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ABSTRACT 
Most data mining algorithms require the setting of many input 
parameters. Two main dangers of working with parameter-laden 
algorithms are the following. First, incorrect settings may cause an 
algorithm to fail in finding the true patterns. Second, a perhaps 
more insidious problem is that the algorithm may report spurious 
patterns that do not really exist, or greatly overestimate the 
significance of the reported patterns. This is especially likely when 
the user fails to understand the role of parameters in the data 
mining process. 
Data mining algorithms should have as few parameters as possible, 
ideally none. A parameter-free algorithm would limit our ability to 
impose our prejudices, expectations, and presumptions on the 
problem at hand, and would let the data itself speak to us. In this 
work, we show that recent results in bioinformatics and 
computational theory hold great promise for a parameter-free data-
mining paradigm. The results are motivated by observations in 
Kolmogorov complexity theory. However, as a practical matter, 
they can be implemented using any off-the-shelf compression 
algorithm with the addition of just a dozen or so lines of code. We 
will show that this approach is competitive or superior to the state-
of-the-art approaches in anomaly/interestingness detection, 
classification, and clustering with empirical tests on time 
series/DNA/text/video datasets.  
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1. INTRODUCTION 
Most data mining algorithms require the setting of many input 
parameters. There are many dangers of working with parameter-
laden algorithms. We may fail to find true patterns because of 
poorly chosen parameter settings. A perhaps more insidious 
problem is that we may find patterns that do not exist [21], or 
greatly overestimate the significance of a pattern because of a 
failure to understand the role of parameter searching in the data 
mining process [5][7]. In addition, as we will show, it can be very 
difficult to compare the results across methods or even to reproduce 
the results of heavily parameterized algorithms.    

Data mining algorithms should have as few parameters as possible, 
ideally none. A parameter-free algorithm prevents us from 
imposing our prejudices and presumptions on the problem at hand, 
and let the data itself speak to us. 
In this work, we introduce a data mining paradigm based on 
compression. The work is motivated by results in bioinformatics 
and computational theory that are not well known outside those 
communities. As we will demonstrate here, our approach allows 
parameter-free or parameter-light solutions to many classic data 
mining tasks, including clustering, classification, and anomaly 
detection. 
Our approach has the following advantages, which we will 
empirically demonstrate with extensive experiments: 
1) It allows true exploratory data mining, rather than forcing us 

to impose our presumptions on the data. 
2) The accuracy of our approach can be greatly superior to those 

of parameter-laden algorithms, even if we allow these 
algorithms to search exhaustively over their parameter spaces. 

3) Our approach is based on compression as its cornerstone, and 
compression algorithms are typically space and time efficient. 
As a consequence, our method is generally much more 
efficient than other algorithms, in some cases by three or four 
orders of magnitude. 

4) Many parameterized algorithms require the data to be in a 
special format. For concreteness, consider time series data 
mining [14][20]. Here, the Euclidean distance requires that the 
dimensionality of two instances being compared is exactly the 
same, and Dynamic Time Warping (DTW) is not defined if a 
single data point is missing [30]. In contrast, our approach 
works for time series of different lengths, sampling rates, 
dimensionalities, with missing values, etc. 

In this work, we decided to take the unusual step of reproducing 
our entire actual code, rather than just the pseudocode. There are 
two reasons for doing this. First, free access to the actual code 
combined with our policy of making all data freely available allows 
independent confirmation of our results. Second, it reinforces our 
claim that our methods are very simple to implement.  
The rest of the paper is organized as follows. In Section 2, we 
discuss the results in bioinformatics and computational theory that 
motivate this work. In Section 3, we consider the minor changes 
and extensions necessary to extend these results to the classic data 
mining tasks of anomaly/interestingness detection, classification, 
and clustering. Section 4 sees an exhaustive empirical comparison, 
in which we compare dozens of algorithms to our approach, on 
dozens of datasets from several domains, including time series, 
video, DNA, and text. Finally, in Section 5, we discuss many 
avenues for possible extensions. 
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2. BACKGROUND AND RELATED WORK 
We begin this section by arguing that a contribution made by a 
parameter-laden algorithm can be difficult to evaluate. We review 
some background material on Kolmogorov complexity, which 
motivates the parameter-free Compression-based Dissimilarity 
Measure (CDM), the technique at the heart of this paper.  

2.1 The Perils of Parameter-Laden Algorithms  
A recent paper in a top-tier journal introduced a new machine-
learning framework and noted that it “…abounds with parameters 
that can be tuned” (our emphasis). It is surely more accurate to 
state that the approach has parameters that must be tuned. When 
surveying the literature on this topic, we noted that while there are 
many techniques for automatically tuning parameters, many of 
these techniques themselves have parameters, possibly resulting in 
an infinite regression. 
An additional problem of parameter-laden algorithms is that they 
make it difficult to reproduce published experimental results, and to 
understand the contribution of a proposed algorithm. 
A recently published paper introduced a new time series distance 
measure. The algorithm requires the setting of two parameters, and 
the authors are to be commended for showing the results of the 
cross-product: sixteen by four possible parameter choices. Of the 
sixty-four settings, eleven are slightly better than DTW, and the 
authors conclude that their approach is superior to DTW. However, 
the authors did not test over different parameters for DTW, and 
DTW does allow a single parameter, the maximum temporal 
distortion (the “warping window” [30]). The authors kindly 
provided us with the exact data they used in the experiment, and we 
reproduced the experiment, this time allowing a search over 
DTW’s single parameter. We discovered that over a wide range of 
parameter choices, DTW produces a near perfect accuracy, 
outperforming all sixty-four choices of the proposed algorithm.  
Although the above is only one anecdotal piece of evidence, it does 
help make the following point. It is very difficult to evaluate the 
contribution of papers that introduce a parameter-laden algorithm. 
In the case above, the authors’ commendable decision to make their 
data public allows the community to discover that DTW is 
probably a better distance measure, but only at the expense of some 
effort on the readers’ behalf. In general, the potential asymmetry in 
parameter tuning effort effectively prevents us from evaluating the 
contribution of many papers.  Here, the problem is compounded by 
the fact that the authors created the dataset in question. Creating a 
dataset may be regarded as a form of meta parameter tuning, since 
we don’t generally know if the very first dataset created was used 
in the paper, or many datasets were created and only the most 
satisfactory one was used. In any case, there are clearly problems 
in setting parameters (training) and reporting results (testing) on the 
same dataset [32]. In the field of neural networks, Flexer [11] noted 
that 93% of papers did just that. While no such statistics are 
published for data mining, an informal survey suggests a similar 
problem may exist here. In Section 4.2.2, we will empirically 
reinforce this point by showing that in the context of anomaly 
detection, parameter-laden algorithms can have their parameters 
tuned to achieve excellent performance on one dataset, but 
completely fail to generalize to a new but very similar dataset.  
Before leaving this section, it would be remiss of us not to note that 
many papers by the authors of this manuscript also feature 

