
Towards Parameter-Free Data Mining
Eamonn Keogh Stefano Lonardi Chotirat Ann Ratanamahatana

Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521

{eamonn, stelo, ratana}@cs.ucr.edu

ABSTRACT
Most data mining algorithms require the setting of many input
parameters. Two main dangers of working with parameter-laden
algorithms are the following. First, incorrect settings may cause an
algorithm to fail in finding the true patterns. Second, a perhaps
more insidious problem is that the algorithm may report spurious
patterns that do not really exist, or greatly overestimate the
significance of the reported patterns. This is especially likely when
the user fails to understand the role of parameters in the data
mining process.
Data mining algorithms should have as few parameters as possible,
ideally none. A parameter-free algorithm would limit our ability to
impose our prejudices, expectations, and presumptions on the
problem at hand, and would let the data itself speak to us. In this
work, we show that recent results in bioinformatics and
computational theory hold great promise for a parameter-free data-
mining paradigm. The results are motivated by observations in
Kolmogorov complexity theory. However, as a practical matter,
they can be implemented using any off-the-shelf compression
algorithm with the addition of just a dozen or so lines of code. We
will show that this approach is competitive or superior to the state-
of-the-art approaches in anomaly/interestingness detection,
classification, and clustering with empirical tests on time
series/DNA/text/video datasets.

Keywords
Kolmogorov Complexity, Parameter-Free Data Mining, Anomaly
Detection, Clustering.

1. INTRODUCTION
Most data mining algorithms require the setting of many input
parameters. There are many dangers of working with parameter-
laden algorithms. We may fail to find true patterns because of
poorly chosen parameter settings. A perhaps more insidious
problem is that we may find patterns that do not exist [21], or
greatly overestimate the significance of a pattern because of a
failure to understand the role of parameter searching in the data
mining process [5][7]. In addition, as we will show, it can be very
difficult to compare the results across methods or even to reproduce
the results of heavily parameterized algorithms.

Data mining algorithms should have as few parameters as possible,
ideally none. A parameter-free algorithm prevents us from
imposing our prejudices and presumptions on the problem at hand,
and let the data itself speak to us.
In this work, we introduce a data mining paradigm based on
compression. The work is motivated by results in bioinformatics
and computational theory that are not well known outside those
communities. As we will demonstrate here, our approach allows
parameter-free or parameter-light solutions to many classic data
mining tasks, including clustering, classification, and anomaly
detection.
Our approach has the following advantages, which we will
empirically demonstrate with extensive experiments:
1) It allows true exploratory data mining, rather than forcing us

to impose our presumptions on the data.
2) The accuracy of our approach can be greatly superior to those

of parameter-laden algorithms, even if we allow these
algorithms to search exhaustively over their parameter spaces.

3) Our approach is based on compression as its cornerstone, and
compression algorithms are typically space and time efficient.
As a consequence, our method is generally much more
efficient than other algorithms, in some cases by three or four
orders of magnitude.

4) Many parameterized algorithms require the data to be in a
special format. For concreteness, consider time series data
mining [14][20]. Here, the Euclidean distance requires that the
dimensionality of two instances being compared is exactly the
same, and Dynamic Time Warping (DTW) is not defined if a
single data point is missing [30]. In contrast, our approach
works for time series of different lengths, sampling rates,
dimensionalities, with missing values, etc.

In this work, we decided to take the unusual step of reproducing
our entire actual code, rather than just the pseudocode. There are
two reasons for doing this. First, free access to the actual code
combined with our policy of making all data freely available allows
independent confirmation of our results. Second, it reinforces our
claim that our methods are very simple to implement.
The rest of the paper is organized as follows. In Section 2, we
discuss the results in bioinformatics and computational theory that
motivate this work. In Section 3, we consider the minor changes
and extensions necessary to extend these results to the classic data
mining tasks of anomaly/interestingness detection, classification,
and clustering. Section 4 sees an exhaustive empirical comparison,
in which we compare dozens of algorithms to our approach, on
dozens of datasets from several domains, including time series,
video, DNA, and text. Finally, in Section 5, we discuss many
avenues for possible extensions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
KDD ’04, August 22–25, 2004, Seattle, WA, U.S.A.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. BACKGROUND AND RELATED WORK
We begin this section by arguing that a contribution made by a
parameter-laden algorithm can be difficult to evaluate. We review
some background material on Kolmogorov complexity, which
motivates the parameter-free Compression-based Dissimilarity
Measure (CDM), the technique at the heart of this paper.

2.1 The Perils of Parameter-Laden Algorithms
A recent paper in a top-tier journal introduced a new machine-
learning framework and noted that it “…abounds with parameters
that can be tuned” (our emphasis). It is surely more accurate to
state that the approach has parameters that must be tuned. When
surveying the literature on this topic, we noted that while there are
many techniques for automatically tuning parameters, many of
these techniques themselves have parameters, possibly resulting in
an infinite regression.
An additional problem of parameter-laden algorithms is that they
make it difficult to reproduce published experimental results, and to
understand the contribution of a proposed algorithm.
A recently published paper introduced a new time series distance
measure. The algorithm requires the setting of two parameters, and
the authors are to be commended for showing the results of the
cross-product: sixteen by four possible parameter choices. Of the
sixty-four settings, eleven are slightly better than DTW, and the
authors conclude that their approach is superior to DTW. However,
the authors did not test over different parameters for DTW, and
DTW does allow a single parameter, the maximum temporal
distortion (the “warping window” [30]). The authors kindly
provided us with the exact data they used in the experiment, and we
reproduced the experiment, this time allowing a search over
DTW’s single parameter. We discovered that over a wide range of
parameter choices, DTW produces a near perfect accuracy,
outperforming all sixty-four choices of the proposed algorithm.
Although the above is only one anecdotal piece of evidence, it does
help make the following point. It is very difficult to evaluate the
contribution of papers that introduce a parameter-laden algorithm.
In the case above, the authors’ commendable decision to make their
data public allows the community to discover that DTW is
probably a better distance measure, but only at the expense of some
effort on the readers’ behalf. In general, the potential asymmetry in
parameter tuning effort effectively prevents us from evaluating the
contribution of many papers. Here, the problem is compounded by
the fact that the authors created the dataset in question. Creating a
dataset may be regarded as a form of meta parameter tuning, since
we don’t generally know if the very first dataset created was used
in the paper, or many datasets were created and only the most
satisfactory one was used. In any case, there are clearly problems
in setting parameters (training) and reporting results (testing) on the
same dataset [32]. In the field of neural networks, Flexer [11] noted
that 93% of papers did just that. While no such statistics are
published for data mining, an informal survey suggests a similar
problem may exist here. In Section 4.2.2, we will empirically
reinforce this point by showing that in the context of anomaly
detection, parameter-laden algorithms can have their parameters
tuned to achieve excellent performance on one dataset, but
completely fail to generalize to a new but very similar dataset.
Before leaving this section, it would be remiss of us not to note that
many papers by the authors of this manuscript also feature

algorithms that have (too) many parameters. Indeed, the frustration
of using such algorithms is one inspiration for this work.

