
Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at Interactive
Speeds

Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar and Eamonn Keogh

Department of Computer Science and Engineering
University of California, Riverside

{yzhu015, myeh003, zzimm001, kkamg001}@ucr.edu, eamonn@cs.ucr.edu

Abstract— Time series motif discovery is an important
primitive for time series analytics, and is used in domains as
diverse as neuroscience, music and sports analytics. In recent
years, algorithmic advances (coupled with hardware
improvements) have greatly expanded the purview of motif
discovery. Nevertheless, we argue that there is an insatiable need
for further scalability. This is because more than most types of
analytics, motif discovery benefits from interactivity. The two
state-of-the-art algorithms to find motifs are STOMP, which
requires O(n2) time, and STAMP, which, despite being an O(logn)
factor slower, is the preferred solution for most applications, as it
is a fast converging anytime algorithm. In favorable scenarios
STAMP needs only to be run to a small fraction of completion to
provide a very accurate approximation of the top-k motifs. In this
work we introduce SCRIMP++, an O(n2) time algorithm that is
also an anytime algorithm, combining the best features of STOMP
and STAMP. As we shall show, SCRIMP++ maintains all the
desirable properties of the original algorithms, but converges
much faster, in almost all scenarios producing the correct output
after spending a tiny fraction of the full computation time. We
argue that for many end-users, this allows motif discovery to be
performed in interactive sessions. Moreover, this interactivity can
be game changing in terms of the analytics that can be performed.

Keywords— Time Series, Anytime Algorithms, Motif Discovery

I. INTRODUCTION

In domains as diverse as seismology [16], neuroscience
[1][2] and entomology [9], time series motif discovery is
emerging as one of the most important analytic primitives. The
recently introduced Matrix Profile has been shown to be a
flexible and generic data tool to solve a host of time series data
mining problems, including motif discovery. There are two
algorithms to compute the Matrix Profile, STOMP [16], which
requires O(n2) time, and STAMP [15], which is an O(logn)
factor slower. In spite of being slower, STAMP is actually the
preferred solution for most applications, as it is a fast converging
anytime algorithm, and in favorable scenarios it needs only to be
run to about 5% of completion to provide a very accurate
approximation of the top-k motifs [15]. Note that at first blush,
the O(n2logn) STAMP algorithm may not seem that scalable,
even if run to only 5% of completion. However, both
STAMP/STOMP have time and space complexities that are
independent of the dimensionality, the length of the motifs, m.
Because this length can be in the many thousands, in practice
O(n2) is significantly faster than apparently faster algorithms
that scale with m [15][16].

In this work we introduce SCRIMP++, an O(n2) time
algorithm that is also an anytime algorithm, combining the best
features of STOMP and STAMP. As we shall show, SCRIMP++
maintains all the desirable properties of the original algorithms,

including invariance to the curse of dimensionality, a low
memory footprint and the ability to trivially exploit High
Performance Computing platforms such as GPUs. We will
demonstrate that SCRIMP++ further expands the purview of the
Matrix Profile and allows us to consider even larger datasets.
More critically however, SCRIMP++ allows us to perform motif
discovery interactively, rather than the typical offline batch
processing that is the norm [2].

Fig. 1 outlines the relationship between all these algorithms.
While it is a symbolic plot, we will show empirically in Section
IV.A that these relationships are correct. Note that we have been
deliberately vague about what the Y-axis represents. It could be
1 minus the difference between the true Matrix Profile and the
current estimate (as measured by the root-mean-squared error),
or it could be the probability that the best motif has been
discovered, or essentially any quality measure of the
approximate Matrix Profile.

Fig. 1 The convergence behaviors of algorithms for computing the Matrix
Profile (cf. Fig. 14). STOMP (not a true anytime algorithm) converges in O(n2)
time. STAMP converges faster, but takes O(logn) more time to completely
converge. SCRIMP++ has both O(n2) time complexity and diminishing returns
convergence. Note that SCRIMP++ takes very slightly more time than STOMP
to fully converge, but this difference is inconsequential.

A. Motif Analytics: An Insatiable Need for Speed

While all data mining algorithms benefit from improvements
in speed, here we argue that for the particular case of motif
discovery, improvements in speed are game-changing. Motif
discovery benefits from interactivity more than most data
mining processes. To see this, consider the following analytics
session scenario, which while slightly fictionalized, is based on
an ongoing project supporting data-intensive entomology [14].

An entomologist wants to examine a five-hour, 1,080,000-
point time series (as shown in Fig. 2) she recorded overnight.
From her previous experience, she suspects that a motif length
of 100, corresponding to one-second, is about the right scale for
this insect’s behavior to be manifest. However, because she
notices the motifs discovered are so well conserved at this scale,
she decides to consider two-second long motifs. When she sees
these new motifs, she realizes that they correspond to snippets
from the setup time, when her assistant was adjusting the
conductive glue on the insect’s back. She therefore crops off the
first few minutes and runs motif discovery again. She then…

STAMP converges here

SCRIMP++ converges here, a tiny
fraction of time after STOMP

STOMP converges here

Fig. 2. A five-hour sample of Electrical Penetration Graph (EPG) data hints at
the difficulty of motif search. See also Fig. 17/Fig. 18.

If the entomologist was to use STOMP [16], the state-of-the-
art exact motif discovery algorithm1, then on a modern desktop
each run would take about 0.7 hours. This is an important data
resource, and a diligent entomologist may find it worth the effort
to visit her machine every hour or so, but clearly such long cycle
time dashes any hope of interactively. As [11] notes “In
interactive data analysis processes, the dialogue between the
human and the computer is the enabling mechanism that can
lead to actionable observations. It is of paramount importance
that this dialogue is not interrupted by slow computation”.

As we will show in this work, SCRIMP++ allows us to
perform the above analytic workflow interactively; in the above
scenario, we can reduce the cycle time to just a few seconds.

Beyond the above anecdote that reflects our research
interests, the literature is replete with examples that suggest the
need for faster motif discovery. A recent paper considering
several fundamental questions in neuroscience notes that some
such questions reduce to determining if neural activity “repeats”
happen more than expected by chance [2]. As Fig. 3 suggests,
these repeats are simply time series motifs.

Fig. 3. Adapted from [2]. “Repeats” in the neuroscience literature are simply
time series motifs.

To find such motifs in even a minute’s worth of data, the
authors resorted to various approximations to “increase
processing speed.” For example, they downsampled their data
by 1 in 10, and rather than use a sliding window, they use a
“jumping” window to reduce the number of comparisons. Even
then, the authors noted that to obtain timely answers their
“repeat-finding algorithm was parallelized and performed on a
high-performance computing (HPC) cluster.” [2].

However, consider their 2-kHz data, and further assume that
we search for their longest motif length of 2.7 seconds (5,400
datapoints), and test all possible subsequences (not just
“jumping” overlaps) in their largest dataset, which is 8,258,064
data points corresponding to 68.8 minutes of wall clock time.