algorithms that have (too) many parameters. Indeed, the frustration 
of using such algorithms is one inspiration for this work. 

2.2 Kolmogorov Complexity 
The proposed method is based on the concept of Kolmogorov 
complexity. Kolmogorov complexity is a measure of randomness 
of strings based on their information content. It was proposed by 
A.N. Kolmogorov in 1965 to quantify the randomness of strings 
and other objects in an objective and absolute manner. 
The Kolmogorov complexity K(x) of a string x is defined as the 
length of the shortest program capable of producing x on a 
universal computer — such as a Turing machine. Different 
programming languages will give rise to distinct values of K(x), but 
one can prove that the differences are only up to a fixed additive 
constant. Intuitively, K(x) is the minimal quantity of information 
required to generate x by an algorithm. 
Hereafter, we will follow the notation of [23], which was the main 
inspiration of this work.  The conditional Kolmogorov complexity 
K(x|y) of x to y is defined as the length of the shortest program that 
computes x when y is given as an auxiliary input to the program. 
The function K(xy) is the length of the shortest program that 
outputs y concatenated to x. 
In [22], the authors consider the distance between two strings x and 
y, defined as 
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which satisfies the triangle inequality, up to a small error term.  A 
more mathematically precise distance was proposed in [23]. 
Kolmogorov complexity is without a doubt the ultimate lower 
bound among all measures of information content. Unfortunately, it 
cannot be computed in the general case [24]. As a consequence, 
one must approximate this distance. 
It is easy to realize that universal compression algorithms give an 
upper bound to the Kolmogorov complexity. In fact, K(x) is the 
best compression that one could possibly achieve for the text string 
x. Given a data compression algorithm, we define C(x) as the size 
of the compressed size of x and C(x|y) as the compression achieved 
by first training the compression on y, and then compressing x. For 
example, if the compressor is based on a textual substitution 
method, one could build the dictionary on y, and then use that 
dictionary to compress x. 
We can approximate (1) by the following distance measure 
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The better the compression algorithm, the better the approximation 
of dc for dk is. 
In [23], Li et al. have shown that dc is a similarity metric, and can 
be successfully applied to clustering DNA and text. However, the 
measure would require hacking the chosen compression algorithm 
in order to obtain C(x|y) and C(y|x). We therefore decided to 
simplify the distance even further. In the next section, we will show 
that a simpler measure can be just as effective. 
The idea of using data compression to classify sequences is not 
new. In the early days of computational biology, lossless 
compression was used to classify DNA sequences. We refer to, 



e.g., [1][10][12][26][27], and references therein for a sampler of the 
rich literature existing on this subject. 
Recently, Benedetto et al. [2] have shown how to use a 
compression-based measure to classify fifty languages. The paper 
was featured in several scientific (and less-scientific) journals, 
including Nature, Science, and Wired. It has also generated some 
controversies (see, e.g., [16]). 
Finally, the idea of using compression to classify sequences is 
tightly connected with the minimum description length (MDL) 
principle. The principle was introduced by the late ’70 by Rissanen 
[31], and has generated a very extensive body of literature in the 
machine learning community (see, e.g., [29])  

2.3 Compression-Based Dissimilarity Measure 
Given two strings, x and y, we define the Compression-based 
Dissimilarity Measure (CDM) as follows 

 
)()(

)(),(
yCxC

xyCyxCDM
+

=  (3) 

The CDM dissimilarity is close to 1 when x and y are not related, 
and smaller than one if x and y are related. The smaller the 
CDM(x,y), the more closely related x and y are. Note that 
CDM(x,x) is not zero. 
The dissimilarity measure can be easily implemented. The entire 
Matlab code is shown in Table 1. 

Table 1: Compression-based Dissimilarity Measure (CDM) 
function  dist = CDM(A, B) 

 save A.txt A –ASCII                                   % Save variable A as A.txt 

 zip('A.zip', 'A.txt');                                      % Compress A.txt 

 A_file = dir('A.zip');                                    % Get file information 

                      

 save B.txt B –ASCII                                   % Save variable B as B.txt 

 zip('B.zip', 'B.txt');                                      % Compress B.txt 

 B_file = dir('B.zip');                                    % Get file information 

             

 A_n_B = [A; B];                                          % Concatenate A and B 

 save A_n_B.txt A_n_B –ASCII                  % Save A_n_B.txt 

 zip('A_n_B.zip', 'A_n_B.txt');                     % Compress A_n_B.txt 

 A_n_B_file = dir('A_n_B.zip');                   % Get file information           

                                                                      % Return CDM dissimilarity         

 dist =  A_n_B_file.bytes / (A_file.bytes + B_file.bytes); 

 
The inputs are the two matrices to be compared. These matrices can 
be time series, DNA strings, images, natural language text, midi 
representations of music, etc. The algorithm begins by saving the 
two objects to disk, compressing them, and obtaining file 
information. The next step is to concatenate the two objects (A_n_B 

= [A; B]); the resulting matrix is also saved, compressed, and the file 
information is retrieved. At this point we simply return the size of 
the compressed concatenation over the size of the sum of the two 
individual compressed files. 
One could argue that also CDM has several parameters. In fact, 
CDM depends on the choice of the specific compressor (gzip, 
compress, bzip2, etc.), and on the compression parameters (for 
example, the sliding window size in gzip).  But because we are 
trying to get the best approximation of the Kolmogorov 

complexity, one should just choose the best combination of 
compression tool and compression parameters for the data. There 
is, in fact, no freedom in the choice to be made. We simply run 
these compression algorithms on the data to be classified and 
choose the one that gives the highest compression. 