2.2 Kolmogorov Complexity
The proposed method is based on the concept of Kolmogorov
complexity. Kolmogorov complexity is a measure of randomness
of strings based on their information content. It was proposed by
A.N. Kolmogorov in 1965 to quantify the randomness of strings
and other objects in an objective and absolute manner.
The Kolmogorov complexity K(x) of a string x is defined as the
length of the shortest program capable of producing x on a
universal computer — such as a Turing machine. Different
programming languages will give rise to distinct values of K(x), but
one can prove that the differences are only up to a fixed additive
constant. Intuitively, K(x) is the minimal quantity of information
required to generate x by an algorithm.
Hereafter, we will follow the notation of [23], which was the main
inspiration of this work. The conditional Kolmogorov complexity
K(x|y) of x to y is defined as the length of the shortest program that
computes x when y is given as an auxiliary input to the program.
The function K(xy) is the length of the shortest program that
outputs y concatenated to x.
In [22], the authors consider the distance between two strings x and
y, defined as

)(

)|()|(),(
xyK

xyKyxKyxdk
+

= (1)

which satisfies the triangle inequality, up to a small error term. A
more mathematically precise distance was proposed in [23].
Kolmogorov complexity is without a doubt the ultimate lower
bound among all measures of information content. Unfortunately, it
cannot be computed in the general case [24]. As a consequence,
one must approximate this distance.
It is easy to realize that universal compression algorithms give an
upper bound to the Kolmogorov complexity. In fact, K(x) is the
best compression that one could possibly achieve for the text string
x. Given a data compression algorithm, we define C(x) as the size
of the compressed size of x and C(x|y) as the compression achieved
by first training the compression on y, and then compressing x. For
example, if the compressor is based on a textual substitution
method, one could build the dictionary on y, and then use that
dictionary to compress x.
We can approximate (1) by the following distance measure

)(

)|()|(),(
xyC

xyCyxCyxdc
+

= (2)

The better the compression algorithm, the better the approximation
of dc for dk is.
In [23], Li et al. have shown that dc is a similarity metric, and can
be successfully applied to clustering DNA and text. However, the
measure would require hacking the chosen compression algorithm
in order to obtain C(x|y) and C(y|x). We therefore decided to
simplify the distance even further. In the next section, we will show
that a simpler measure can be just as effective.
The idea of using data compression to classify sequences is not
new. In the early days of computational biology, lossless
compression was used to classify DNA sequences. We refer to,

e.g., [1][10][12][26][27], and references therein for a sampler of the
rich literature existing on this subject.
Recently, Benedetto et al. [2] have shown how to use a
compression-based measure to classify fifty languages. The paper
was featured in several scientific (and less-scientific) journals,
including Nature, Science, and Wired. It has also generated some
controversies (see, e.g., [16]).
Finally, the idea of using compression to classify sequences is
tightly connected with the minimum description length (MDL)
principle. The principle was introduced by the late ’70 by Rissanen
[31], and has generated a very extensive body of literature in the
machine learning community (see, e.g., [29])

2.3 Compression-Based Dissimilarity Measure
Given two strings, x and y, we define the Compression-based
Dissimilarity Measure (CDM) as follows

)()(

)(),(
yCxC

xyCyxCDM
+

= (3)

The CDM dissimilarity is close to 1 when x and y are not related,
and smaller than one if x and y are related. The smaller the
CDM(x,y), the more closely related x and y are. Note that
CDM(x,x) is not zero.
The dissimilarity measure can be easily implemented. The entire
Matlab code is shown in Table 1.

Table 1: Compression-based Dissimilarity Measure (CDM)
function dist = CDM(A, B)

 save A.txt A –ASCII % Save variable A as A.txt

 zip('A.zip', 'A.txt'); % Compress A.txt

 A_file = dir('A.zip'); % Get file information

 save B.txt B –ASCII % Save variable B as B.txt

 zip('B.zip', 'B.txt'); % Compress B.txt

 B_file = dir('B.zip'); % Get file information

 A_n_B = [A; B]; % Concatenate A and B

 save A_n_B.txt A_n_B –ASCII % Save A_n_B.txt

 zip('A_n_B.zip', 'A_n_B.txt'); % Compress A_n_B.txt

 A_n_B_file = dir('A_n_B.zip'); % Get file information

 % Return CDM dissimilarity

 dist = A_n_B_file.bytes / (A_file.bytes + B_file.bytes);

The inputs are the two matrices to be compared. These matrices can
be time series, DNA strings, images, natural language text, midi
representations of music, etc. The algorithm begins by saving the
two objects to disk, compressing them, and obtaining file
information. The next step is to concatenate the two objects (A_n_B

= [A; B]); the resulting matrix is also saved, compressed, and the file
information is retrieved. At this point we simply return the size of
the compressed concatenation over the size of the sum of the two
individual compressed files.
One could argue that also CDM has several parameters. In fact,
CDM depends on the choice of the specific compressor (gzip,
compress, bzip2, etc.), and on the compression parameters (for
example, the sliding window size in gzip). But because we are
trying to get the best approximation of the Kolmogorov

complexity, one should just choose the best combination of
compression tool and compression parameters for the data. There
is, in fact, no freedom in the choice to be made. We simply run
these compression algorithms on the data to be classified and
choose the one that gives the highest compression.

2.4 Choosing the Representation of the Data
As we noted above, the only objective in CDM is to obtain good
compression. There are several ways to achieve this goal. First, one
should try several compressors. If we have domain knowledge
about the data under study, and specific compressors are available
for that type of data, we use one of those. For example, if we are
clustering DNA we should consider a compression algorithm
optimized for compressing DNA (see, e.g., [3]).
There is another way we can help improve the compression; we can
simply ensure that the data to be compared is in a format that can
be readily and meaningfully compressed. Consider the following
example; Figure 1 shows the first ten data points of three
Electrocardiograms from PhysioNet [15] represented in textual
form.

 A B C
 0.13812500000000 0.51250000000000 0.49561523437690
 0.04875000000000 0.50000000000000 0.49604248046834
 0.10375000000000 0.50000000000000 0.49653076171875
 0.17875000000000 0.47562500000000 0.49706481933594
 0.24093750000000 0.45125000000000 0.49750732421875
 0.29875000000000 0.45125000000000 0.49808715820312
 0.37000000000000 0.47656250000000 0.49875854492187
 0.48375000000000 0.50000000000000 0.49939941406230
 0.55593750000000 0.48281250000000 0.50007080078125
 0.64625000000000 0.48468750000000 0.50062011718750
 0.70125000000000 0.46937500000000 0.50123046875826

Figure 1: The first ten data points of three ECG s

It happens to be the case that sequences A and C are both from
patients with supraventricular escape beats. If we are allowed to see
a few hundred additional data points from these sequences, we can
correctly group the sequences ((A,C),B) by eye, or with simple
Euclidean distance.
Unfortunately, CDM may have difficulties with these datasets. The
problem is that although all sequences are stored with 16-digit
precision, sequences A and B were actually recorded with 8-digit
precision and automatically converted by the Rdsamp-O-Matic tool
[15]. Note that, to CDM, A and B may have great similarity,
because the many occurrences of 00000000’s in both A and B will
compress even better in each other’s company. In this case, CDM
is finding true similarity between these two sequences, but it is a
trivial formatting similarity, and not a meaningful measure of the
structure of the heartbeats. Similar remarks can be made for other
formatting conventions and hardware limitations, for example, one
sensor’s number-rounding policy might produce a surfeit of
numbers ending with “5”.
Before explaining our simple solution this problem, we want to
emphasize that CDM is extremely robust to it. For example, all the
anomalies detected in Section 4.2 can be easily discovered on the
original data. However, addressing this problem allows us to
successfully apply CDM on much smaller datasets.
A simple solution to problem noted above is to convert the data
into a discrete format, with a small alphabet size. In this case, every
part of the representation contributes about the same amount of
information about the shape of the time series. This opens the

question of which symbolic representation of time series to use. In
this work, we use the SAX (Symbolic Aggregate ApproXimation)
representation of Lin et al. [25]. This representation has been
shown to produce competitive results for classifying and clustering
time series, which suggest that it preserves meaningful information
from the original data. Furthermore, the code is freely available
from the authors’ website. While SAX does allow parameters, for
all experiments here we use the parameterless version.
Similar remarks can be made for other data types, for example,
when clustering WebPages, we may wish to strip out the HTML
tags first. Imagine we are trying to cluster WebPages based on
authorship, and it happens that some of the WebPages are graphic
intensive. The irrelevant (for this task) similarity of having many
occurrences of “” may dominate the overall
similarity.

