2011.

[10] Jang, J. S. R. Machine Learning Toolbox, available at

mirlab.org/jang/matlab/toolbox/machineLearning, (Dec 1, 2014).

[11] Keogh, E., & Lin, J. Clustering of Time Series Subsequences is Meaningless:

Implications for Previous and Future Research. KAIS, 8(2), 154-177, 2005.

[12] Keogh, E. & Ratanamahatana, C.A. Exact Indexing of Dynamic Time Warping.

KAIS 7, no. 3, 358-386, 2005.

[13] Keogh, E., et al. The UCR Time Series Classification Page

[14] Krishnamurthy, A., Balakrishnan, S., Xu, M., & Singh, A. Efficient Active

Algorithms for Hierarchical Clustering. arXiv preprint arXiv:1206.4672,

2012.

[15] Mai, Son T., et al. Efficient Anytime Density-Based Clustering. SDM, 2013.

[16] Mueen, A., Keogh, E. J., Zhu, Q., Cash, S., & Westover, M. B. Exact

Discovery of Time Series Motifs. SDM, pp. 473-484, 2009.

[17] Ng, A. Y., Jordan, M. I., & Weiss, Y. On Spectral Clustering: Analysis and An

Algorithm. Advances in Neural Information Processing Systems, 2, pp. 849-

856, 2002.

[18] Rakthanmanon, T. et al. The UCR Suite: Fast Subsequence Search (DNA)

www.youtube.com/watch?v=c7xz9pVr05Q, 2012.

[19] Rakthanmanon, T., et al. Addressing Big Data Time Series: Mining Trillions of

Time Series Subsequences Under Dynamic Time Warping. ACM TKDD, 7(3),

10, 2013.

[20] Rakthanmanon, T., et al. Time Series Epenthesis: Clustering Time Series

Streams Requires Ignoring Some Data. ICDM 2011.

[21] Rand, W. M. Objective Criteria for the Evaluation of Clustering Methods. J.

Am. Statist. Assoc. 66.336, pp. - 846-850, 1971.

[22] Ratanamahatana, C. A., & Keogh, E. Everything You Know About Dynamic

Time Warping is Wrong. In 3rd Workshop on Mining Temporal and Sequential

Data, pp. 22-25, 2004.

[23] Rawassizadeh, R et al. Wearables: Has the Age of Smartwatches Finally

Arrived? Communications of the ACM 58.1, pp. - 45-47, 2014.

[24] Rodriguez, A., & Laio, A. Clustering by Fast Search and Find of Density

Peaks. Science, 344(6191), 1492-1496, 2014.

[25] Saeed, M., et al. Multiparameter Intelligent Monitoring in Intensive Care II

(MIMIC-II): A Public-access Intensive Care Unit Database. Critical care

medicine, 39(5), 952, 2011.

[26] Signorini, A., Segre, A. M., & Polgreen, P. M. The Use of Twitter to Track

Levels of Disease Activity and Public Concern in the US During the Influenza

A H1N1 Pandemic. PloS one, 6(5), 2011.

[27] Shieh, J., & Keogh, E. iSAX: Indexing and Mining Terabyte Sized Time Series.

ACM SIGKDD, pp. 623 – 631, 2008.

[28] Shokoohi-Yekta, M. et al. Generalizing Dynamic Time Warping to the Multi-

Dimensional Case Requires an Adaptive Approach. SDM 2015.

[29] Ueno, K., Xi, X., Keogh, E., & Lee, D. J. Anytime Classification Using the

Nearest Neighbor Algorithm with Applications to Stream Mining. IEEE

ICDM, pp. 623-632, 2006.

[30] Wang, J. et al. Preliminary Test of A Real-time, Interactive Silent Speech

Interface Based on Electromagnetic Articulograph, SLPAT, pp. - 38 - 45,

2014.

[31] Wang, X., et al. Experimental Comparison of Representation Methods and

Distance Measures for Time Series Data. DMKD, 26(2), 275-309, 2013.

[32] Yang, J., & Leskovec, J. Patterns of Temporal Variation in Online Media.

ACM WSDM, pp. 177-186, 2011.

[33] Zhu, Q. et al. A Novel Approximation to Dynamic Time Warping allows

Anytime Clustering of Massive Time Series Datasets. SDM, 2012.

[34] Zilberstein, S. Using Anytime Algorithms in Intelligent Systems. AI

magazine, 17(3), 73, 1996.

[35] 2009 MTV Video Music Awards

en.wikipedia.org/wiki/2009_MTV_Video_Music_Awards

[36] Unknown Author. (15th cent., second half). Treatises on Heraldry. Bodleian

Library collection, MS. Lat. misc. e.

[37] Supporting Webpage: www.cs.ucr.edu/~nbegu001/SpeededClusteringDTW

Suspected Pulsus

Severe

Pulsus

Healthy

Oximeter

Vein

Artery

Photo Detector

LED

0 100 200 0 100 200 0 100 200 0 100 200 0 100 200