2.4 Choosing the Representation of the Data 
As we noted above, the only objective in CDM is to obtain good 
compression. There are several ways to achieve this goal. First, one 
should try several compressors. If we have domain knowledge 
about the data under study, and specific compressors are available 
for that type of data, we use one of those. For example, if we are 
clustering DNA we should consider a compression algorithm 
optimized for compressing DNA (see, e.g., [3]).  
There is another way we can help improve the compression; we can 
simply ensure that the data to be compared is in a format that can 
be readily and meaningfully compressed. Consider the following 
example; Figure 1 shows the first ten data points of three 
Electrocardiograms from PhysioNet [15] represented in textual 
form. 
   
          A                B               C 
   0.13812500000000   0.51250000000000   0.49561523437690 
   0.04875000000000   0.50000000000000   0.49604248046834 
   0.10375000000000   0.50000000000000   0.49653076171875 
   0.17875000000000   0.47562500000000   0.49706481933594 
   0.24093750000000   0.45125000000000   0.49750732421875 
   0.29875000000000   0.45125000000000   0.49808715820312 
   0.37000000000000   0.47656250000000   0.49875854492187 
   0.48375000000000   0.50000000000000   0.49939941406230 
   0.55593750000000   0.48281250000000   0.50007080078125 
   0.64625000000000   0.48468750000000   0.50062011718750 
   0.70125000000000   0.46937500000000   0.50123046875826 

Figure 1: The first ten data points of three ECG s 

It happens to be the case that sequences A and C are both from 
patients with supraventricular escape beats. If we are allowed to see 
a few hundred additional data points from these sequences, we can 
correctly group the sequences ((A,C),B) by eye, or with  simple 
Euclidean distance.  
Unfortunately, CDM may have difficulties with these datasets. The 
problem is that although all sequences are stored with 16-digit 
precision, sequences A and B were actually recorded with 8-digit 
precision and automatically converted by the Rdsamp-O-Matic tool 
[15]. Note that, to CDM, A and B may have great similarity, 
because the many occurrences of 00000000’s in both A and B will 
compress even better in each other’s company. In this case, CDM 
is finding true similarity between these two sequences, but it is a 
trivial formatting similarity, and not a meaningful measure of the 
structure of the heartbeats. Similar remarks can be made for other 
formatting conventions and hardware limitations, for example, one 
sensor’s number-rounding policy might produce a surfeit of 
numbers ending with “5”. 
Before explaining our simple solution this problem, we want to 
emphasize that CDM is extremely robust to it. For example, all the 
anomalies detected in Section 4.2 can be easily discovered on the 
original data.  However, addressing this problem allows us to 
successfully apply CDM on much smaller datasets.  
A simple solution to problem noted above is to convert the data 
into a discrete format, with a small alphabet size. In this case, every 
part of the representation contributes about the same amount of 
information about the shape of the time series. This opens the 



question of which symbolic representation of time series to use. In 
this work, we use the SAX (Symbolic Aggregate ApproXimation) 
representation of Lin et al. [25]. This representation has been 
shown to produce competitive results for classifying and clustering 
time series, which suggest that it preserves meaningful information 
from the original data. Furthermore, the code is freely available 
from the authors’ website. While SAX does allow parameters, for 
all experiments here we use the parameterless version. 
Similar remarks can be made for other data types, for example, 
when clustering WebPages, we may wish to strip out the HTML 
tags first. Imagine we are trying to cluster WebPages based on 
authorship, and it happens that some of the WebPages are graphic 
intensive. The irrelevant (for this task) similarity of having many 
occurrences of “<IMG SRC…>” may dominate the overall 
similarity.   

3. PARAMETER-FREE DATA MINING 
Most data mining algorithms, including classification [5], 
clustering [13][17][21], anomaly/interestingness detection 
[4][28][33], reoccurring pattern (motif) discovery, similarly search 
[35], etc., use some form of similarity/dissimilarity measure as a 
subroutine. Because of space limitations, we will consider just the 
first three tasks in this work.  

3.1 Clustering  
As CDM is a dissimilarity measure, we can simply use it directly in 
most standard clustering algorithms. For some partitional 
algorithms [6], it is necessary to define the concept of cluster 
“center”. While we believe that we can achieve this by extending 
the definition of CDM, or embedding it into a metric space [9], for 
simplicity here, we will confine our attention to hierarchical 
clustering.  

3.2 Anomaly Detection  
The task of finding anomalies in data has been an area of active 
research, which has long attracted the attention of researchers in 
biology, physics, astronomy, and statistics, in addition to the more 
recent work by the data mining community [4][28][33]. While the 
word “anomaly” implies that a radically different subsection of the 
data has been detected, we may actually be interested in more 
subtle deviations in the data, as reflected by some of the synonyms 
for anomaly detection, interestingness/deviation/surprise/novelty 
detection, etc.   
For true parameter-free anomaly detection, we can use a divide- 
and-conquer algorithm as shown in Table 2. The algorithm works 
as follows: Both the left and right halves of the entire sequence 
being examined are compared to the entire sequence using the 
CDM dissimilarity measure. The intuition is that the side 
containing the most unusual section will be less similar to the 
global sequence than the other half. Having identified the most 
interesting side, we can recursively repeat the above, repeatedly 
dividing the most interesting section until we can no longer divide 
the sequence. 
This twelve-line algorithm appears trivial, yet as we shall see in 
Section 4.2, it outperforms four state-of-the-art anomaly detection 
algorithms on a wide variety of real and synthetic problems. The 
algorithm has another important advantage; it can handle both 
single dimensional anomaly detection and multidimensional 
anomaly detection without changing a single line of code. We will 
demonstrate this ability in Section 4.2.3. 