3. PARAMETER-FREE DATA MINING
Most data mining algorithms, including classification [5],
clustering [13][17][21], anomaly/interestingness detection
[4][28][33], reoccurring pattern (motif) discovery, similarly search
[35], etc., use some form of similarity/dissimilarity measure as a
subroutine. Because of space limitations, we will consider just the
first three tasks in this work.

3.1 Clustering
As CDM is a dissimilarity measure, we can simply use it directly in
most standard clustering algorithms. For some partitional
algorithms [6], it is necessary to define the concept of cluster
“center”. While we believe that we can achieve this by extending
the definition of CDM, or embedding it into a metric space [9], for
simplicity here, we will confine our attention to hierarchical
clustering.

3.2 Anomaly Detection
The task of finding anomalies in data has been an area of active
research, which has long attracted the attention of researchers in
biology, physics, astronomy, and statistics, in addition to the more
recent work by the data mining community [4][28][33]. While the
word “anomaly” implies that a radically different subsection of the
data has been detected, we may actually be interested in more
subtle deviations in the data, as reflected by some of the synonyms
for anomaly detection, interestingness/deviation/surprise/novelty
detection, etc.
For true parameter-free anomaly detection, we can use a divide-
and-conquer algorithm as shown in Table 2. The algorithm works
as follows: Both the left and right halves of the entire sequence
being examined are compared to the entire sequence using the
CDM dissimilarity measure. The intuition is that the side
containing the most unusual section will be less similar to the
global sequence than the other half. Having identified the most
interesting side, we can recursively repeat the above, repeatedly
dividing the most interesting section until we can no longer divide
the sequence.
This twelve-line algorithm appears trivial, yet as we shall see in
Section 4.2, it outperforms four state-of-the-art anomaly detection
algorithms on a wide variety of real and synthetic problems. The
algorithm has another important advantage; it can handle both
single dimensional anomaly detection and multidimensional
anomaly detection without changing a single line of code. We will
demonstrate this ability in Section 4.2.3.

Table 2: Parameter-Free Anomaly Detection Algorithm
function loc_of_anomaly = kolmogorov_anomaly(data)

loc_of_anomaly = 1;

while size(data,1) > 2

 left_dist = CDM(data(1:floor(end/2),:),data);

 right_dist = CDM(data(ceil(end/2):end,:),data);

 if left_dist < right_dist

 loc_of_anomaly = loc_of_anomaly + size(data,1) / 2;

 data = data(ceil(end/2):end,:);

 else

 data = data(1:floor(end/2),:);

 end

end
While the algorithm above easily detects the anomalies in all the
datasets described in Section 4.2, there are two simple ways to
greatly improve it further. The first is to use the SAX
representation when working with time series, as discussed in
Section 2.4. The second is to introduce a simple and intuitive way
to set parameter. The algorithm in Table 2 allows several potential
weaknesses for the sake of simplicity. First, it assumes a single
anomaly in the dataset. Second, in the first few iterations, the
measure needs to note the difference a small anomaly makes, even
when masked by a large amount of surrounding normal data. A
simple solution to these problems is to set a parameter W, for
number of windows. We can divide the input sequence into W
contiguous sections, and assign the anomaly value of the ith
window as CDM(Wi, data). In other words, we simply measure
how well a small local section can match the global sequence.
Setting this parameter is not too burdensome for many problems.
For example of the ECG dataset discussed in Section 4.2.3, we
found that we could find the objectively correct answer, if the size
of the window ranged anywhere from a ¼ heartbeat length to four
heartbeats. For clarity, we call this slight variation Window
Comparison Anomaly Detection (WCAD).

3.3 Classification
Because CDM is a dissimilarity measure, we can trivially use it
with a lazy-learning scheme. For simplicity, in this work, we will
only consider the one-nearest-neighbor algorithm. Generally
speaking, lazy learners using non-metric proximity measures are
typically forced to examine the entire dataset. However, one can
use an embedding technique such as FASTMAP [9] to map the
objects into a metric space, thus allowing indexing and faster
classification. For simplicity, we disregard this possibility in this
work.

4. EMPIRICAL EVALUATION
While this section shows the results of many experiments, it is
actually only a subset of the experiments conducted for this
research project. We encourage the interested reader to consult [18]
for additional examples.

4.1 Clustering
While CDM can work with most clustering techniques, here we
confine our attention to hierarchical clustering, since it lends itself
to immediate visual confirmation.

4.1.1 Clustering Time Series

MotorCurrent: broken bars 1
MotorCurrent: broken bars 2
MotorCurrent: healthy 1
MotorCurrent: healthy 2
Dryer: fuel flow rate
Dryer: hot gas exhaust
Koski ECG: fast 1
Koski ECG: fast 2
Koski ECG: slow 1
Koski ECG: slow 2
Reel 2: angular speed
Reel 2: tension
Video: Ann, gun
Video: Ann, no gun
Video: Eamonn, gun
Video: Eamonn, no gun
Power: Jan-March (Italian)
Power: April-June (Italian)
Power: Jan-March (Dutch)
Power: April-June (Dutch)
Balloon1
Balloon2 (lagged)
Foetal ECG: abdominal
Foetal ECG: thoracic
Exchange Rate: Swiss Franc
Exchange Rate: German Mark
Sunspots: 1749 to 1869
Sunspots: 1869 to 1990
Buoy Sensor: North Salinity
Buoy Sensor East Salinity
Great Lakes (Erie)
Great Lakes (Ontario)
Furnace: heating input
Furnace: cooling input
Evaporator: feed flow
Evaporator: vapor flow

MotorCurrent: broken bars 1
MotorCurrent: broken bars 2
MotorCurrent: healthy 1
MotorCurrent: healthy 2
Dryer: fuel flow rate
Dryer: hot gas exhaust
Koski ECG: fast 1
Koski ECG: fast 2
Koski ECG: slow 1
Koski ECG: slow 2
Reel 2: angular speed
Reel 2: tension
Video: Ann, gun
Video: Ann, no gun
Video: Eamonn, gun
Video: Eamonn, no gun
Power: Jan-March (Italian)
Power: April-June (Italian)
Power: Jan-March (Dutch)
Power: April-June (Dutch)
Balloon1
Balloon2 (lagged)
Foetal ECG: abdominal
Foetal ECG: thoracic
Exchange Rate: Swiss Franc
Exchange Rate: German Mark
Sunspots: 1749 to 1869
Sunspots: 1869 to 1990
Buoy Sensor: North Salinity
Buoy Sensor East Salinity
Great Lakes (Erie)
Great Lakes (Ontario)
Furnace: heating input
Furnace: cooling input
Evaporator: feed flow
Evaporator: vapor flow

MotorCurrent: broken bars 1
MotorCurrent: broken bars 2
MotorCurrent: healthy 1
MotorCurrent: healthy 2
Dryer: fuel flow rate
Dryer: hot gas exhaust
Koski ECG: fast 1
Koski ECG: fast 2
Koski ECG: slow 1
Koski ECG: slow 2
Reel 2: angular speed
Reel 2: tension
Video: Ann, gun
Video: Ann, no gun
Video: Eamonn, gun
Video: Eamonn, no gun
Power: Jan-March (Italian)
Power: April-June (Italian)
Power: Jan-March (Dutch)
Power: April-June (Dutch)
Balloon1
Balloon2 (lagged)
Foetal ECG: abdominal
Foetal ECG: thoracic
Exchange Rate: Swiss Franc
Exchange Rate: German Mark
Sunspots: 1749 to 1869
Sunspots: 1869 to 1990
Buoy Sensor: North Salinity
Buoy Sensor East Salinity
Great Lakes (Erie)
Great Lakes (Ontario)
Furnace: heating input
Furnace: cooling input
Evaporator: feed flow
Evaporator: vapor flow

