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ABSTRACT 

The discovery of conserved (repeated) patterns in time series is 

arguably the most important primitive in time series data mining. 

Called time series motifs, these primitive patterns are useful in their 

own right, and are also used as inputs into classification, clustering, 

segmentation, visualization, and anomaly detection algorithms. 

Recently the Matrix Profile has emerged as a promising 

representation to allow the efficient exact computation of the top-k 

motifs in a time series. State-of-the-art algorithms for computing 

the Matrix Profile are fast enough for many tasks. However, in a 

handful of domains, including astronomy and seismology, there is 

an insatiable appetite to consider ever larger datasets. In this work 

we show that with several novel insights we can push the motif 

discovery envelope using a novel scalable framework in 

conjunction with a deployment to commercial GPU clusters in the 

cloud. We demonstrate the utility of our ideas with detailed case 

studies in seismology, demonstrating that the efficiency of our 

algorithm allows us to exhaustively consider datasets that are 

currently only approximately searchable, allowing us to find subtle 

precursor earthquakes that had previously escaped attention, and 

other novel seismic regularities. 
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1 Introduction 

Time series motifs are approximately repeated subsequences of 

a longer time series. As Figure 1 (and Figure 4) suggest, motifs 

often reveal unexpected regularities in large datasets. In the last 

decade, time series motif discovery has become an increasingly 

important primitive for time series analytics, and is used in domains 

as diverse as seismology [4], astronomy, geology, ethology [44], 

neuroscience [22], medicine [13], consumer behavior [41], music 

[38] and sports analytics. In recent years, algorithmic advances 

(coupled with hardware improvements) have greatly expanded the 

purview of motif discovery. It has recently been shown that motif 

discovery is trivial given a data structure called the Matrix Profile 

(MP), and that the current state-of-the-art MP batch construction 

algorithm STOMP, can discover motifs efficiently enough for 

many users [44].  

A survey of the literature suggests that many medical, scientific 

and industrial laboratory analysts rarely deal will datasets with 

more than a few million data points [24]. For such datasets, 

STAMP which is an anytime algorithm, can produce a high-quality 

approximate MP in minutes, which approaches “interactive” time 

for most purposes [43]. “Minutes” may not seem impressively fast, 

until one recalls that many datasets in question take days or weeks 

to collect. For example, in Figure 1 the approximate motif 

discovery for this full-day chicken behavior dataset takes well 

under an hour. The biologist using this tool reports that “this is fast 

enough for what I need.” [24].  

Nevertheless, we argue that there is an insatiable need to scale. 

Domains such as seismology and astronomy have a near-

inexhaustible appetite for ever-larger datasets. For example, a 

recent paper reports that performing (approximate) motif search on 

larger datasets “directly enabled the discovery of 597 new 

earthquakes near the Diablo Canyon nuclear power plant in 

California” [22]. Undoubtedly, exact search of the same dataset (or 

larger) would elucidate further unexpected regularities.  
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Figure 1: top) Twenty-four hours of time series from an 

accelerometer worn by a chicken. bottom-left) A zoom-in shows 

that the data is apparently void of structure; however, the top-

1 motif (bottom.right) suggests that some behaviors are 

conserved. Inspection of video recorded in parallel suggests this 

a dustbathing behavior [22].  

To meet the needs of domain experts, this paper presents a 

cloud-scale framework called SCAMP (SCAlable Matrix Profile) 

that expands the purview of exact motif discovery. We summarize 

our major contributions below: 

 

1. We provide a general distributed framework for the ultra-

scalable computation of the MP [43]. Both the performance and 

numerical stability are greatly improved via our method when 

dealing with long time series.  

2. Our framework allows us to work with time series data which 

do not fit wholly into GPU memory, allowing MPs to be 

computed which are larger than previously considered. 

3. We introduce novel numerical methods to increase 

performance and improve stability of the MP computation; this 

allows the use of single-precision floating-point calculations 

for some datasets, which allows our methods to be applied to 

larger datasets at a cheaper amortized cost.   

4. We deployed a fault-tolerant framework that is compatible 

with “spot” instances [39], which major cloud providers 

(Amazon, Google, and Microsoft) offer at a major discount, 

making motif discovery more affordable. 

5. We provide a freely available open-source implementation of 

our framework which runs on Amazon Web Services in a 

cluster of instances equipped with Nvidia Tesla V100 GPUs, as 

well as optimized CPU code at [27]. 

 

The rest of this paper is organized as follows. In Section 2, we state 

our assumptions, introduce necessary definitions, and summarize 

related work. Section 3 has a description of our novel scalable 

framework and the improvements we made that allow us to further 

push the boundary of MP calculations. In Section 4, we illustrate a 

few of the use cases for very large MPs through several case studies 

on challenging datasets. In Section 5, we provide a detailed 

empirical analysis of our ideas, before offering conclusions in 

Section 6. 

2 Definitions and Assumptions 

We begin by stating a key assumption; it has been developed at 

length elsewhere [43][44], but we repeat it here.  

 

Key Assumption: Motif discovery under any reasonable 

definition is trivial if given the MP data structure. 

 

That is to say, there are a handful of definitions of time series 

motifs, top-k motifs, range motifs, biased motifs [9], contextual 

motifs [13] etc. Irrespective of the chosen definition, the MP alone 

is all that is needed to extract the motif in linear time and space 

[40][43]. Given this observation, this paper focuses exclusively on 

computing the MP as efficiently as possible; the reader can 

appreciate that this implicitly solves the task at hand. Our key 

assumption actually understates the case. Having the MP in-hand is 

sufficient to solve many additional time series data mining tasks, 

including, discord discovery, chain discovery, snippet discovery, 

segmentation etc. [40][43].  For simplicity we ignore these 

additional uses of the MP here.  