Table 2: Parameter-Free Anomaly Detection Algorithm 
function loc_of_anomaly = kolmogorov_anomaly(data) 

loc_of_anomaly = 1; 

while size(data,1) > 2 

   left_dist  = CDM(data(1:floor(end/2),:),data); 

   right_dist = CDM(data(ceil(end/2):end,:),data); 

    if left_dist < right_dist              

            loc_of_anomaly = loc_of_anomaly + size(data,1) / 2; 

            data = data(ceil(end/2):end,:); 

   else 

            data = data(1:floor(end/2),:); 

   end 

end 
While the algorithm above easily detects the anomalies in all the 
datasets described in Section 4.2, there are two simple ways to 
greatly improve it further. The first is to use the SAX 
representation when working with time series, as discussed in 
Section 2.4. The second is to introduce a simple and intuitive way 
to set parameter. The algorithm in Table 2 allows several potential 
weaknesses for the sake of simplicity. First, it assumes a single 
anomaly in the dataset. Second, in the first few iterations, the 
measure needs to note the difference a small anomaly makes, even 
when masked by a large amount of surrounding normal data. A 
simple solution to these problems is to set a parameter W, for 
number of windows.  We can divide the input sequence into W 
contiguous sections, and assign the anomaly value of the ith 
window as CDM(Wi, data ). In other words, we simply measure 
how well a small local section can match the global sequence. 
Setting this parameter is not too burdensome for many problems. 
For example of the ECG dataset discussed in Section 4.2.3, we 
found that we could find the objectively correct answer, if the size 
of the window ranged anywhere from a ¼ heartbeat length to four 
heartbeats. For clarity, we call this slight variation Window 
Comparison Anomaly Detection (WCAD).    

3.3 Classification  
Because CDM is a dissimilarity measure, we can trivially use it 
with a lazy-learning scheme. For simplicity, in this work, we will 
only consider the one-nearest-neighbor algorithm. Generally 
speaking, lazy learners using non-metric proximity measures are 
typically forced to examine the entire dataset. However, one can 
use an embedding technique such as FASTMAP [9] to map the 
objects into a metric space, thus allowing indexing and faster 
classification. For simplicity, we disregard this possibility in this 
work. 

4. EMPIRICAL EVALUATION 
While this section shows the results of many experiments, it is 
actually only a subset of the experiments conducted for this 
research project. We encourage the interested reader to consult [18] 
for additional examples.    

4.1 Clustering 
While CDM can work with most clustering techniques, here we 
confine our attention to hierarchical clustering, since it lends itself 
to immediate visual confirmation.     



4.1.1 Clustering Time Series  
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In order to perform convincing experiments, we wanted to test our 
algorithm against all reasonable alternatives. However, lack of 
space prevents us from referencing, much less explaining them. So, 
we re-implemented every time series distance/dissimilarity/ 
similarity measure that has appeared in the last decade in any of the 
following conferences: SIGKDD, SIGMOD, ICDM, ICDE, VLDB, 
ICML, SSDB, PKDD, and PAKDD. In total, we implemented fifty-
one such measures, including the ten mentioned in [20] and the 
eight variations mentioned in [13].  For fairness, we should note 
that many of these measures are designed to deal with short time 
series, and made no claim about their ability to handle longer time 
series. In addition to the above, we considered the classic 
Euclidean distance, Dynamic Time Warping (DTW), the L1 metric, 
the Linf metric, and the Longest Common Subsequence (LCSS), all 
of which are more than a decade old. Some of these (Euclidean and 
the other Lp metrics) are parameter free. For measures that require a 
single parameter, we did an exhaustive search for the best 
parameter. For measures requiring more than one parameter (one 
method required seven!), we spent one hour of CPU time searching 
for the best parameters using a genetic algorithm and independently 
spent one hour searching manually for the best parameters. We 
then considered only the better of the two.  
For our first experiment, we examined the UCR Time Series 
Archive [19] for datasets that come in pairs. For example, in the 
Foetal-ECG dataset, there are two time series, thoracic and 
abdominal, and in the Dryer dataset, there are two time series, hot 
gas exhaust and fuel flow rate. We were able to identify eighteen 
such pairs, from a diverse collection of time series covering the 
domains of finance, science, medicine, industry, etc. Although our 
method is able to deal with time series of different lengths, we 
truncated all time series to length 1,000 to allow comparisons to 
methods that require equal length time series. 

Figure 2: Thirty-six time series (in eighteen pairs) clustered using the 
approach proposed in this paper 

The only measures performing significantly better than random 
were the following. Euclidean distance had Q = 0.27. DTW was 
able to achieve Q = 0.33 after careful adjustment of its single 
parameter. The Hidden Markov Model approach of [14] achieved 
Q = 0 using the original piecewise linear approximation of the time 
series. However, when using the SAX representation, its score 
jumped to Q = 0.33. The LPC Cepstra approach of [17] and the 
similar Autocorrelation method of [35] both had Q = 0.16. LCSS 
had Q = 0.33. 

While the correct hierarchical clustering at the top of the tree is 
somewhat subjective, at the lower level of the tree, we would hope 
to find a single bifurcation separating each pair in the dataset. Our 
metric, Q, for the quality of clustering is therefore the number of 
such correct bifurcations divided by eighteen, the number of 
datasets. For a perfect clustering, Q = 1, and because the number of 
dendrograms of thirty-six objects is greater than 3*1049, for a 
random clustering, we would expect Q = 0.  
For each measure, we clustered using single linkage, complete 
linkage, group average linkage, and wards methods, and reported 
only the best performing result. Figure 2 shows the resulting 
dendrogram for our approach.  

Our first experiment measured the quality of the clustering only at 
the leaf level of the dendrogram. We also designed a simple 
experiment to test the quality of clustering at a higher level. We 
randomly extracted ten subsequences of length 2,000 from two 
ECG databases. For this problem the clustering at the leaf level is 
subjective, however the first bifurcation of the tree should divide 
the data into the two classes (the probability of this happening by 
chance is only 1 in 524,288). Figure 3 shows the two best 
clusterings obtained.  

Our approach achieved a perfect clustering, with Q = 1. Although 
the higher level clustering is subjective, here too our approach 
seems to do very well. For example, the appearance of the 
Evaporator and Furnace datasets in the same subtree is quite 
intuitive, and similar remarks can be made for the two Video 
datasets and the two MotorCurrent datasets. 