In order to perform convincing experiments, we wanted to test our
algorithm against all reasonable alternatives. However, lack of
space prevents us from referencing, much less explaining them. So,
we re-implemented every time series distance/dissimilarity/
similarity measure that has appeared in the last decade in any of the
following conferences: SIGKDD, SIGMOD, ICDM, ICDE, VLDB,
ICML, SSDB, PKDD, and PAKDD. In total, we implemented fifty-
one such measures, including the ten mentioned in [20] and the
eight variations mentioned in [13]. For fairness, we should note
that many of these measures are designed to deal with short time
series, and made no claim about their ability to handle longer time
series. In addition to the above, we considered the classic
Euclidean distance, Dynamic Time Warping (DTW), the L1 metric,
the Linf metric, and the Longest Common Subsequence (LCSS), all
of which are more than a decade old. Some of these (Euclidean and
the other Lp metrics) are parameter free. For measures that require a
single parameter, we did an exhaustive search for the best
parameter. For measures requiring more than one parameter (one
method required seven!), we spent one hour of CPU time searching
for the best parameters using a genetic algorithm and independently
spent one hour searching manually for the best parameters. We
then considered only the better of the two.
For our first experiment, we examined the UCR Time Series
Archive [19] for datasets that come in pairs. For example, in the
Foetal-ECG dataset, there are two time series, thoracic and
abdominal, and in the Dryer dataset, there are two time series, hot
gas exhaust and fuel flow rate. We were able to identify eighteen
such pairs, from a diverse collection of time series covering the
domains of finance, science, medicine, industry, etc. Although our
method is able to deal with time series of different lengths, we
truncated all time series to length 1,000 to allow comparisons to
methods that require equal length time series.

Figure 2: Thirty-six time series (in eighteen pairs) clustered using the
approach proposed in this paper

The only measures performing significantly better than random
were the following. Euclidean distance had Q = 0.27. DTW was
able to achieve Q = 0.33 after careful adjustment of its single
parameter. The Hidden Markov Model approach of [14] achieved
Q = 0 using the original piecewise linear approximation of the time
series. However, when using the SAX representation, its score
jumped to Q = 0.33. The LPC Cepstra approach of [17] and the
similar Autocorrelation method of [35] both had Q = 0.16. LCSS
had Q = 0.33.

While the correct hierarchical clustering at the top of the tree is
somewhat subjective, at the lower level of the tree, we would hope
to find a single bifurcation separating each pair in the dataset. Our
metric, Q, for the quality of clustering is therefore the number of
such correct bifurcations divided by eighteen, the number of
datasets. For a perfect clustering, Q = 1, and because the number of
dendrograms of thirty-six objects is greater than 3*1049, for a
random clustering, we would expect Q = 0.
For each measure, we clustered using single linkage, complete
linkage, group average linkage, and wards methods, and reported
only the best performing result. Figure 2 shows the resulting
dendrogram for our approach.

Our first experiment measured the quality of the clustering only at
the leaf level of the dendrogram. We also designed a simple
experiment to test the quality of clustering at a higher level. We
randomly extracted ten subsequences of length 2,000 from two
ECG databases. For this problem the clustering at the leaf level is
subjective, however the first bifurcation of the tree should divide
the data into the two classes (the probability of this happening by
chance is only 1 in 524,288). Figure 3 shows the two best
clusterings obtained.

Our approach achieved a perfect clustering, with Q = 1. Although
the higher level clustering is subjective, here too our approach
seems to do very well. For example, the appearance of the
Evaporator and Furnace datasets in the same subtree is quite
intuitive, and similar remarks can be made for the two Video
datasets and the two MotorCurrent datasets.

In a sense, our exhaustive comparison to other similarity methods
was unfair to many of them, which can only measure the similarity
of a few local shapes, rather then the higher-level structural
similarity required.

More than ¾ of the other approaches we tested scored Q = 0.
Several of the parameter-laden algorithms suffer from the
following limitation. Although their parameters could be carefully
tuned to do well on one type of data, say the relatively smooth
MotorCurrent datasets, they achieve poor performance on the more
noisy datasets like Balloon. We could then tune the parameters to
do better on the noisy datasets, but immediately lose discriminatory
power on the smooth data.

The following “trick” improved the results of most of the
algorithms on both problems above. To compare two time series A
and B of length n, we can extract a subsequence of length s from A,
and compare it to every location in B, then record the closest match

as the overall distance between A and B. Although this does help
the majority of the similarity measures, it has a significant
downside. It adds a new (and highly sensitive) parameter to set and
increases the time complexity by a factor of O(n2) and even after
this optimization step, none of the competing similarity measures
come close to the performance of our method.

Baboon

Barbary Ape

Chimpanzee

Pygmy Chimpanzee

Human

Gorilla

Orangutan

Sumatran Orangutan

Gibbon

Capuchin

Malayan Flying Lemur

Ring-Tailed Lemur

Oyster

pongines

prosimians

cercopithecoids

hominoids

greater apes

panines

an
th

ro
po

id
s

ca
ta

rr
hi

ne
staxonomy level

controversial

pr
im

at
es

Baboon

Barbary Ape

Chimpanzee

Pygmy Chimpanzee

Human

Gorilla

Orangutan

Sumatran Orangutan

Gibbon

Capuchin

Malayan Flying Lemur

Ring-Tailed Lemur

Oyster

pongines

prosimians

cercopithecoids

hominoids

greater apes

panines

an
th

ro
po

id
s

ca
ta

rr
hi

ne
staxonomy level

controversial

pr
im

at
es

1
3
10
2
6
7
9
5
8
4
11
12
18
16
17
14
13
20
19
15

1
4
10
5
11
15
19
17
20
12
8
2
6
9
3
16
13
14
18
7

1
3
10
2
6
7
9
5
8
4
11
12
18
16
17
14
13
20
19
15

1
4
10
5
11
15
19
17
20
12
8
2
6
9
3
16
13
14
18
7

Figure 4: The clustering achieved by our approach on 16,300 symbols
from the mitochondrial DNA of twelve primates, and one “outlier”
species Figure 3: Two clusterings on samples from two records from the MIT-

BIH Arrhythmia Database (Left) Our approach (Right) Euclidean distance
Consider the following English, Norwegian and Danish words
taken from the Yahoo portals: Finally, while the results of these experiments are very promising

for our approach, some fraction of the success could be attributed
to luck. To preempt this possibility, we conducted many additional
experiments, with essentially identical results. These experiments
are documented in [18].

 English: {England, information, addresses}
 Norwegian: {Storbritannia, informasjon, adressebok}
 Danish: {Storbritannien, informationer, adressekartotek}
Because there is not a single word in common to all (even after
applying Porters algorithm), the three vectors are completely
orthogonal to each other in vector space. However, any human
inspection of the text is likely to correctly conclude that Norwegian
and Danish are much more similar to each other than they are to
English. Our approach can leverage off the same cues by finding
repeated structure within and across texts.

4.1.2 Clustering Text
As a test of our ability to cluster text, we began by conducting
experiments on DNA strings. We took the first 16,300 symbols
from the mitochondrial DNA of twelve primates and one “outlier”
species, and hierarchically clustered them. A similar strategy was
used in [23] on a different set of organisms. To validate our results,
we showed the resulting dendrogram to an expert in primate
evolution, Dr. Sang-Hee Lee of UCR. Dr. Lee noted that some of
the relevant taxonomy is still the subject of controversy, but
informed us that the “topography of the tree looks correct”. Figure
4 shows the clustering obtained; Dr. Lee provided the annotation of
the internal nodes.

We tried a similar experiment with text from various translations of
the first fifty chapters of the bible, this time including what one
would expect to be an outlier, the Maori language of the indigenous
people of New Zealand. As shown in Figure 5 (right) the clustering
is subjectively correct, except for an inclusion of French in the
Germanic subtree.

We want to note that using a compressor optimized for DNA [3]
was essential here. A standard dictionary-based compressor like
gzip, would have resulted in less meaningful distances.