With an off-the-shelf desktop we can run SCRIMP++ to 1%,
in 27.4 minutes, and reproduce their quality of results (cf. [18]).
Note that even here, with the original authors’ most challenging
task, we can still process the data faster than they can collect it
[2]. The authors go on to bemoan the fact that even with their
approximations and use of HPC, that their findings “represent a
lower limit on the duration and prevalence of motifs which might
be observed if longer segments of intracellular dynamics could
be analyzed”. The algorithm presented in this paper will trivially
allow this possibility to be explored, not with batch processing
on an HPC, but in real-time interactive sessions on a laptop.

1 We justify this claim in Section II.C.

Before moving on, we note that the Matrix Profile has
implication for other time series tasks, including discord
discovery [15], chain discovery [17], semantic segmentation
[15], etc. While SCRIMP++ can benefit these tasks, for
simplicity and concreteness we only consider motif discovery in
this work.

We conclude this section with a statement of contributions:

• Users of the Matrix Profile must currently choose between
the batch O(n2) STOMP algorithm, or the anytime O(n2logn)
STAMP algorithm. We introduce SCRIMP, the first “best of
both worlds” algorithm for computing the Matrix Profile that
is both anytime and O(n2).

• We introduce PreSCRIMP, a novel ultrafast approximate
algorithm to compute the Matrix Profile. The output of
PreSCRIMP can be seamlessly passed to SCRIMP, which
can take the approximate solution and refine it until it is
exact. This combination, of PreSCRIMP and SCRIMP is
called SCRIMP++, and it represents the state-of-art in motif
discovery.

• We show that SCRIMP++ is “game changing” by vastly
increasing the space of problems that can be processed
interactively.

The rest of this paper is organized as follows. In Section II
we introduce definitions and consider related work. In Section
III we introduce SCRIMP++. Section IV sees an extensive
empirical evaluation of the algorithms, including some case
studies. Finally, in Section V we offer conclusions and
directions for future work.

II. RELATED WORK AND BACKGROUND

In this section, we first introduce all necessary definitions
before considering related work.

A. Definitions

We begin by defining the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued
numbers ti: T = t1, t2, ..., tn where n is the length of T:

We are typically interested not in global, but local properties
of a time series. A local region of a time series is called a
subsequence:

Definition 2: A subsequence Ti,m of a time series T is a
continuous subset of the values from T of length m starting from
position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤ n-m+1.

Given a query subsequence Ti,m and a time series T, we can
compute the distance between Ti,m and all the subsequences in
T. We call this a distance profile:

Definition 3: A distance profile Di corresponding to query
Ti,m and time series T is a vector of the Euclidean distances
between a given query subsequence Ti,m and each subsequence in
time series T. Formally, Di = [di,1, di,2,…, di,n-m+1], where di,j (1 ≤
j ≤ n-m+1) is the distance between Ti,m and Tj,m.

We assume that the distance is measured by Euclidean
distance between z-normalized subsequences [12]. Once we
obtain Di, we can extract the nearest neighbor of Ti,m in T. Note
that if the query Ti,m is a subsequence of T, the ith location of
distance profile Di is zero (i.e., di,i = 0) and close to zero just to
the left and right of i. This is called trivial match in the literature.
We avoid such matches by ignoring an “exclusion” zone of
length m/4 before and after i, the location of the query. In
practice, we simply set di,j (i-m/4 ≤ j ≤ i+m/4) to infinity, and the
nearest neighbor of Ti,m can thus be found by evaluating min(Di).

We wish to find the nearest neighbor of every subsequence in
T. The nearest neighbor information is stored in two meta time
series, the matrix profile and the matrix profile index:

Definition 4: A matrix profile P of time series T is a vector
of the Euclidean distances between every subsequence of T and
its nearest neighbor in T. Formally, P = [min(D1), min(D2),…,
min(Dn-m+1)], where Di (1 ≤ i ≤ n-m+1) is the distance profile Di
corresponding to query Ti,m and time series T.

The ith element in the matrix profile P tells us the Euclidean
distance from subsequence Ti,m to its nearest neighbor in time
series T. However, it does not tell us the location of that nearest
neighbor; this is stored in the companion matrix profile index:

Definition 5: A matrix profile index I of time series T is a
vector of integers: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di).

Fig. 4 illustrates the relationship between distance matrix,
distance profile (Definition 3) and matrix profile (Definition 4).
Each element of the distance matrix di,j is the distance between
Ti,m and Tj,m (1 ≤ i, j ≤ n-m+1) of time series T.

Fig. 4. The relationship between the distance matrix, distance profile and matrix
profile. A distance profile is a column (also a row) of the distance matrix. The
matrix profile stores the minimum (off diagonal) value of each column of the
distance matrix; the location of the minimum value within each column is
stored in the companion matrix profile index.

Fig. 5 shows a visual example of a distance profile and a
matrix profile created from the same time series T.

Fig. 5. top) A distance profile Di created from Ti,m shows the distance between
Ti,m and all the subsequences in T. The values in the dark zone are ignored to
avoid trivial matches. bottom) The matrix profile P is the element-wise
minimum of all the distance profiles (Di is one of them). Note that the two
lowest values in P are at the location of the 1st motif in T [15][16].

Note that as we presented it, the matrix profile is a self-join
[15]: for every subsequence in a time series T, it records
information about its (non-trivial-match) nearest neighbor in the
same time series T. However, we can trivially generalize it to be
an AB-join [15]; for every subsequence in a time series A, record
information about its nearest neighbor in time series B. Note that
A and B can be of different lengths, and that in general, AB-join
≠ BA-join.

B. Related Work: Matrix Profile Based

In a flurry of recent papers [15][16], it has been shown that
one can trivially compute all top-k motifs (for any k), range
motifs (for arbitrary ranges), and a host of other useful time
series primitives [17], if one has access to the matrix profile.
Thus, fast motif discovery simply reduces to fast computation of
the matrix profile.

To date there are two algorithms to compute the matrix
profile, STAMP [15] and STOMP [16].

The STAMP algorithm [15] evaluates the distance profiles
(Definition 3; the columns/rows in Fig. 4) in random order. Each
distance profile Di is evaluated by the MASS algorithm [5],
which exploits Fast Fourier Transform (FFT) to calculate the dot
product between Ti,m and every subsequence in T. The evaluation
of a distance profile thus takes O(nlogn) time where n is the
length of time series T, and the overall process takes O(n2logn)
time.

In contrast to STAMP, the STOMP algorithm [16] evaluates
the distance profiles in Fig. 4 in-order by exploiting the
computation dependency between consecutive distance profiles.
The algorithm only costs O(n2) time, an O(logn) factor faster
than STAMP. STOMP algorithm was forcefully demonstrated
as more efficient than the previous state-of-the-art motif
discovery algorithms, the Quick-Motif algorithm [4] and the
MK algorithm [6] in both time and space [16].