In a sense, our exhaustive comparison to other similarity methods 
was unfair to many of them, which can only measure the similarity 
of a few local shapes, rather then the higher-level structural 
similarity required.  

More than ¾ of the other approaches we tested scored Q = 0. 
Several of the parameter-laden algorithms suffer from the 
following limitation.  Although their parameters could be carefully 
tuned to do well on one type of data, say the relatively smooth 
MotorCurrent datasets, they achieve poor performance on the more 
noisy datasets like Balloon. We could then tune the parameters to 
do better on the noisy datasets, but immediately lose discriminatory 
power on the smooth data.  

The following “trick” improved the results of most of the 
algorithms on both problems above. To compare two time series A 
and B of length n, we can extract a subsequence of length s from A, 
and compare it to every location in B, then record the closest match 



as the overall distance between A and B. Although this does help 
the majority of the similarity measures, it has a significant 
downside. It adds a new (and highly sensitive) parameter to set and 
increases the time complexity by a factor of O(n2) and even after 
this optimization step, none of the competing similarity measures 
come close to the performance of our method. 
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Figure 4: The clustering achieved by our approach on 16,300 symbols 
from the mitochondrial DNA of twelve primates, and one “outlier” 
species Figure 3: Two clusterings on samples from two records from the MIT-

BIH Arrhythmia Database (Left) Our approach (Right) Euclidean distance 
Consider the following English, Norwegian and Danish words 
taken from the Yahoo portals: Finally, while the results of these experiments are very promising 

for our approach, some fraction of the success could be attributed 
to luck. To preempt this possibility, we conducted many additional 
experiments, with essentially identical results. These experiments 
are documented in [18].      

   English:   {England, information, addresses} 
   Norwegian:    {Storbritannia, informasjon, adressebok} 
   Danish:         {Storbritannien, informationer, adressekartotek} 
Because there is not a single word in common to all (even after 
applying Porters algorithm), the three vectors are completely 
orthogonal to each other in vector space. However, any human 
inspection of the text is likely to correctly conclude that Norwegian 
and Danish are much more similar to each other than they are to 
English. Our approach can leverage off the same cues by finding 
repeated structure within and across texts.  

4.1.2 Clustering Text 
As a test of our ability to cluster text, we began by conducting 
experiments on DNA strings. We took the first 16,300 symbols 
from the mitochondrial DNA of twelve primates and one “outlier” 
species, and hierarchically clustered them. A similar strategy was 
used in [23] on a different set of organisms. To validate our results, 
we showed the resulting dendrogram to an expert in primate 
evolution, Dr. Sang-Hee Lee of UCR. Dr. Lee noted that some of 
the relevant taxonomy is still the subject of controversy, but 
informed us that the “topography of the tree looks correct”. Figure 
4 shows the clustering obtained; Dr. Lee provided the annotation of 
the internal nodes. 

We tried a similar experiment with text from various translations of 
the first fifty chapters of the bible, this time including what one 
would expect to be an outlier, the Maori language of the indigenous 
people of New Zealand. As shown in Figure 5 (right) the clustering 
is subjectively correct, except for an inclusion of French in the 
Germanic subtree.   

We want to note that using a compressor optimized for DNA [3] 
was essential here. A standard dictionary-based compressor like 
gzip, would have resulted in less meaningful distances.  
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We conducted additional experiments with a more diverse 
collection of animals; in every case the clustering agreed with the 
current consensus on evolutionary history [18].  
We also examined natural language text. A similar experiment is 
reported in [2]. Here, we began by clustering the text of various 
countries’ Yahoo portals. We only considered the first 1,615 
characters, the size of the smallest webpage (excluding white 
spaces). Figure 5 (left) shows the resulting clustering. Note that the 
first bifurcation correctly divides the tree into Germanic and 
Romance languages. While we striped out all HTML tags for this 
experiment, we found that leaving them in made little difference, 
presumably because they where more or less equally frequent 
across languages.  

 
 

Figure 5: (Left) The clustering achieved by our approach on the text from 
various Yahoo portals (Jan-15th 2004). The smallest webpage had 1,615 
characters, excluding white spaces. (Right) The clustering achieved by 
our approach on the text from the first fifty chapters of Genesis. The 
smallest file had 132,307 characters, excluding white spaces. Maori, a 
Malayo-Polynesian language, is clearly identified as an “outlier” Surprisingly, the clustering shown is much better than that achieved 

by the ubiquitous cosine similarity measure. In retrospect, this is 
hardly surprising.  

Once again, we reiterate the following disclaimer. We are not 
suggesting that our method replace the vector space model for 
indexing text, or a linguistic aware method for tracing the evolution 
of languages. Our point is simply to show that given a dataset in 
which we know nothing about, we can expect our CDM to produce 
reasonable results that can be a starting point for future study.  



4.2 Anomaly Detection 
Although our approach can be used to find anomalies in text, video, 
images, and other data sources, we will confine our attention here 
to time series, since this domain has attracted the most attention in 
the data mining community and readily lends itself to visual 
confirmation. 
For all the problems shown below, we can objectively discover the 
anomaly using the simple algorithm in Table 2. However, that 
algorithm only tells us the location of the anomaly, without telling 
us anything about the relative strength of the anomaly. For this 
reason, we use the Window Comparison Anomaly Detection 
(WCAD) variation discussed in Section 2.2. This slight variation 
allows us to determine the relative strength of the anomaly, which 
we can visualize by mapping onto the line’s thickness.  As noted in 
Section 3.2, WCAD does have one simple parameter to set, which 
is W, the approximate size of the window we expect to find 
anomalies in. In these experiments, we only count an experiment as 
a success for CDM if the first window size we choose finds the 
anomaly, and if window sizes four times as large, and one quarter 
as large, can also find the anomaly. 
Because of space limitations, we will consider only four rival 
techniques. Here, we simply list them, and state the number of 
parameters each requires in parenthesis. We refer the interested 
reader to the original papers for more details. We compared our 
approach to the Support Vector Machine (SVM) based approach of 
[28] (6), the Immunology (IMM) inspired approach of [4] (5), The 
Association Rule (AR) based approach of [36] (5), and the TSA-
tree Wavelet based approach of [33] (3). As before, for each 
experiment we spent one hour of CPU time, and one hour of human 
time trying to find the best parameters and only reported the best 
results. 