Argentina
Mexico
Spain
Brazil
Catalan
Italy
Denmark
Norway
Sweden
Germany
USA

Argentina
Mexico
Spain
Brazil
Catalan
Italy
Denmark
Norway
Sweden
Germany
USA

Danish

Norwegian

German

French

Dutch

Italian

Latin

English

Maori

Danish

Norwegian

German

French

Dutch

Italian

Latin

English

Maori

We conducted additional experiments with a more diverse
collection of animals; in every case the clustering agreed with the
current consensus on evolutionary history [18].
We also examined natural language text. A similar experiment is
reported in [2]. Here, we began by clustering the text of various
countries’ Yahoo portals. We only considered the first 1,615
characters, the size of the smallest webpage (excluding white
spaces). Figure 5 (left) shows the resulting clustering. Note that the
first bifurcation correctly divides the tree into Germanic and
Romance languages. While we striped out all HTML tags for this
experiment, we found that leaving them in made little difference,
presumably because they where more or less equally frequent
across languages.

Figure 5: (Left) The clustering achieved by our approach on the text from
various Yahoo portals (Jan-15th 2004). The smallest webpage had 1,615
characters, excluding white spaces. (Right) The clustering achieved by
our approach on the text from the first fifty chapters of Genesis. The
smallest file had 132,307 characters, excluding white spaces. Maori, a
Malayo-Polynesian language, is clearly identified as an “outlier” Surprisingly, the clustering shown is much better than that achieved

by the ubiquitous cosine similarity measure. In retrospect, this is
hardly surprising.

Once again, we reiterate the following disclaimer. We are not
suggesting that our method replace the vector space model for
indexing text, or a linguistic aware method for tracing the evolution
of languages. Our point is simply to show that given a dataset in
which we know nothing about, we can expect our CDM to produce
reasonable results that can be a starting point for future study.

4.2 Anomaly Detection
Although our approach can be used to find anomalies in text, video,
images, and other data sources, we will confine our attention here
to time series, since this domain has attracted the most attention in
the data mining community and readily lends itself to visual
confirmation.
For all the problems shown below, we can objectively discover the
anomaly using the simple algorithm in Table 2. However, that
algorithm only tells us the location of the anomaly, without telling
us anything about the relative strength of the anomaly. For this
reason, we use the Window Comparison Anomaly Detection
(WCAD) variation discussed in Section 2.2. This slight variation
allows us to determine the relative strength of the anomaly, which
we can visualize by mapping onto the line’s thickness. As noted in
Section 3.2, WCAD does have one simple parameter to set, which
is W, the approximate size of the window we expect to find
anomalies in. In these experiments, we only count an experiment as
a success for CDM if the first window size we choose finds the
anomaly, and if window sizes four times as large, and one quarter
as large, can also find the anomaly.
Because of space limitations, we will consider only four rival
techniques. Here, we simply list them, and state the number of
parameters each requires in parenthesis. We refer the interested
reader to the original papers for more details. We compared our
approach to the Support Vector Machine (SVM) based approach of
[28] (6), the Immunology (IMM) inspired approach of [4] (5), The
Association Rule (AR) based approach of [36] (5), and the TSA-
tree Wavelet based approach of [33] (3). As before, for each
experiment we spent one hour of CPU time, and one hour of human
time trying to find the best parameters and only reported the best
results.

4.2.1 A Simple Normalizing Experiment
We begin our experiments with a simple sanity check, repeating the
noisy sine problem of [28]. Figure 6 shows the results.

Figure 6: A comparison of five novelty detection algorithms on the
synthetic sine problem of Ma and Perkins [28]. The first 400 data points
are used as training data, an “event” is embedded at time point 600. A)
The approach proposed in this work, the thickness of the line encodes the
level of novelty. B) SVM. C) IMM. D) AR. E) TSA.

Our approach easily finds the novelty, as did SVM with careful
parameter tuning. The IMM algorithm is stochastic, but was able to
find the novelty in the majority of runs. We were simply unable to
make the AR approach work. Finally, TSA does peak for the
novelty, although its discriminatory power appears weak.
The ability of our approach to simply match the prowess of SVM
and IMM on this problem may not seem like much of an
achievement, even though we did it orders of magnitude faster and

without setting any parameters. However, the real utility of our
approach becomes evident when we see how the algorithms
generalize, or when we move from toy problems to real world
problems. We consider both cases below.

4.2.2 Generalizability Experiment
To illustrate the dangers of working with parameter-laden
algorithms, we examined a generalization of the last experiment.
As illustrated in Figure 7, the training data remains the same.
However, in the test data, we changed the period of the sine wave
by a barely perceptible 5%, and added a much more obvious
“anomaly”, by replacing a half of a sine wave with its absolute
value. To be fair, we modified our algorithm to only use the
training data as reference.

0 200 400 600 800 1000 1200

A)
B)
C)
D)
E)

0 200 400 600 800 1000 1200

A)
B)
C)
D)
E)

Figure 7: A comparison of five novelty detection algorithms on a
generalization of the synthetic sine problem. The first 400 data points are
used as training data. In the rest of the time series, the period of the sine
wave was changed by 5%, and one half of a sine wave was replaced by its
absolute value. A) The approach proposed in this work, the thickness of
the line encodes the level of novelty. B) SVM. C) IMM. D) AR. E) TSA.

The results show that while our algorithm easily finds the new
anomaly, SVM and IMM discover more important “anomalies”
elsewhere. It may be argued that the very slight change of period is
the anomaly and these algorithms did the right thing. However, we
get a similar inability to generalize if we instead slightly change the
amplitude of the sine waves, or if we add (or remove!) more
uniform noise or make any other innocuous changes, including
ones that are imperceptible to the human eye.

0 200 400 600 800 1000 1200

A)
B)
C)
D)
E)

0 200 400 600 800 1000 1200

A)
B)
C)
D)
E)

In case the preceding example was a coincidentally unfortunate
dataset for the other approaches, we conducted many other similar
experiments. And since creating our own dataset opens the possibly
of data bias [20], we considered datasets created by others. We
were fortunate enough to obtain a set of 20 time series anomaly
detection benchmark problems from the Aerospace Corp. A subset
of the data is shown in Figure 8.
The TSA algorithm easily discovered the anomaly in the time
series L-1j, but not the other two time series. We found that both
SVM and IMM could have their parameters tuned to find the
anomaly on any individual one of the three sequences, but once the
parameters were tuned on one dataset, they did not generalize to
the other two problems.
The objective of these experiments is to reinforce the main point of
this work. Given the large number of parameters to fit, it is nearly
impossible to avoid overfitting.

Figure 8: The results of applying our algorithm to (a subset of) a
collection of anomaly detection benchmark datasets from the Aerospace
Corp. the thickness of the line encodes the level of novelty. In every case,
an anomaly was inserted beginning at time point 500

Before leaving this section we would like to briefly relate an
anecdote as a further support for our approach. For the above
problem, we wrote a simple Matlab script to read in the twenty
datasets, run our anomaly detection algorithm, and confirm that the
most anomalous section was discovered within twenty-five points
of 500. After successfully testing our approach, we modified the
script to consider the other approaches but found that it always
crashed when working with dataset L-1s. After some careful
debugging, we discovered that the artificial anomaly in this
sequence is some missing data points, which are encoded in Matlab
as the special character “NaN”. While none of the other algorithms
are defined for missing values (hence the crashing), and are not
trivially extendible, our approach was robust enough not to crash,
and to find the right answer.

4.2.3 Real-World Anomaly Detection
We examined annotated datasets from the MIT-BIH Noise Stress
Test Database. For the algorithms which need a training/test split,
we gave them 1/3 of the dataset which had been annotated as
normal. We then asked the algorithms to examine the rest of the
data to find the most interesting events, comparing the results to the
cardiologists’ annotations. Figure 9 shows the result of one such
experiment. Note that only a small excerpt from the full dataset is
shown.