Both STAMP and STOMP maintain the element-wise
minimum-so-far values of the evaluated distance profiles in a
running matrix profile. Note that although STAMP is an O(logn)
factor slower than STOMP, it shows better interactivity. As
shown in Fig. 6, STAMP is able to locate the highlighted motifs
in the time series T when it is only 10% completed, as the
running matrix profile already contains two deep valleys at the
vicinity of the motifs. In contrast, STOMP cannot locate the
motifs even when it is 50% completed (no deep valleys show
up), because the running matrix profile converges to the oracle
from left to right in order.

Fig. 6. STAMP is able to detect the motifs located towards the right side of a
time series when it is only 10% completed due to its random computation order.
In contrast, STOMP’s left-to-right sequential computation means it cannot
detect them even when 50% completed.

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …
Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)

|Di|=|T|-m+1

|P|=|T|-m+1

0 500

time series T

distance profile Di

Ti,m, a subsequence of length m

matrix profile P

time series T
Exclusion Zone

4000 200

time series T

Oracle Matrix Profile

Running Matrix Profile of STAMP (10%)

Running Matrix Profile of STOMP (50%)

However, when the time series is very long and motifs are
rare, the probability of STAMP finding the top-k motifs within
10% of its computation greatly decreases. Furthermore, as
STOMP is a factor of O(logn) faster, by the time STAMP has
completed 10% of its computation, STOMP may already
converge to the exact solution. These conflicting strengths of the
two algorithms require careful reasoning by the analyst, based
on her goals and her tentative knowledge of the data.
SCRIMP++ eliminates any dilemma, by combining the speed of
STOMP with the anytime convergence property of STAMP.

C. Related Work: General Motif Search

It is important to make the distinction between approximate
algorithms (of which there are many, see [10] for a survey) and
anytime algorithms for motif discovery [15]. Suppose a user
runs a fast, but approximate algorithm on a large dataset. It is
possible that when the motifs are returned, she is satisfied.
However, suppose that the motifs are not as well conserved as
she expected, given her domain knowledge and her intuitions for
the data. She is now in a quandary, are the expected motifs
simply not there, or did the algorithm fail to find them? The
problem is compounded by the fact that no approximate motif
discovery algorithm we are aware of come with any kind of
probabilistic guarantees, and all require at least three unintuitive
parameters to be set [10]. What can our user do? If the
approximate algorithm was stochastic, she can run it again,
and/or change the parameters, but she may repeatedly face the
same problem. Otherwise, she is condemned to run the fastest
exact algorithm she has access to (which is STOMP [16]).

If the approximate algorithms took a tiny fraction of the time
of the best exact algorithm, this issue would require some careful
reasoning about trade-offs. However, as we will show in Section
IV, all approximate algorithms take a large fraction of the time
needed by SCRIMP++, especially for longer motifs.

For this reason, we argue that an anytime algorithm is
necessary. In most cases, in a few seconds the user has
acceptable results. If she has any doubts, she can simply let the
algorithm run a little longer. There is no need to start the fastest
exact algorithm, because it is already running!

Finally, we need to qualify the claim that STOMP is the
fastest exact algorithm for motif discovery. On “cooperative
data” (relatively smooth data, motifs highly conserved relative
to the rest of the data, short motif lengths etc.), other exact
algorithms such as Quick-Motif [4], IMD [3], or MK [6] can be
fast. But in less-than-cooperative data (e.g., seismology data
[16]) these algorithms degenerate to O(n2m), with very high
constant factors. The authors of [3] are to be commended for
stating this explicitly “…in the worst case, the algorithm still
has a time complexity of O(n2m)”.

As we show in our case studies (see Fig. 17), m can be as
large as 15,000 or greater for real-world problems. In contrast
STOMP (and SCRIMP++) takes O(n2) time, completely
independent of the data and the value of m. Thus, for realistic
problems with high dimensionality, STOMP can be thousands
of times faster than Quick-Motif [4], IMD [3], or MK [6].

III. ALGORITHMS

The SCRIMP++ Algorithm consists of two parts:
PreSCRIMP and SCRIMP (as shown in Fig. 7). In this section,
we will first introduce the SCRIMP algorithm, which is an O(n2)
anytime algorithm with better convergence characteristics than
STOMP [16]. We will then further extend SCRIMP to
SCRIMP++, a robust anytime algorithm which, thanks to the
addition of an ultra-fast preprocessing algorithm PreSCRIMP, is
capable of detecting essentially all the motifs within a time series
at an early stage, even when the motifs are subtle and/or
extremely rare. For simplicity we only consider self-join here;
however, all the algorithms introduced can be easily extended to
AB-join [15].

Fig. 7. The SCRIMP++ algorithm consists of an ultra-fast preprocessing
algorithm, PreSCRIMP, and an O(n2) anytime algorithm, SCRIMP.
PreSCRIMP provides a very accurate approximation of the matrix profile at an
early stage; SCRIMP further refines the approximate matrix profile until it
becomes the exact/final solution. The user can interupt the algorithm at any
time (during either PreSCRIMP or SCRIMP) to inspect the current approximate
solution. Thus overall, SCRIMP++ is also an anytime algorithm.

A. Our Initial Solution: The SCRIMP Algorithm

Before we introduce the SCRIMP algorithm, let us first
review the basics of the STOMP algorithm [16].

The z-normalized Euclidean distance di,j of two time series
subsequences Ti,m and Tj,m can be evaluated as follows:

݀௜,௝ = ඨ2݉ቆ1 − ܳ௜,௝ − ௝ߪ௜ߪ௝݉ߤ௜ߤ݉ ቇ (1)

Here m is the subsequence length, Qi,j is the dot product of
Ti,m and Tj,m, μi is the mean of Ti,m, μj is the mean of Tj,m, σi is the
standard deviation of Ti,m, and σj is the standard deviation of Tj,m.

We can precompute the means and standard deviations for
all subsequences in the time series in O(n) time by applying the
technique introduced in [7]. Once that is done, the means and
standard deviations in (1) can all be obtained in O(1) time.
Furthermore, it is demonstrated in [16] that Qi,j can also be
evaluated in O(1) time once Qi-1,j-1 is given: ܳ௜,௝ = ܳ௜ିଵ,௝ିଵ − ௝ିଵݐ௜ିଵݐ + ௝ା௠ିଵ (2)ݐ௜ା௠ିଵݐ

Based on (1) and (2), the STOMP algorithm [16] evaluates
the distance matrix in Fig. 4 row-by-row in-order and updates
the matrix profile accordingly, rendering an O(n2) time
complexity. However, as indicated in Fig. 6, this in-order
computation prevents motifs at the end of a time series from
being discovered at an early stage. Can we fix this undesirable
property?