4.2.1 A Simple Normalizing Experiment  
We begin our experiments with a simple sanity check, repeating the 
noisy sine problem of [28]. Figure 6 shows the results. 
 

 

Figure 6: A comparison of five novelty detection algorithms on the 
synthetic sine problem of Ma and Perkins [28]. The first 400 data points 
are used as training data, an “event” is embedded at time point 600. A) 
The approach proposed in this work, the thickness of the line encodes the 
level of novelty. B) SVM. C) IMM. D) AR. E) TSA. 

Our approach easily finds the novelty, as did SVM with careful 
parameter tuning. The IMM algorithm is stochastic, but was able to 
find the novelty in the majority of runs. We were simply unable to 
make the AR approach work. Finally, TSA does peak for the 
novelty, although its discriminatory power appears weak. 
The ability of our approach to simply match the prowess of SVM 
and IMM on this problem may not seem like much of an 
achievement, even though we did it orders of magnitude faster and 

without setting any parameters. However, the real utility of our 
approach becomes evident when we see how the algorithms 
generalize, or when we move from toy problems to real world 
problems. We consider both cases below. 

4.2.2 Generalizability Experiment 
To illustrate the dangers of working with parameter-laden 
algorithms, we examined a generalization of the last experiment. 
As illustrated in Figure 7, the training data remains the same. 
However, in the test data, we changed the period of the sine wave 
by a barely perceptible 5%, and added a much more obvious 
“anomaly”, by replacing a half of a sine wave with its absolute 
value. To be fair, we modified our algorithm to only use the 
training data as reference. 
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Figure 7:  A comparison of five novelty detection algorithms on a 
generalization of the synthetic sine problem. The first 400 data points are 
used as training data. In the rest of the time series, the period of the sine 
wave was changed by 5%, and one half of a sine wave was replaced by its 
absolute value. A) The approach proposed in this work, the thickness of 
the line encodes the level of novelty. B) SVM. C) IMM. D) AR. E) TSA. 

The results show that while our algorithm easily finds the new 
anomaly, SVM and IMM discover more important “anomalies” 
elsewhere. It may be argued that the very slight change of period is 
the anomaly and these algorithms did the right thing. However, we 
get a similar inability to generalize if we instead slightly change the 
amplitude of the sine waves, or if we add (or remove!) more 
uniform noise or make any other innocuous changes, including 
ones that are imperceptible to the human eye.  
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In case the preceding example was a coincidentally unfortunate 
dataset for the other approaches, we conducted many other similar 
experiments. And since creating our own dataset opens the possibly 
of data bias [20], we considered datasets created by others.  We 
were fortunate enough to obtain a set of 20 time series anomaly 
detection benchmark problems from the Aerospace Corp. A subset 
of the data is shown in Figure 8.  
The TSA algorithm easily discovered the anomaly in the time 
series L-1j, but not the other two time series. We found that both 
SVM and IMM could have their parameters tuned to find the 
anomaly on any individual one of the three sequences, but once the 
parameters were tuned on one dataset, they did not generalize to 
the other two problems. 
The objective of these experiments is to reinforce the main point of 
this work.  Given the large number of parameters to fit, it is nearly 
impossible to avoid overfitting.  



 

Figure 8: The results of applying our algorithm to (a subset of) a 
collection of anomaly detection benchmark datasets from the Aerospace 
Corp. the thickness of the line encodes the level of novelty. In every case, 
an anomaly was inserted beginning at time point 500 

Before leaving this section we would like to briefly relate an 
anecdote as a further support for our approach. For the above 
problem, we wrote a simple Matlab script to read in the twenty 
datasets, run our anomaly detection algorithm, and confirm that the 
most anomalous section was discovered within twenty-five points 
of 500. After successfully testing our approach, we modified the 
script to consider the other approaches but found that it always 
crashed when working with dataset L-1s. After some careful 
debugging, we discovered that the artificial anomaly in this 
sequence is some missing data points, which are encoded in Matlab 
as the special character “NaN”. While none of the other algorithms 
are defined for missing values (hence the crashing), and are not 
trivially extendible, our approach was robust enough not to crash, 
and to find the right answer.   

4.2.3  Real-World Anomaly Detection 
We examined annotated datasets from the MIT-BIH Noise Stress 
Test Database. For the algorithms which need a training/test split, 
we gave them 1/3 of the dataset which had been annotated as 
normal. We then asked the algorithms to examine the rest of the 
data to find the most interesting events, comparing the results to the 
cardiologists’ annotations. Figure 9 shows the result of one such 
experiment. Note that only a small excerpt from the full dataset is 
shown. 
 

Figure 9: A small excerpt from dataset 118e06 from the MIT-BIH Noise 
Stress Test Database. The full dataset is 21,600 data points long. Here, we 
show only a subsection containing the two most interesting events 
detected by our algorithm (the bolder the line, the more interesting the 
subsequence). The gray markers are independent annotations by a 
cardiologist indicating Premature Ventricular Contractions 

We only illustrate the performance of our approach in Figure 9 
because all the other approaches produced results that were 
objectively (per the cardiologists’ annotations) and subjectively 
incorrect, in spite of careful parameter tuning.  
Our final example illustrates the flexibility of our approach. None 
of the approaches for anomaly detection in time series in the 

literature are defined for multidimensional time series1, in spite of 
an increasing general interest in multidimensional time series [34]. 
However, we can consider multidimensional time series without 
changing a single line of code. In order to have some straw man to 
compare to, each of the four completing methods was adapted as 
follows. We collected the results on each individual dimension and 
then we linearly combined them into a single measure of novelty. 
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We experimented on a 2D time series that was collected for a 
different purpose (in particular, a classification problem [30]). The 
2D time series was extracted from a video of an actor performing 
various actions with and without a replica gun. Figure 10 (bottom) 
illustrates a typical sequence. The actor draws a replica gun from a 
hip mounted holster, aims it at a target, and returns it to the holster. 
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Figure 10: (Bottom) A typical video snippet from the Gun video is 
mapped onto a two-dimensional time series (Center) by tracking the 
actor’s right hand. While the vast majority of the dataset looks 
approximately like the first 200 data points, the section from about 300 to 
450 looks somewhat different, and was singled out by our anomaly 
detection algorithm. Examining the original video (Top), we discovered 
the cause of the anomaly. 