Figure 9: A small excerpt from dataset 118e06 from the MIT-BIH Noise
Stress Test Database. The full dataset is 21,600 data points long. Here, we
show only a subsection containing the two most interesting events
detected by our algorithm (the bolder the line, the more interesting the
subsequence). The gray markers are independent annotations by a
cardiologist indicating Premature Ventricular Contractions

We only illustrate the performance of our approach in Figure 9
because all the other approaches produced results that were
objectively (per the cardiologists’ annotations) and subjectively
incorrect, in spite of careful parameter tuning.
Our final example illustrates the flexibility of our approach. None
of the approaches for anomaly detection in time series in the

literature are defined for multidimensional time series1, in spite of
an increasing general interest in multidimensional time series [34].
However, we can consider multidimensional time series without
changing a single line of code. In order to have some straw man to
compare to, each of the four completing methods was adapted as
follows. We collected the results on each individual dimension and
then we linearly combined them into a single measure of novelty.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

0

5

10

-10

0

10

L-1j

L-1g

L-1f
0 100 200 300 400 500 600 700 800 900 1000

0

5

10

0

5

10

-10

0

10

L-1j

L-1g

L-1f

We experimented on a 2D time series that was collected for a
different purpose (in particular, a classification problem [30]). The
2D time series was extracted from a video of an actor performing
various actions with and without a replica gun. Figure 10 (bottom)
illustrates a typical sequence. The actor draws a replica gun from a
hip mounted holster, aims it at a target, and returns it to the holster.

Hand resting
at side

Hand above
holster

Aiming at target

Actor misses
holster

Briefly swings
gun at target,
but does not
aim

Laughing and
flailing hand

0 100 200 300 400 500 600100

150

200
250
300

350

400
450

500

550

Hand resting
at side

Hand above
holster

Aiming at target

Actor misses
holster

Briefly swings
gun at target,
but does not
aim

Laughing and
flailing hand

0 100 200 300 400 500 600100

150

200
250
300

350

400
450

500

550

Figure 10: (Bottom) A typical video snippet from the Gun video is
mapped onto a two-dimensional time series (Center) by tracking the
actor’s right hand. While the vast majority of the dataset looks
approximately like the first 200 data points, the section from about 300 to
450 looks somewhat different, and was singled out by our anomaly
detection algorithm. Examining the original video (Top), we discovered
the cause of the anomaly.

Watching the video we discovered that at about ten seconds into
the shoot, the actor misses the holster when returning the gun. An
off-camera (inaudible) remark is made, the actor looks toward the
video technician, and convulses with laughter. At one point (frame
385), she is literally bent double with laughter. This is the only
interesting event in the dataset, and our approach easily finds it.
The other techniques returned results that do not seem truly
anomalous, given a careful inspection of both the time series and
the original video.

2000 3000 4000 50002000 3000 4000 5000

We have not considered time efficiency as a metric in these
experiments, because we cannot guarantee that our
implementations of the rival approaches are as efficient as they
might be, given careful optimization. However, our approach is
certainly not sluggish, requiring less than ten seconds (on a 2.65
GHz machine) to process a million data points.

4.3 Classification
In this section, we illustrate the utility of CDM for classification
with the following simple experiment. We use the following

1 This includes the 4 rival approaches considered here [4][28][33][36].

While the TSA-Wavelet approach was extended to 2D, this extension is
for spatial mining.

similarity measures on four datasets (Two each from two
databases:- ECG and Gun) and measure their error rates:

Table 3. Classification Error Rates (%) for all four datasets

 Euclidean DTW
(best unif. window) CDM

ECG: signal 1 42.25 % 16.25 % 6.25 %

ECG: signal 2 47.50 % 11.25 % 7.50 %

Gun: 2 classes 5.00 % 0.00 % 0.00 %

Gun: 4 classes 37.50 % 12.5 % 5.00 %

• Euclidean Distance [20].
• Dynamic Time Warping (DTW). Here, we exhaustively test

all values of its single parameter (warping window size [30])
and report only the best result, and

• Compression-Based Dissimilarity Measure (CDM)
Note that we only compare CDM with Dynamic Time Warping and
Euclidean Distance metric in this section for brevity, since it has
been shown in [20] that many of the more complex similarity
measures proposed in other work have higher error rates than a
simple Euclidean Distance metric.

We do not give exact times here since CDM is implemented in the
relatively lethargic Matlab, whereas DTW is implemented in highly
optimized C++. Nevertheless, even if we excluded the time taken
to find search over DTW’s single (and sensitive, see [30])
parameter, CDM is still about 25 times faster than DTW.

The ECG datasets are four-class problem derived from BIDMC
Congestive Heart Failure Database [15] of four patients. Since this
original database contains two ECG signals, we separate each
signal and create two datasets of one-dimensional time series in the
following way. Each instance of 3,200 contiguous data points
(about 20 heartbeats) of each signal is randomly extracted from
each long ECG signals of each patient. Twenty instances are
extracted from each class (patient), resulting in eighty total
instances for each dataset.

5. CONCLUSIONS AND FUTURE WORK
In this work, we argued that data mining algorithms with many
parameters are burdensome to use, and make it difficult to compare
results across different methods. We further showed empirically
that at least in the case of anomaly detection, parameter-laden
algorithms are particularly vulnerable to overfitting. Sometimes
they achieve perfect accuracy on one dataset, and then completely
fail to generalize to other very similar datasets [7]. The Gun datasets are time-series datasets extracted from video

sequences of two actors either aiming a gun or simply pointing at a
target [30] (see also, Figure 10). We randomly extract twenty
instances of 1,000 contiguous data points (about 7 reps) from each
of the following long time series:

As a step towards mitigating these problems, we showed that
parameter-free or parameter-light algorithms can compete with or
outperform parameter-laden algorithms on a wide variety of
problems/data types. A. Actor 1 with gun
There are many directions in which this work may be extended. We
intend to perform a more rigorous theoretical analysis of the CDM
measure. For example, CDM is a dissimilarity measure; if it could
be modified to be a distance measure, or better still, a distance
metric, we could avail of a wealth of pruning and indexing
techniques to speed up classification [30], clustering [6], and
similarity search [34]. While it is unlikely that CDM can be
transformed in a true metric, it may be possible to prove a weaker
version of the triangular inequality, which can be bounded and used
to prune the search space [6]. The results in [8] on textual
substitution compressors could lead to some insights in the general
problem.

B. Actor 1 without gun (point)
C. Actor 2 with gun
D. Actor 2 without gun (point)

The first dataset is a two-class problem of differentiating Actor 1
from Actor 2 -- (A+B) vs. (C+D). The second dataset is a four-
class problem of differentiating each of the acts independently – A
vs. B vs. C vs. D. In total, each dataset contains eighty instances.
Some samples from both databases are illustrated in Figure 11.

A)

B)

C)

D)

A)

B)

C)

D)

chf1

chf5

chf10

chf15

chf1

chf5

chf10

chf15

Finally, we note that our approach is clearly not suitable for
classifying or clustering low dimensionality data (although Figure
2 shows exceptionally good results on time series with only 1,000
data points). We plan to theoretically and empirically investigate
the limitations on object sizes that we can meaningfully work with
using our proposed approach. Figure 11. Some extracted time series from the gun datasets (left) and

the ECG (sig.1) dataset (right)
6. ACKNOWLEDGMENTS We measure the error rates on each dataset, using the one-nearest-

neighbor with ‘leaving-one-out’ evaluation method. The lower
bounding technique noted in [30] is also integrated in all the DTW
calculations to help achieve speedup. The experimental results are
summarized in Table 3.

Thanks to Ming Li for his feedback on Section 4.1, and to the many
donors of datasets. Thanks also to Stephen Bay for his many useful
comments, Jessica Lin for the SAX code and the anonymous
reviewers for their useful comments.