Note that (2) also implies that we can evaluate the diagonals
of the distance matrix in Fig. 4 in random order. The SCRIMP
algorithm (Algorithm 1) exploits this, evaluating the matrix

PreSCRIMP SCRIMP

SCRIMP++

time series

approximate Matrix Profile

exact Matrix Profile

profile in an anytime fashion while keeping the same O(n2) time
complexity.

Algorithm 1: The SCRIMP Algorithm
 Input: A time series T and a subsequence length m

Output: Matrix profile P and matrix profile index I of T
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

n ← Length(T)
μ, σ ← ComputeMeanStd(T, m) // see [7]
P ← infs, I ← ones // initialization
Orders← RandPerm(m/4+1 : n-m+1) // randomize evaluation order
for k in Orders //evaluating diagonals in random order

for i ← 1 to n-m+2-k
 if i=1 do q ← DotProduct(T1,m, Tk,m)

 else q ← q - ti-1 ti+k-2 + ti+m-1 ti+k+m-2 // see (2)

 end if
 d ← CalculateDistance(q, μi, σi , μi+k-1, σi+k-1) // see (1)
 if d < Pi do Pi ← d, Ii ← i+k-1 end if
 if d < Pi+k-1 do Pi+k-1 ← d, Ii+k-1 ← i end if
 end for
end for
return P, I

Line 2 precomputes the means and standard deviations of
all subsequences in T. The matrix profile P and matrix profile
index I are initialized in line 3. In lines 5-14, we iteratively
evaluate the diagonals of the distance matrix in Fig. 4 in random
order. Fig. 8 visualizes this. The distance values d1,k, d2,k, …,
dn-m+2-k,n-m+1 are calculated one by one; if di,i+k-1 (denoted as d in
line 10, 1 ≤ i ≤ n-m+2-k) is smaller than Pi (line 11) or Pi+k-1
(line 12), we update the corresponding matrix profile (and index)
values. At any time, the user can interrupt the algorithm to
inspect the current P and I.

Fig. 8. A single iteration of SCRIMP evaluates a randomly selected diagonal in
Fig. 4, thus updating the matrix profile in an anytime fashion.

B. Limitations of the SCRIMP Algorithm

As motifs in the time series correspond to the minimum
points of the oracle (or exact) matrix profile (indicated in Fig.
9.top), we hope that SCRIMP could “focus” on these minimum
points rather than at other locations. This has an element of a
chicken-and-egg paradox to it, we want the algorithm to focus
on where the motifs are, but we are using the algorithm to
discover where the motifs are.

Recall that in each iteration of SCRIMP (as shown in Fig. 8),
we evaluate a random diagonal of the distance matrix. To locate
the motifs of time series T in Fig. 9.top, we need to evaluate the
diagonal starting from d1,126 (126-1=137-12) as early as possible.
As shown in Fig. 9.middle, if SCRIMP evaluates that diagonal
in its first iteration, the running matrix profile already overlaps
perfectly with the oracle at the minimum points. However, if
SCRIMP does not evaluate that diagonal until its very last
iteration (Fig. 9.bottom shows the running matrix profile before
the last iteration), we need to wait until the algorithm is 100%
completed to locate the motifs. In fact, the probability to

evaluate the diagonal of d1,126 before the kth iteration is k/(n-
m+1). While SCRIMP has a chance to find the motif early no
matter where they are located (which is its advantage over
STOMP), that probability is not high.

Fig. 9. top) Motifs (highlighted, located at 12 and 137) correspond to the
minimum values of the matrix profile. middle) Ideally, SCRIMP can locate the
motifs after its first iteration. bottom) In the pathological worst case, SCRIMP
cannot locate the motifs until fully completed.

However, note that Fig. 9.top shows the hardest possible
scenario for motif discovery; there is only a single pair of motifs
in the time series. When the data contain more motifs, SCRIMP
will perform much better. This is much like how the famous
birthday paradox has an unexpectedly fast converge to
probability 1 as we consider more individuals. The chance of
SCRIMP making an early discovery of some pair from a motif
set, increases dramatically if there are more members in that
motif set. In the next section, we will introduce SCRIMP++, an
extended version of SCRIMP which has a much higher
probability of discovering not some, but all the true motifs at an
early stage, even when the motifs are very rare.

C. Our Ultimate Solution: The SCRIMP++ Algorithm

The SCRIMP++ Algorithm is simply the SCRIMP
algorithm (Algorithm 1) augmented by an additional
preprocessing stage called PreSCRIMP (recall Fig. 7). We begin
by introducing the Consecutive Neighborhood Preserving
Property of time series subsequences, upon which PreSCRIMP
is based.

Let us reexamine the matrix profile index of the example
time series T in Fig. 9.top. Fig. 10 shows its first 25 entries.

Fig. 10. The matrix profile index of T.

Here Index = [1, 2, 3, …, n-m+1] is the locations of all the
subsequences in T, I is the matrix profile index (Definition 5) of
T. We can see that the matrix profile index can be divided into
multiple sections of consecutive values: within each section, a
set of consecutive subsequences find another set of consecutive
subsequences as their nearest neighbors. We call this the
Consecutive Neighborhood Preserving (CNP) Property of time
series subsequences.

With a little introspection, one can see that the CNP property
should exist: since consecutive subsequences overlap by a large
portion, if the ith subsequence is very similar to the jth
subsequence, then there is a very high probability that the (i+1)th

d1, k

d2, k+1

…
dn-m+2-k, n-m+1

Pk Pk+1 … Pn-m+1P

P
P1

P2

…
Pn-m+2-k

Update
if smaller

Update if smaller

0 20 40 60 80 100 120 140 160 180 200

Running Matrix Profile (ideal)

Oracle Matrix Profile

Running Matrix Profile (worse case)

Oracle Matrix Profile

time series T

Oracle Matrix Profile

Index 1 2 3 4 … 7 8 9 … 24 25 …
I 56 57 112 113 … 116 133 134 … 149 150 …

subsequence is also very similar to the (j+1)th subsequence. In
Fig. 11, we can see that the 11th, 12th, 13th, and 14th subsequences
find the 136th, 137th, 138th and 139th subsequences as their
nearest neighbors, respectively; the subsequence-neighbor pairs
remain a constant location difference of 125.

Fig. 11. Visualizing the CNP property of time series subsequences at the
vicinity of the 1st motif pattern.

Exploiting the CNP property, we propose a preprocessing
algorithm PreSCRIMP, that produces a very close
approximation of the oracle matrix profile while costing only a
tiny fraction of its O(n2) computation time. Essentially, we
sample subsequences from the time series with a fixed interval
s (Fig. 12.top shows the starting locations of these sampled
subsequences). For each sampled subsequence, we find its exact
nearest neighbor. Assume that Ti,m is a sampled subsequence,
and its nearest neighbor is Tj,m, then according to the CNP
property, there is a high probability that the nearest neighbor of
Ti+k,m is Tj+k,m (k=-s+1, -s+2, …, -2, -1, 1, 2, …, s-2, s-1). We
compute the distances between these pairs of subsequences and
update the matrix profile if a smaller distance value shows up.