Watching the video we discovered that at about ten seconds into 
the shoot, the actor misses the holster when returning the gun. An 
off-camera (inaudible) remark is made, the actor looks toward the 
video technician, and convulses with laughter. At one point (frame 
385), she is literally bent double with laughter. This is the only 
interesting event in the dataset, and our approach easily finds it. 
The other techniques returned results that do not seem truly 
anomalous, given a careful inspection of both the time series and 
the original video.   
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We have not considered time efficiency as a metric in these 
experiments, because we cannot guarantee that our 
implementations of the rival approaches are as efficient as they 
might be, given careful optimization.  However, our approach is 
certainly not sluggish, requiring less than ten seconds (on a 2.65 
GHz machine) to process a million data points. 

4.3 Classification 
In this section, we illustrate the utility of CDM for classification 
with the following simple experiment.  We use the following 

                                                                 
1 This includes the 4 rival approaches considered here [4][28][33][36]. 

While the TSA-Wavelet approach was extended to 2D, this extension is 
for spatial mining. 



similarity measures on four datasets (Two each from two 
databases:- ECG and Gun) and measure their error rates: 

Table 3. Classification Error Rates (%) for all four datasets 

 Euclidean DTW 
(best unif. window) CDM 

ECG: signal 1 42.25 % 16.25 % 6.25 % 

ECG: signal 2 47.50 % 11.25 % 7.50 % 

Gun: 2 classes 5.00 % 0.00 % 0.00 % 

Gun: 4 classes 37.50 % 12.5 % 5.00 % 

• Euclidean Distance [20]. 
• Dynamic Time Warping (DTW). Here, we exhaustively test 

all values of its single parameter (warping window size [30]) 
and report only the best result, and 

• Compression-Based Dissimilarity Measure (CDM) 
Note that we only compare CDM with Dynamic Time Warping and 
Euclidean Distance metric in this section for brevity, since it has 
been shown in [20] that many of the more complex similarity 
measures proposed in other work have higher error rates than a 
simple Euclidean Distance metric.   

We do not give exact times here since CDM is implemented in the 
relatively lethargic Matlab, whereas DTW is implemented in highly 
optimized C++. Nevertheless, even if we excluded the time taken 
to find search over DTW’s single (and sensitive, see [30]) 
parameter, CDM is still about 25 times faster than DTW. 

The ECG datasets are four-class problem derived from BIDMC 
Congestive Heart Failure Database [15] of four patients.  Since this 
original database contains two ECG signals, we separate each 
signal and create two datasets of one-dimensional time series in the 
following way.  Each instance of 3,200 contiguous data points 
(about 20 heartbeats) of each signal is randomly extracted from 
each long ECG signals of each patient.  Twenty instances are 
extracted from each class (patient), resulting in eighty total 
instances for each dataset.   

5. CONCLUSIONS AND FUTURE WORK 
In this work, we argued that data mining algorithms with many 
parameters are burdensome to use, and make it difficult to compare 
results across different methods. We further showed empirically 
that at least in the case of anomaly detection, parameter-laden 
algorithms are particularly vulnerable to overfitting. Sometimes 
they achieve perfect accuracy on one dataset, and then completely 
fail to generalize to other very similar datasets [7]. The Gun datasets are time-series datasets extracted from video 

sequences of two actors either aiming a gun or simply pointing at a 
target [30] (see also, Figure 10). We randomly extract twenty 
instances of 1,000 contiguous data points (about 7 reps) from each 
of the following long time series: 

As a step towards mitigating these problems, we showed that 
parameter-free or parameter-light algorithms can compete with or 
outperform parameter-laden algorithms on a wide variety of 
problems/data types.  A. Actor 1 with gun 
There are many directions in which this work may be extended. We 
intend to perform a more rigorous theoretical analysis of the CDM 
measure. For example, CDM is a dissimilarity measure; if it could 
be modified to be a distance measure, or better still, a distance 
metric, we could avail of a wealth of pruning and indexing 
techniques to speed up classification [30], clustering [6], and 
similarity search [34]. While it is unlikely that CDM can be 
transformed in a true metric, it may be possible to prove a weaker 
version of the triangular inequality, which can be bounded and used 
to prune the search space [6]. The results in [8] on textual 
substitution compressors could lead to some insights in the general 
problem. 

B. Actor 1 without gun (point) 
C. Actor 2 with gun 
D. Actor 2 without gun (point) 

The first dataset is a two-class problem of differentiating Actor 1 
from Actor 2 -- (A+B) vs. (C+D).  The second dataset is a four-
class problem of differentiating each of the acts independently – A 
vs. B vs. C vs. D.  In total, each dataset contains eighty instances. 
Some samples from both databases are illustrated in Figure 11. 
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Finally, we note that our approach is clearly not suitable for 
classifying or clustering low dimensionality data (although Figure 
2 shows exceptionally good results on time series with only 1,000 
data points).  We plan to theoretically and empirically investigate 
the limitations on object sizes that we can meaningfully work with 
using our proposed approach.  Figure 11.  Some extracted time series from the gun datasets (left) and 

the ECG (sig.1) dataset (right) 
6. ACKNOWLEDGMENTS We measure the error rates on each dataset, using the one-nearest-
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In all four datasets discussed above, Euclidean distance is 
extremely fast, yet inaccurate.  DTW with the best uniform window 
size greatly reduces the error rates, but took several orders of 
magnitude longer.  However, CDM outperforms both Euclidean 
and DTW in all datasets.  Even though CDM is slower than 
Euclidean distance, it is much faster than the highly optimized 
DTW. 