In all four datasets discussed above, Euclidean distance is
extremely fast, yet inaccurate. DTW with the best uniform window
size greatly reduces the error rates, but took several orders of
magnitude longer. However, CDM outperforms both Euclidean
and DTW in all datasets. Even though CDM is slower than
Euclidean distance, it is much faster than the highly optimized
DTW.

All datasets used in this paper are available for free download from
[18]. For convenience, we also include the Yahoo dataset; however,
the copyright remains the property of Yahoo! Inc.

7. REFERENCES
[1] Allison, L., Stern, L., Edgoose, T., Dix, T.I. Sequence

Complexity for Biological Sequence Analysis. Computers &
Chemistry 24(1): 43-55 (2000)

[2] Benedetto, D., Caglioti, E., & Loreto, V. Language trees and
zipping. Physical Review Letters 88, 048702, (2002).

[3] Chen, X., Kwong, S., & Li, M. A compression algorithm for
DNA sequences and its applications in genome comparison. In
Proceedings of RECOMB 2000: 107

[4] Dasgupta, D. & Forrest,S. Novelty Detection in Time Series
Data using Ideas from Immunology." In Proc. of the
International Conference on Intelligent Systems (1999).

[5] Domingos, P. A process-oriented heuristic for model selection.
In Machine Learning Proceedings of the Fifteenth International
Conference, pages 127-135. San Francisco, CA, 1998.

[6] Elkan, C. Using the triangle inequality to accelerate k-Means.
In Proc. of ICML 2003. pp 147-153

[7] Elkan, C. Magical thinking in data mining: lessons from CoIL
challenge 2000. SIGKDD, 2001. pp 426-431.

[8] Ergün, F., Muthukrishnan, S., & Sahinalp, S.C. Comparing
Sequences with Segment Rearrangements. FSTTCS 2003:

[9] Faloutsos, C., & Lin, K. FastMap: A fast algorithm for
indexing, data-mining and visualization of traditional and
multimedia datasets. In Proc of 24th ACM SIGMOD, 1995.

[10] Farach, M., Noordewier, M., Savari, S., Shepp, L., Wyner, A.,
& Ziv, J. On the Entropy of DNA: Algorithms and
Measurements Based on Memory and Rapid Convergence,
Proc. of the Symp. on Discrete Algorithms, 1995. pp 48-57.

[11] Flexer, A. Statistical evaluation of neural networks
experiments: Minimum requirements and current practice. In
Proc. of the 13th European Meeting on Cybernetics and
Systems Research, vol. 2, pp 1005-1008, Austria, 1996

[12] Gatlin, L. Information Theory and the Living Systems.
Columbia University Press, 1972.

[13] Gavrilov, M., Anguelov, D., Indyk, P., Motwahl, R. Mining the
stock market: which measure is best? Proc. of the 6th ACM
SIGKDD, 2000

[14] Ge, X. & Smyth, P. Deformable Markov model templates for
time-series pattern matching. In proceedings of the 6th ACM
SIGKDD. Boston, MA, Aug 20-23, 2000. pp 81-90.

[15] Goldberger, A.L., Amaral, L., Glass, L, Hausdorff, J.M.,
Ivanov, P.Ch., Mark, R.G., Mietus, J.E., Moody, G.B., Peng,
C.K., Stanley, H.E.. PhysioBank, PhysioToolkit, and
PhysioNet: Circulation 101(23):e215-e220

[16] Goodman, J. Comment on “Language Trees and Zipping”,
unpublished manuscript, 2002 (available at
[http://research.microsoft.com/~joshuago/].

[17] Kalpakis, K., Gada, D., & Puttagunta, V. Distance measures
for effective clustering of ARIMA time-series. In proc. of the
IEEE ICDM, 2001. San Jose, CA. pp 273-280.

[18] Keogh, E. http://www.cs.ucr.edu/~eamonn/SIGKDD2004.
[19] Keogh, E. & Folias, T. The UCR Time Series Data Mining

Archive. Riverside CA. 2002.
[http://www.cs.ucr.edu/~eamonn/TSDMA/index.html].

[20] Keogh, E. & Kasetty, S. On the need for time series data
mining benchmarks: A survey and empirical demonstration. In
Proc. of SIGKDD, 2002.

[21] Keogh, E., Lin, J., & Truppel, W. Clustering of Time Series
Subsequences is Meaningless: Implications for Past and Future
Research. In proc. of the 3rd IEEE ICDM, 2003. Melbourne, FL.
Nov 19-22, 2003. pp 115-122.

[22] Li, M., Badger, J.H., Chen, X., Kwong, S, Kearney, P., & Zhang,
H. An information-based sequence distance and its application to
whole mitochondrial genome phylogeny. Bioinformatics 17:
149-154, 2001.

[23] Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P. The similarity
metric. Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, 2003. Pages: 863 – 872

[24] Li, M. & Vitanyi, P. An Introduction to Kolmogorov Complexity
and Its Applications. Second Edition, Springer Verlag, 1997.

[25] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. A Symbolic
Representation of Time Series, with Implications for Streaming
Algorithms. In proceedings of the 8th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery.
San Diego, CA. June 13, 2003

[26] Loewenstern, D., Hirsh, H., Yianilos, P., & Noordewier, M.
DNA Sequence Classification using Compression-Based
Induction, DIMACS Technical Report 95-04, April 1995.

[27] Loewenstern, D., & Yianilos, P.N. Significantly lower entropy
estimates for natural DNA sequences, Journal of Computational
Biology, 6(1), 1999.

[28] Ma, J. & Perkins, S. Online Novelty Detection on Temporal
Sequences. Proc. International Conference on Knowledge
Discovery and Data Mining, August 24-27, 2003.

[29] Quinlan, J.R. & Rivest, R.L. Inferring Decision Trees Using the
Minimum Description Length Principle. Information and
Computation, 80:227--248, 1989.

[30] Ratanamahatana, C.A. & Keogh, E. Making Time-series
Classification More Accurate Using Learned Constraints. In
proceedings of SIAM International Conference on Data Mining
(SDM '04), Lake Buena Vista, Florida, April 22-24, 2004.

[31] Rissanen, J. Modeling by shortest data description. Automatica,
vol. 14 (1978), pp. 465-471.

[32] Salzberg, S.L. On comparing classifiers: Pitfalls to avoid and a
recommended approach. Data Mining and Knowledge
Discovery, 1(3), 1997.

[33] Shahabi, C., Tian, X., & Zhao, W. TSA-tree: A Wavelet-Based
Approach to Improve the Efficiency of Multi-Level Surprise and
Trend Queries The 12th Int’l Conf on Scientific and Statistical
Database Management (SSDBM 2000)

[34] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D. & Keogh. E.
Indexing Multi-Dimensional Time-Series with Support for
Multiple Distance Measures. In the 9th ACM SIGKDD. August
24 - 27, 2003. Washington, DC, USA. pp 216-225.

[35] Wang, C. & Wang, X. S. Supporting content-based searches on
time series via approximation. In proceedings of the 12th Int'l
Conference on Scientific and Statistical Database Management.
Berlin, Germany, Jul 26-28, 2000. pp 69-81.

[36] Yairi, T., Kato, Y., & Hori, K. Fault Detection by Mining
Association Rules from House-keeping Data, Proc. of Int’l
Sym. on AI, Robotics and Automation in Space, 2001.

We report here on additional results and information that
were left out from the paper due to lack of space.

Both Dr. Stephen Bay and one of the anonymous reviewers
noted that one implication of the experiments in Section
4.1.1 is that the Euclidean distance works very well for
time series! This is true, we did not emphasize this fact in
this work, because we already forcefully made this point in
[20] (see Section 4.2).

This work was inspired by an article in the June 2003 issue
of Scientific American, by Charles H. Bennett, Ming Li,
and Bin Ma. The article, “Chain Letters and Evolutionary
Histories”, is a beautiful example of popular science
writing. The authors have made the data used in this work
available here: www.math.uwaterloo.ca/~mli/chain.html

Finally, we will show some additional experiments that did
not make it to the published paper due to lack of space.