Fig. 12. top) Subsequences are sampled from time series T with a fixed interval
s. bottom) After running PreSCRIMP, the running matrix profile becomes very
similar to the oracle matrix profile, especially at the low values we care about.

The overall algorithm is outlined in Algorithm 2. Line 2
precomputes the means and standard deviations of all
subsequences in T. In line 3, we sample subsequences from time
series T with a fixed interval s (Fig. 12.top shows their starting
position), then process these subsequences in random order.
Each sample subsequence is processed with two stages (lines 4-
22).

In the first stage (lines 4-7), we evaluate the distance profile
corresponding to the current sample subsequence Ti,m with the
MASS algorithm [5], then update the running matrix profile
(and index) if we find a smaller distance value. Note that after
this stage, we already know the nearest neighbor of Ti,m (assume
it is Tj,m), and the matrix profile and matrix profile index are
exact at the ith entry. As a result, we can see from Fig. 12.bottom
that the running matrix profile aligns perfectly with the oracle
matrix profile at the sampled locations.

In the second stage (lines 8-22), we refine the running matrix
profile (and index) near the ith entry by exploiting the CNP
property. Starting from the current sample subsequence Ti,m and
its nearest neighbor Tj,m, we move forward to evaluate the

pairwise distances between (Ti+1,m, Tj+1,m), (Ti+2,m, Tj+2,m), …,
until we reach the next sampled location or the end of the time
series (lines 10-15). After that, we traverse backward from Ti,m
and Tj,m to evaluate the pairwise distance between (Ti-1,m, Tj-1,m),
(Ti-2,m, Tj-2,m), …, until we reach an earlier sampled location or
the beginning of the time series (lines 17-22). The corresponding
running matrix profile (and index) entries are updated once we
find a smaller distance value.

Algorithm 2: The PreSCRIMP Algorithm
 Input: A time series T, a subsequence length m and a sampling

interval s.
Output: The running matrix profile P and matrix profile index I of T

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

n ← Length(T), P← infs, I← ones // initialization
μ, σ ← ComputeMeanStd(T, m) // precomputation, see [7]
for i ← RandPerm(1 : s : (n-m+1)) do //sampling with interval s
 seq ← Ti,m //obtain a sample subsequence
 D ← MASS (T, seq) // evaluate a distance profile, see [5]
 P, I ← ElementWiseMin (D, P, i)
 Pi , Ii ← min(D)
 j ← Ii // the nearest neighbor of the sample subsequence
 q ← CalculateDotProduct (Pi, μi, σi, μj, σj), q’ ← q // see (1)
 for k ← 1 to min (s-1, n-m+1- max(i,j)) do

 q ← q - ti+k-1 tj+k-1 + ti+k+m-1 tj+k+m-1 // see (2)
 d ← CalculateDistance (q, μi+k, σi+k , μj+k, σj+k) // see (1)
 if d < Pi+k do Pi+k ← d, Ii+k ← j+k end if
 if d < Pj+k do Pj+k ← d, Ij+k ← i+k end if
 end for
 q ← q’
 for k ← 1 to min(s-1, i-1, j-1) do
 q ← q - ti-k+m tj-k+m + ti-k tj-k // see (2)
 d ← CalculateDistance (q, μi-k, σi-k , μj-k, σj-k) // see (1)
 if d < Pi-k do Pi-k ← d, Ii-k ← j-k end if
 if d < Pj-k do Pj-k ← d, Ij-k ← i-k end if
 end for
end for
return P, I

The overall time complexity of the algorithm is O(n2logn/s),
where n is the length of the time series and s is the sampling
interval. The space complexity is O(n). From Fig. 12.bottom, we
can see that after running PreSCRIMP, the running matrix
profile aligns very well with the oracle matrix profile, especially
at the minimum points, which for motif discovery, are all we
care about.

The reader may wonder how we determine the sampling
interval s. Note that any unsampled subsequence must overlap
with one of the sampled subsequences by at least 1-s/(2m).
Therefore, the smaller s is, the more accurate is our running
matrix profile (and the longer PreSCRIMP takes to compute it).
As a practical matter (as we will demonstrate later in Section
IV), we set s=m/4, which guarantees that all the subsequences
overlap with at least one sampled subsequence by at least 87.5%.
This setting renders PreSCRIMP an O(n2logn/m) time
complexity. As the subsequence length m is normally much
larger than logn, the time needed for PreSCRIMP is a tiny
fraction required for SCRIMP/STOMP.

After running PreSCRIMP, we continue to refine the matrix
profile with SCRIMP, until it converges to the exact solution.
We call the augmentation of SCRIMP with PreSCRIMP,
SCRIMP++ (recall Fig. 7). Note that SCRIMP++ can be
interrupted at any stage (including during the PreSCRIMP
stage), to produce an approximate solution.

time series T

0 20 40 60 80 100 120 140 160 180 200

Nearest Neighbor

T11, 20

T12, 20

T13, 20

T14, 20

T136, 20

T137, 20

T138, 20

T139, 20

time series T
s

0 20 40 60 80 100 120 140 160 180 200

Oracle Matrix Profile

Running Matrix Profile

IV. EMPIRICAL EVALUATION

To ensure that our experiments are reproducible, we have
built a website which contains all data/code/raw spreadsheets for
the results, in addition to many experiments that are omitted here
for brevity [18]. All experiments were run on a Dell XPS 8920,
with Intel Core i7-7700 CPU @ 3.6GHz and 64GB RAM.

A. Comparing Convergence Behaviors

We begin by comparing the convergence behavior of
STAMP [15], STOMP [16] and SCRIMP++. Note that STOMP
is not regarded as a true anytime algorithm but is included for
completeness.

To stress-test these algorithms with different circumstances
(different numbers and locations of motifs, different data type,
etc.), we created four different synthetic datasets. Fig. 13 shows
one example from each of the four datasets.

Each dataset includes 100 time series of length 40,000.
Within each time series we embed various numbers of motif
patterns of length m=400 at random locations. The first dataset
(Fig. 13.a) is a set of random-walk time series; within each of
these time series we embed a single pair of random-walk motif
patterns (they are similar, but not identical). The second dataset
(Fig. 13.b) is also random-walk data, but contains 10 pairs of
different random-walk motif patterns. The third dataset (Fig.
13.c) is adapted from [16], where we have a continuous
recording of seismograph background noise, and embed in it one
pair of repeated earthquake signals (similar but not identical) at
random locations. The fourth dataset (Fig. 13.d) is random noise
time series; we embed no motifs in it, but regard its natural top-
1 motif pattern of length 400 as target.