All datasets used in this paper are available for free download from 
[18]. For convenience, we also include the Yahoo dataset; however, 
the copyright remains the property of Yahoo! Inc. 
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We report here on additional results and information that 
were left out from the paper due to lack of space. 

Both Dr. Stephen Bay and one of the anonymous reviewers 
noted that one implication of the experiments in Section 
4.1.1 is that the Euclidean distance works very well for 
time series! This is true, we did not emphasize this fact in 
this work, because we already forcefully made this point in 
[20] (see Section 4.2).  

This work was inspired by an article in the June 2003 issue 
of Scientific American, by Charles H. Bennett, Ming Li, 
and Bin Ma. The article, “Chain Letters and Evolutionary 
Histories”, is a beautiful example of popular science 
writing. The authors have made the data used in this work 
available here: www.math.uwaterloo.ca/~mli/chain.html 

Finally, we will show some additional experiments that did 
not make it to the published paper due to lack of space.  

Dr. Ming Li, and Dr. Paul Vitanyi have (together and 
separately) published many papers that explore 
compression for clustering, bioinformatics, plagiarism 
detection etc. Dr. Li’s webpage is 
www.math.uwaterloo.ca/~mli/ and Dr. Vitanyi’s webpage 
is http://homepages.cwi.nl/~paulv/. There has been 
enormous interest in this work, as you can gauge from 
http://homepages.cwi.nl/~paulv/pop.html  

The experiment in Figure A is similar to the one shown in 
Figure 3, but with more classes. 
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In addition, Li and Vitanyi have published the definitive 
book on Kolmogorov Complexity: “An Introduction to 
Kolmogorov Complexity and Its Applications”, Second 
Edition, Springer Verlag 1997; ISBN 0-387-94868-6. 
Additional papers that are (to varying degrees) related to 
this work, but not cited in the full paper due to lack of 
space (or because they came to our attention too late) 
include: 
A. Eibe Frank, Chang Chui and Ian H. Witten (2000). Text Categorization 

Using Compression Models. Proceedings of the IEEE Data Compression 
Conference, Snowbird, Utah, IEEE Computer Society, pp. 555. 

B. Matthew B. Kennel (2004). Testing time symmetry in time series using 
data compression dictionaries. Phys. Rev. E 69, 056208  (9 pages). 

C. Matt Mahoney (2003). Space Shuttle Engine Valve Anomaly Detection 
by Data Compression. Unpublished notes. (Thanks to Stan Salvador for 
bringing this to our attention). 

 

 

CDM Euclidean 
Cluster 1 (datasets 1 ~ 5): 
 BIDMC Congestive Heart Failure Database (chfdb): record chf02 
 Start times at 0, 82, 150, 200, 250, respectively 
Cluster 2 (datasets 6 ~ 10): 
 BIDMC Congestive Heart Failure Database (chfdb): record chf15 
 Start times at 0, 82, 150, 200, 250, respectively 
Cluster 3 (datasets 11 ~ 15): 
 Long Term ST Database (ltstdb): record 20021 
 Start times at 0, 50, 100, 150, 200, respectively 
Cluster 4 (datasets 16 ~ 20): 
 MIT-BIH Noise Stress Test Database (nstdb): record 118e6 
 Start times at 0, 50, 100, 150, 200, respectively 
 
Figure A: Two clusterings on samples from four records from the MIT-
BIH Arrhythmia Database, (Left) Our approach (Right) Euclidean distance 
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D. J. Segen (1990). Graph Clustering and Model Learning by Data 
Compression.  In Proceedings of the Machine Learning Conference, 
pages 93-101. 

E. Chunyu Kit. 1998. A goodness measure for phrase learning via 
compression with the MDL principle. In I. Kruijff-Korbayova(ed.), The 
ELLSSI-98 Student Session, Chapter 13, pp.175-187. Aug. 17-28, 
Saarbrueken. 

F. P. Grünwald, A Tutorial Introduction to the Minimum Description 
Length Principle. To appear as Chapters 1 & 2 of Advances in Minimum 
Description Length: Theory and Applications. MIT Press, 04. 

G. A. Ortega, B. Beferull-Lozano, N. Srinivasamurthy, and H. Xie. (2000). 
Compression for Recognition and Content based Retrieval. In Proc. of the 
European Signal Processing Conference, EUSIPCO'00, Tampere, 
Finland. 

H. Andrea Baronchelli, Vittorio Loreto (2004). Data Compression approach 
to Information Extraction and Classification CoRR cond-mat/0403233: 
(submitted for publication).  

Several people that viewed an early version of the work suggested 
that the clustering might only work in highly structured data, but not 
for more “random” data.  As a simple sanity check we tried 
clustering random data and random walk data, as shown in Figure B.  

I. C. Noble and D. J. Cook, Graph-Based Anomaly Detection,  Proceedings 
of the Ninth ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 2003.  

J. Teahan, W.J., Wen, Y., McNab, R.J., Witten, I.H.(2000). A compression-
based algorithm for Chinese word segmentation. Computational 
Linguistics 26. 375--393 

 
 



It goes without saying that CDM is by no means perfect, in Figure 
D, Time Series 3 is incorrectly clustered. 
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CDM Euclidean 
Figure B: Two clusterings on 15 samples of random walk, and 15 
samples of random data 

  

   MIT-BIH Arrhythmia Database www.physionet.org/physiobank/database/qtdb 

           Class 1: Record sel102,   Class 2: Record sel104,  Class 3: Record sel213 

In Figure C, we add some structured data to the mix, to see if CDM 
is confused by the presence of random data.  
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Video Surveillance: Eamonn, no gun     Figure D: The clustering obtained on a 3-class problem. Note that time series 
3 (at the bottom of the figure) is not clustered properly  
In Figure E we show additional examples from the dataset shown in 
Figure 8. Although the problems look too simple to be of interest, 
none of the other four approaches discussed in the paper can find the 
anomaly in all four examples.   
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Figure E: Additional examples from the Aerospace anomaly detection 
problems, the thickness of the line encodes the level of novelty 

Figure C: The clustering obtained on some random walk data, random data, 
and some highly structured datasets. 
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