Dr. Ming Li, and Dr. Paul Vitanyi have (together and
separately) published many papers that explore
compression for clustering, bioinformatics, plagiarism
detection etc. Dr. Li’s webpage is
www.math.uwaterloo.ca/~mli/ and Dr. Vitanyi’s webpage
is http://homepages.cwi.nl/~paulv/. There has been
enormous interest in this work, as you can gauge from
http://homepages.cwi.nl/~paulv/pop.html

The experiment in Figure A is similar to the one shown in
Figure 3, but with more classes.

1

16

17

18

19

20

4

7

9

6

2

5

8

11

12

14

15

13

10

3

1

16

17

18

19

20

4

7

9

6

2

5

8

11

12

14

15

13

10

3

In addition, Li and Vitanyi have published the definitive
book on Kolmogorov Complexity: “An Introduction to
Kolmogorov Complexity and Its Applications”, Second
Edition, Springer Verlag 1997; ISBN 0-387-94868-6.
Additional papers that are (to varying degrees) related to
this work, but not cited in the full paper due to lack of
space (or because they came to our attention too late)
include:
A. Eibe Frank, Chang Chui and Ian H. Witten (2000). Text Categorization

Using Compression Models. Proceedings of the IEEE Data Compression
Conference, Snowbird, Utah, IEEE Computer Society, pp. 555.

B. Matthew B. Kennel (2004). Testing time symmetry in time series using
data compression dictionaries. Phys. Rev. E 69, 056208 (9 pages).

C. Matt Mahoney (2003). Space Shuttle Engine Valve Anomaly Detection
by Data Compression. Unpublished notes. (Thanks to Stan Salvador for
bringing this to our attention).

CDM Euclidean
Cluster 1 (datasets 1 ~ 5):
 BIDMC Congestive Heart Failure Database (chfdb): record chf02
 Start times at 0, 82, 150, 200, 250, respectively
Cluster 2 (datasets 6 ~ 10):
 BIDMC Congestive Heart Failure Database (chfdb): record chf15
 Start times at 0, 82, 150, 200, 250, respectively
Cluster 3 (datasets 11 ~ 15):
 Long Term ST Database (ltstdb): record 20021
 Start times at 0, 50, 100, 150, 200, respectively
Cluster 4 (datasets 16 ~ 20):
 MIT-BIH Noise Stress Test Database (nstdb): record 118e6
 Start times at 0, 50, 100, 150, 200, respectively

Figure A: Two clusterings on samples from four records from the MIT-
BIH Arrhythmia Database, (Left) Our approach (Right) Euclidean distance

1

4

3

5

2

11

14

12

13

15

16

19

18

20

17

6

9

7

8

10

1

4

3

5

2

11

14

12

13

15

16

19

18

20

17

6

9

7

8

10

D. J. Segen (1990). Graph Clustering and Model Learning by Data
Compression. In Proceedings of the Machine Learning Conference,
pages 93-101.

E. Chunyu Kit. 1998. A goodness measure for phrase learning via
compression with the MDL principle. In I. Kruijff-Korbayova(ed.), The
ELLSSI-98 Student Session, Chapter 13, pp.175-187. Aug. 17-28,
Saarbrueken.

F. P. Grünwald, A Tutorial Introduction to the Minimum Description
Length Principle. To appear as Chapters 1 & 2 of Advances in Minimum
Description Length: Theory and Applications. MIT Press, 04.

G. A. Ortega, B. Beferull-Lozano, N. Srinivasamurthy, and H. Xie. (2000).
Compression for Recognition and Content based Retrieval. In Proc. of the
European Signal Processing Conference, EUSIPCO'00, Tampere,
Finland.

H. Andrea Baronchelli, Vittorio Loreto (2004). Data Compression approach
to Information Extraction and Classification CoRR cond-mat/0403233:
(submitted for publication).

Several people that viewed an early version of the work suggested
that the clustering might only work in highly structured data, but not
for more “random” data. As a simple sanity check we tried
clustering random data and random walk data, as shown in Figure B.

I. C. Noble and D. J. Cook, Graph-Based Anomaly Detection, Proceedings
of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2003.

J. Teahan, W.J., Wen, Y., McNab, R.J., Witten, I.H.(2000). A compression-
based algorithm for Chinese word segmentation. Computational
Linguistics 26. 375--393

It goes without saying that CDM is by no means perfect, in Figure
D, Time Series 3 is incorrectly clustered.

1
5
8
4
12
2
10
6
11
7
9
13
14
20
18
19
21
16
22
24
17
15
23

3

25
26
29
31
34
28
30
36
27
35
33
32

1
5
8
4
12
2
10
6
11
7
9
13
14
20
18
19
21
16
22
24
17
15
23

3

25
26
29
31
34
28
30
36
27
35
33
32

CDM Euclidean
Figure B: Two clusterings on 15 samples of random walk, and 15
samples of random data

 MIT-BIH Arrhythmia Database www.physionet.org/physiobank/database/qtdb

 Class 1: Record sel102, Class 2: Record sel104, Class 3: Record sel213

In Figure C, we add some structured data to the mix, to see if CDM
is confused by the presence of random data.

rand

rand

rand

rand

rand

rand

rand

rand

rand

rand

random walk

random walk

random walk

random walk

random walk

random walk

random walk

random walk

random walk

random walk

Power Demand: Jan-March (Dutch)

Power Demand: April-June (Dutch)

Power Demand: Jan-March (Italian)

Power Demand: April-June (Italian)

MotorCurrent: broken bars 1

MotorCurrent: broken bars 2

MotorCurrent: healthy 1

MotorCurrent: healthy 2

Video Surveillance: Ann, gun

Video Surveillance: Ann, no gun

Video Surveillance: Eamonn, gun

Video Surveillance: Eamonn, no gun

rand

rand

rand

rand

rand

rand

rand

rand

rand

rand

random walk

random walk

random walk

random walk

random walk

random walk

random walk

random walk

random walk

random walk

Power Demand: Jan-March (Dutch)

Power Demand: April-June (Dutch)

Power Demand: Jan-March (Italian)

Power Demand: April-June (Italian)

MotorCurrent: broken bars 1

MotorCurrent: broken bars 2

MotorCurrent: healthy 1

MotorCurrent: healthy 2

Video Surveillance: Ann, gun

Video Surveillance: Ann, no gun

Video Surveillance: Eamonn, gun

Video Surveillance: Eamonn, no gun Figure D: The clustering obtained on a 3-class problem. Note that time series
3 (at the bottom of the figure) is not clustered properly
In Figure E we show additional examples from the dataset shown in
Figure 8. Although the problems look too simple to be of interest,
none of the other four approaches discussed in the paper can find the
anomaly in all four examples.

0 100 200 300 400 500 600 700 800 900 10000 100 200 300 400 500 600 700 800 900 10000 100 200 300 400 500 600 700 800 900 10000 100 200 300 400 500 600 700 800 900 1000

L-1t

L-1n

L-1u

L-1v

L-1t

L-1n

L-1u

L-1v

Figure E: Additional examples from the Aerospace anomaly detection
problems, the thickness of the line encodes the level of novelty

Figure C: The clustering obtained on some random walk data, random data,
and some highly structured datasets.

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	The Perils of Parameter-Laden Algorithms
	Kolmogorov Complexity
	Compression-Based Dissimilarity Measure
	Choosing the Representation of the Data

	PARAMETER-FREE DATA MINING
	Clustering
	Anomaly Detection
	Classification

	EMPIRICAL EVALUATION
	Clustering
	Clustering Time Series
	Clustering Text

	Anomaly Detection
	A Simple Normalizing Experiment
	Generalizability Experiment
	Real-World Anomaly Detection

	Classification

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