Fig. 13 a) Random-walk data with one pair of embedded random-walk motif
patterns. b) Random-walk data with 10 embedded random-walk motif pairs. c)
Seismology data with two repeated earthquake signals. d) Random noise
without any embedded motif patterns.

As the algorithms evaluate the matrix profile of a time series,
we constantly interrupt it, mark the current runtime t, then
extract the top-k motif patterns (we set k = 10 for Fig. 13.b; k =
1 for Fig. 13.a, Fig. 13.c and Fig. 13.d) from the running matrix
profile and check to see if the embedded motif patterns have
been discovered. We regard an embedded motif pattern as
discovered if it overlaps with one of the k extracted motif
patterns by at least 95%. We use a value p to represent the
percentage of embedded motif pairs discovered at each time
instant t.

We first consider Fig. 13.b, where the random-walk time
series includes 10 pairs of embedded motifs. Fig. 14 shows the
average value of p as the three algorithms search for motifs.

2 To be clear, many biologists produce terabytes of data, but often each “run”
or “treatment” is only of the order of tens to hundreds of thousands in length.

Fig. 14 The average percentage of embedded motif pairs discovered at each
time instant for the dataset shown in Fig. 13.b. Note that the time for STAMP’s
convergence is truncated.

We can see that SCRIMP++ shows much faster convergence
characteristics than STAMP or STOMP in locating the top 10
motif pairs. After the PreSCRIMP phase (requiring only 0.26
seconds) finishes, all the 10 embedded motifs randomly located
in all 100 random-walk time series are successfully discovered.
In contrast, to be just 99% sure that we have discovered all the
true motifs, STAMP takes about 8 times longer and STOMP
needs to almost run to completion (about 9 times longer).

Now let us consider the harder scenarios in Fig. 13.a, Fig.
13.c and Fig. 13.d, where there are only one pair of motif
patterns in the data. We experimented in these scenarios
because: 1) The top-1 motif in these datasets are hard to locate
as they are rare. 2) The seismology data in Fig. 13.c is a typical
example of “less-than-cooperative” data discussed in Section
II.C, which would degenerate rival motif discovery methods
such as Quick-Motif [4] or MK [6] to their worst case time
complexity [16]. 3) The random-noise data in Fig. 13.d shows
an extremely hard case for motif discovery, as essentially all
pairs of time series subsequences are approximately equidistant.
Nevertheless, as shown in Fig. 15, SCRIMP++ shows a very fast
convergence characteristic in all these datasets. After the
PreSCRIMP phase is completed (0.26 seconds), all the top-1
motifs in all the time series within all three datasets are already
successfully discovered, costing only a tiny fraction of time
needed by STOMP or STAMP. Note that here STAMP does not
perform as well as in Fig. 14, as the motifs are very rare.

Fig. 15 left-to-right) The observed probability for the top-1 motif discovered at
each time instant for the dataset shown in Fig. 13.a, Fig. 13.c and Fig. 13.d.
Note that the full time for STAMP’s convergence is truncated.

As we show in the next section, SCRIMP++ maintains this
advantage over different lengths of time series and motif
lengths. We chose to consider 40,000 data points here, because
based on our informal survey of practitioners that use motif
discovery, this is about the median size of datasets2 considered
[1][9]. Here we can find such motifs in just ¼ of a second, truly
interactive time [11].

Embedded Motif

0 40000 0 40000

(a) (b)

(c) (d)

…
PreSCRIMP finished SCRIMP++

finished

STAMP
finishes at
26.2s

STOMP
finished

t (sec)

SCRIMP++

0 1 2 3

0%

50%

100%

p

PreSCRIMP finished

t (sec)1 2 30

seismology data

PreSCRIMP finished

0 1 2 3

random noise data

t (sec)

0%

50%

100%

p

random-walk (1 motif)

t (sec)0 1 2 3

PreSCRIMP finished

SCRIMP++

STAMP

B. Runtime Comparison of SCRIMP++ and STOMP

In this section, we compare the run time of SCRIMP++ with
the state-of-the-art exact motif discovery algorithm, STOMP
[16]. The time measurements are based on the C++
implementation of both algorithms. Note that the runtime for
both algorithms is invariant to the type of time series data we are
using. TABLE I shows the time required by both algorithms
with a fixed subsequence length m, on random noise time series
with increasing length n.

TABLE I. TIME NEEDED FOR MOTIF DISCOVERY WITH ݉ = 4096, VARYING ݊

Algorithm n 217 218 219 220 221
STOMP 22.5s 1.78m 7.37m 37.1m 2.22h

SCRIMP++
PreSCRIMP 0.51s 2.33s 17.2s 1.52m 6.83m

SCRIMP 23.9s 1.94m 7.96m 40.9m 2.46h

We can see that the runtime of the SCRIMP Algorithm is
similar to the STOMP algorithm, as they vary only in evaluation
order. The PreSCRIMP algorithm consumes only a very small
fraction (less than 6%) of their time3.

In TABLE II, we fixed the time series length n and vary
subsequence length m. We can see that the runtime of STOMP
and SCRIMP are essentially invariant to the subsequence length
m. PreSCRIMP, with a time complexity O(n2logn/m), costs less
and less time while we increase m. As m can be in the thousands
for real-world problems (cf. Sections IV.D-IV.F), this is a
desirable feature.

TABLE II. TIME NEEDED FOR MOTIF DISCOVERY WITH ݊ = 218, VARYING ݉

Algorithm m 1024 2048 4096 8192 16384
STOMP 1.83m 1.78m 1.78m 1.8m 1.67m

SCRIMP++
PreSCRIMP 9.22s 4.81s 2.33s 1.23s 0.58s

SCRIMP 2.17m 2.12m 1.94m 2.05m 1.96m

Furthermore, as PreSCRIMP is based on iterative vector
operations, the computation process is highly parallelizable.
Implementing PreSCRIMP with high-performance computing
platforms such as GPU is trivial, and we make the GPU version
freely available at [18].

C. Comparison to Rival Methods

We have argued that there is a critical difference between
approximate algorithms and anytime algorithms for motif
discovery. By definition, anytime algorithms are also
approximate algorithms (if stopped early), but the converse is
not true. If the motifs returned by an approximate algorithm are
not satisfactory, the user has no recourse but to adjust parameters
and try again, or resort to the fastest exact algorithm [16].

Nevertheless, it may be instructive to compare our proposed
algorithm to the state-of-the-art approximate algorithm. But
which algorithm is state-of-the-art for this task? A recent survey
reviews more than a dozen algorithms without explicitly
answering that question [10]. Fortunately, we can bypass this

3 Note that though we could further speed up PreSCRIMP with multi-threading
or piece-wise FFT, we reported its run time here without any of these
optimizations.

issue, and effectively compare to all of them. All such
algorithms, whether they use hashing, grammars, Markov
models, suffix trees etc. [10], must first convert the data into a
symbolic representation. The time taken to do this is clearly a
lower bound on the time to produce any motifs. Note that we
cannot bypass this time requirement with any
precomputation/indexing, as this is only possible if one knows
the length of motifs, but as we have shown, this can be changed
in an ad-hoc manner during the user’s interactive session.

We used the code written by L. Wei [13] (which is the code
used by the majority of papers reviewed in [10]), to discretize
increasingly long time series, while keeping m fixed to 4,096
and a dimensionality of 8 and cardinality of 5 (typical values for
most research efforts [10]). As Fig. 16 shows, we compare the
runtime of this preprocessing discretization step of the rival
algorithms to that of PreSCRIMP.

Fig. 16. The time needed to discretize data and the time need to perform
PreSCRIMP for increasingly long data.

We can see that when the time series length is smaller than
219, SCRIMP++ has already reported a very high-quality
solution with PreSCRIMP, before any approximate algorithm is
even in a position to finally start the hashing or suffix tree
construction that they hope will yield an approximate answer.

Note that this experiment offers an extremely weak lower
bound for the cost of the rival approximate algorithms. In
practice, the searching such algorithms take is 3 to 20 times
longer than this preprocessing [10]. Finally, all these methods
are reporting motifs found in a lossy data representation with the
inherent error that produces, whereas SCRIMP++ is searching
the original data.

D. Case Study: Multiscale-Motifs

We believe that the extraordinary speed of PreSCRIMP will
allow the community to invent novel time series primitives. To
give an example, we consider a question suggested by an
entomologist collaborator: are there any multiscale-motifs in the
EPG datasets previously discussed in Section I.A? We
informally define a multiscale-motif as a pair of patterns that are
very similar to each other but differ by at least a factor of two in
length.

Clearly finding multiscale-motifs is computationally
challenging, because beyond comparing all pairs of
subsequences, we must now compare all pairs of subsequences,
and at all possible combinations of scales. It may be possible to
create a scalable novel algorithm to find multiscale motifs, but
the speed of PreSCRIMP suggests a very easy “fast-enough”
method that we can implement in a handful of lines of code,
given PreSCRIMP as a primitive.

800,000 1,000,000
0

50

100

600,000400,000200,0000

Ti
m

e
(s

)

Recall we can use PreSCRIMP to do self-joins or AB-joins.
Suppose we set B = rescale(A,300%) and compute an AB-join.
The resulting motifs discovered will reflect a short pattern in A
that matches a much longer pattern in B, after the patterns are
scaled to a common length. In this case, we do not know what
the “right” rescaling length is, but PreSCRIMP is fast enough to
allow us to run it fifty times and simply test all possible scalings
from 200% to 300%, in 2% increments. We have done this for a
1.8 hour (650,000 datapoints) long trace of Asian citrus psyllid
(Diaphorina citri) feeding on Citrangor, a subspecies of orange.
Fig. 17 shows that the best multiscale-motif occurs for a
rescaling of 218%.

Fig. 17. top.left) An Asian citrus psyllid feeding on a citrango leaf. top.right)
The top-1 multiscale-motif discovered. bottom) the two motif occurrences in
context.

Note that one may wish to normalize the Euclidian distance
for length when comparing multiscale-motifs (it happens to
make no difference in this case). Further note that we are not
claiming any particular entomological significance here,
although it is interesting that this insect has behaviors that
manifest themselves at such different scales. Our point is simply
to show that PreSCRIMP is fast enough to be considered as a
primitive we can call multiple times for higher-level analytics.
The time taken for this entire experiment was just 84 seconds
(m=15,000).

This ability to handle motifs that occur at different lengths
may also be of interest to the neuroscience/neuroinformatics
community, which has recently adopted time series motifs as
one of their most used analytic tools [1][9]. However, some of
these authors have criticized current motif discovery algorithms
because they “consider only exactly equal duration sequences
as potential matches” [9]. The authors of [9] note that motifs of
“turning maneuvers” of Drosophila larval have a variable length
scale, with µ = 0.83s and σ = 0.27s. Using the simple algorithm
described above, we can find multiscale motifs in the range of
µ ±2σ in a dataset of 40,000 points, searching all rescalings in
5% increments ([35%, 40%, … ,160%, 165%]) in just 17
seconds.

E. Case Study: Motif Joins

The EPG domain considered in the previous section is a rich
source of fundamental problems that can be addressed with
motif discovery, below we consider another such problem.

As shown in Fig. 18.top, we consider three datasets, each of
length 7,560,000, representing 21-hours of insect behavior. One
of them, in which the insect was feeding on Valencia (a type of
orange), we designated as reference sample, ValenciaRef. We are
interested to know if any elements of this reference behavior are
to be found in the two other datasets, in one of which an insect
was feeding on a Yamaguchi (a different type of citrus), and the

other in which a different insect is feeding on a Valencia. We
hope to understand what elements of the Asian citrus psyllid
may be attributed to the type of plant it is feeding on, and what
may be attributed to simple differences between individuals.
Such studies have implications for breeding resistant strains and
hybrids.

Fig. 18. top) The three EPG time series under investigation. bottom-left to right)
There is little evidence of conserved patterns when the insects are feeding on
different citrus plants, but there are strongly conserved patterns when feeding
on a single plant type.

It is instructive to think of the cost of a brute-force-search
here. The motifs are of length 4,000, requiring (at least) 4,000
real-valued operations. Each AB-join requires about 5.71 * 1013

pairwise comparisons of subsequences, requiring 2.28 * 1017
real-valued operations. Even at one hundred gigaFLOPS, this
would require 26.4 days. In contrast, SCRIMP++ took just 2
hours.

F. Case Study: Electrical Power Demand

As a final example of the scalability of SCRIMP++, and the
potential actionability of motif discovery, we examined the
electrical power demand dataset of [8]. Each trace corresponds
to two calendar years or 8,198,756 datapoints, sampled once
every 8 seconds. As shown in Fig. 19, a pair of motifs from trace
3 of House-5 caught our attention.

Fig. 19. The top two motifs in an electrical power data set.

The first motif is the (near) binary switching on-and-off of a
freezer compressor at very regular intervals. This unusually
“perfect” motif has dozens of occurrences, almost all at night
when there is no kitchen actively that would cause the
compressor to “kick-in” after the freezer was opened and disrupt
the perfect spacing. The second motif is more interesting. It
suggests that the compressor was running continuously for at
least three hours. Two common causes of a freezer motor
running for a long time are a faulty thermostat, or the more
prosaic explanation, the homeowner not fully closing the door.
In either case this is clearly a low-hanging fruit for energy
conservation.

SCRIMP++ allows us to find such patterns in real-time
interactive sessions, something that no other tool allows [10].

0 7,000,000

1 4000 1 4000

ValenciaRef vs Yamaguchi ValenciaRef vs Valencia

1 1800 1 18004 hours 4 hours

G. When can PreSCRIMP fail?

The previous sections have shown the extraordinary alacrity
and effectiveness of PreSCRIMP. To explore the limits of
PreSCRIMP, in section IV.A, we considered all the possible
worst-case scenarios: when the motifs are very rare, when the
dataset is of very high intrinsic dimensionality, when all the
subsequence pairs are equidistant, etc. Nevertheless,
PreSCRIMP succeeded in quickly locating all the true motifs in
all these scenarios. It is natural to ask, can PreSCRIMP ever fail?
Do we ever need to resort to running the SCRIMP phase of the
SCRIMP++ algorithm, to refine the PreSCRIMP answer?

In spite of a diligent search of over 100 diverse datasets, we
could not find any real dataset that prevents PreSCRIMP from
quickly discovering motifs. However, with careful
introspection, we can create a pathological example that is
difficult for PreSCRIMP. As shown in Fig. 20.top, we created a
synthetic random walk time series of length 40,000, with a pair
of motifs embedded at fixed locations (T21842,400 and T24871,400,
shown in red and yellow respectively). We edited the first/red
motif pattern such that just before and after the pattern, the level
of the time series dramatically changes. In this scenario, the CNP
property no longer hold at locations around the motif patterns.
Though T21842,400 is very similar to T24871,400, T21842+k,400 is very
different from T24871+k,400 (k=-3, -2, -1, 1, 2, 3) because of the
dramatic level change. As a result, PreSCRIMP cannot discover
the motif pair unless either T21842,400 or T24871,400 is sampled.

Fig. 20. top) A pathological random walk time series with a pair of embedded
motifs. The level of the data dramatically changes just before and after the first
motif pattern, which invalidates the CNP property. bottom) the observed
probability for the top-1 motif discovered at each time instant. Note that the
probability for STOMP is binary, and flips to 100% as soon as it encounters the
first motif. That could happen arbitrarily late (i.e. to the far right) in the worse
case.

However, as Fig. 20.bottom shows, the overall SCRIMP++
algorithm still converges much faster than STAMP [15] and
STOMP [16] at the early stage. Here the result is averaged over
100 runs, and the value p represents the probability that the
embedded motif pair is discovered at each time instant t.
Although SCRIMP++ fails to discover the motif at the
PreSCRIMP phase, p quickly increases as the algorithm turns
into the SCRIMP phase thanks to its random computation
ordering. In contrast, STOMP shows a 0% probability in
locating the motifs until after 1.2 seconds (recall that STOMP is
deterministic, and reports the same result over the 100 runs);
STAMP shows a very low probability in finding the motifs even
when SCRIMP++ finishes. This example demonstrates the

robustness of SCRIMP++, even in the most pathological and
contrived cases that defeat PreSCRIMP.

V. CONCLUSIONS

In many domains, including neuroscience [1][2],
entomology [9], medicine and consumer-level energy
conservation [8], etc., analysts routinely deal with datasets that
are in the range of a few million data points long. For the first
time, SCRIMP++ allows the possibility of real-time interactive
discovery of motifs in such datasets, using off-the-shelf
consumer desktops. We believe that this ability will allow novel
discoveries to be made in the relevant domains, and even new
types of analytics to be invented. We have made all code and
data freely available in perpetuity to allow the community to
confirm and extend our findings [18].

REFERENCES
[1] Brown, A.E., et. al. A dictionary of behavioral motifs reveals clusters of

genes affecting C. elegans locomotion. Proc. Natl. Acad. Sci. 110.2
(2013): 791-796

[2] Kolb, I., et. al. Evidence for long-timescale patterns of synaptic inputs in
CA1 of awake behaving mice. Journal of Neuroscience 38.7(2018): 1821-
1834

[3] Gu, Z., He, L., Chang, C., Sun, J., Chen, H., Huang C., Developing an
efficient pattern discovery method for CPU utilizations of computers.
International Journal of Parallel Programming. 45.4 (2017): 853-878.

[4] Li, Y., U, L.H., Yiu, M.L., Gong, Z. Quick-motif: An efficient and
scalable framework for exact motif discovery. ICDE 2015: 579-590

[5] MASS, http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

[6] Mueen, A., Keogh, E., Zhu, Q., Cash, S., and Westover, M.B. Exact
discovery of time series motifs. SDM 2009, vol. 9, pp. 473-484.

[7] Rakthanmanon, T., et. al. Mining trillions of time series subsequences
under dynamic time warping. TKDD 7.3 (2013): 10

[8] REFIT: Smart Homes and Energy Demand Reduction. URL:
www.refitsmarthomes.org/index.php/data. Accessed 01/21/2018.

[9] Szigeti, B., Deogade, A. and Webb, B. Searching for motifs in the
behaviour of larval Drosophila melanogaster and Caenorhabditis elegans
reveals continuity between behavioural states. Journal of the Royal
Society Interface 12.113 (2015): 20150899.

[10] Torkamani, S. and Lohweg, V. Survey on time series motif discovery.
Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov. 7.2 (2017)

[11] Turkay, C., Kaya, E., Balcisoy, S., Hauser, H. Designing progressive and
interactive analytics processes for high-dimensional data analysis. IEEE
Trans. Vis. Comput. Graph. 23.1 (2017): 131-140.

[12] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh,
E. Experimental comparison of representation methods and distance
measures for time series data. Data Min. Knowl. Discov. 26.2 (2013):
275-309.

[13] Wei, L. SAX code for the N/n not equal an integer case (2006). URL
www.cs.ucr.edu/~eamonn/SAX.htm

[14] Willett, D., George, J., Willett, N. Stelinski, L. and Lapointe, S. Machine
learning for characterization of insect vector feeding. PLoS computational
biology, 12.11 (2016): e1005158.

[15] Yeh, C.C.M., et. al. Matrix Profile I: All Pairs Similarity Joins for Time
Series: A Unifying View that Includes Motifs, Discords and Shapelets.
IEEE ICDM 2016: 1317-1322.

[16] Zhu, Y., et. al. Matrix Profile II: Exploiting a Novel Algorithm and GPUs
to Break the One Hundred Million Barrier for Time Series Motifs and
Joins. IEEE ICDM 2016: 739-748.

[17] Zhu, Y., Imamura, M., Nikovski, D., and Keogh, E. Matrix Profile VII:
Time Series Chains: A New Primitive for Time Series Data Mining. IEEE
ICDM 2017: 695-704.

[18] Project Website: https://sites.google.com/site/scrimpplusplus/

0 1 2 3

PreSCRIMP
finished

STAMP finishes at 26.2
sec (truncated)

STOMP finishes

STOMP

t (sec)

0%

50%

100%

p

0 40000

Embedded Motif

T21842,400
T24871,400

This “step-up” for STOMP occurs
when it encounters the first motif

SCRIMP++
finishes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