We now formally define the data type of interest, time series: 

Definition 1: A time series T is a sequence of real-valued 

numbers ti: T = t1, t2, ..., tn where n is the length of T. 

We are interested not in global, but local properties of a time 

series. A local region of time series is called a subsequence: 

Definition 2: A subsequence Ti,m of a time series T is a 

continuous subset of the values of T of length m starting from 

position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤  n-m+1. 

Given a query subsequence Ti,m and a time series T, we can 

compute the distance between Ti,m and all the subsequences in T. 

We call this a distance profile: 

Definition 3: A distance profile Di corresponding to query Ti,m  

and time series T is a vector of the Euclidean distances between a 

given query subsequence Ti,m and each subsequence in time series 

T. Formally, Di = [di,1, di,2,…, di,n-m+1], such that di,j (1 ≤  j ≤ n-m+1) 

is the distance between Ti,m and Tj,m. 

We assume that the distance is measured by Euclidean distance 

between z-normalized subsequences [43][44]. Once we obtain Di, 

we can extract the nearest neighbor of Ti,m in T. Note that if the 

query Ti,m is a subsequence of  T, the ith location of distance profile 

Di is zero (i.e., di,i = 0) and close to zero just to the left and right of 

i. This is called a trivial match. We avoid such matches by ignoring 

an “exclusion” zone of length m/k before and after i, the location of 

the query, where 1 < k < m-1. 

What should the value of k be set to? In more than a dozen 

works considering hundreds of diverse datasets it has been shown 

to be inconsequential [9][43][44]. There is one possible case that 

would require more careful introspection. It is best explained by an 

analogy to text motifs in the presence of anadiplosis. Consider this 

line of wordplay from a Monty Python sketch “.. the very meaning 

of life itselfish bastard…”. Here the string “self’ belongs to both 

‘itself’ and to ‘selfish’. Something similar can happen with time 

series data. For example, in a motion captured ASL performance, 

the end of one signed word can overlap the beginning of the next 

word. In such a case the user needs to decide if he is willing to allow 

such overlapping by setting k to a smaller value; however, given 

the relative unimportance of k, in this paper we set k=4 and ignore 

the exclusion zone by setting di,j = ∞ (i-m/4 ≤  j ≤ i+m/4). The 

nearest neighbor of Ti,m can thus be found by evaluating min(Di). 

We wish to find the nearest neighbor of every subsequence in 

T. The nearest neighbor information is stored in two meta time 

series, the Matrix Profile (MP) and the Matrix Profile Index. 

Definition 4: A Matrix Profile P of time series T is a vector of 

the Euclidean distances between every subsequence of T and its 

nearest neighbor in T. Formally, P = [min(D1), min(D2),…, min(Dn-

m+1)], where Di (1 ≤ i ≤  n-m+1) is the distance profile Di 

corresponding to query Ti,m and time series T. 
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The ith element in the MP tells us the Euclidean distance from 

subsequence Ti,m to its nearest neighbor in time series T. However, 

it does not tell us the location of that nearest neighbor; this 

information is stored in the companion MP index: 

Definition 5: A Matrix Profile Index I of time series T is an 

integer vector: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di). 

Figure 2 depicts the relationship between the distance matrix, 

distance profile (Definition 3) and MP (Definition 4). Each distance 

matrix element di,j is the distance between Ti,m and Tj,m (1 ≤ i, j ≤ n-

m+1) of time series T. Figure 3 illustrates a distance profile and a 

MP created from the same time series. 

As presented, the MP is a self-join: for every subsequence in a 

time series T, we find its (non-trivial-match) nearest neighbor 

within the same time series. However, we can trivially generalize 

the MP to be an AB-join: for every subsequence in a time series A, 

record information about its nearest neighbor in time series B 

[44][41]. Note that A and B can be of different lengths, and 

generally, AB-join ≠ BA-join.  

2.1 Observations on Precision 

Several independent research groups have noted that for some 

time series retrieval tasks, 64-bit precision is unnecessarily precise 

[3][40]. Researchers have shown that reduced precision can be 

exploited to have significant performance benefits with minimal 

observable difference in quality of results [40][15]. This 

observation has been heavily exploited in deep learning [14][15]; 

however, it is rarely exploited for time series, except for allowing 

the use of Minimal Description Length to score and rank models 

[3], which is orthogonal to scalability considerations. Figure 4 

shows an MP computed on some insect electrical penetration graph 

(EPG) data using 64-bit precision.   

This plot suggests that the difference between MPs computed 

at 64 and 32-bit precision is so small it does not affect the motifs 

discovered, and is not visible unless we multiply the difference by 

a large constant; however, we must consider two caveats: 

  

• The time series shown in Figure 4 is relatively short. To address 

ever longer time series, there is more potential for accumulated 

floating-point error to impact the result [18]. Even in this example 

we can see that the difference vector gets larger as we scan from 

left to right (Figure 4.third-row). We address this issue with our 

tiling scheme in Section 3.2. 

• The information contained in the time series in Figure 4 is 

contained within a small range. This is true for some types of 

data, such as ECGs, accelerometer and gyroscope readings; 

however, there are also a handful of domains for which this is not 

true, such as seismology. A “great” earthquake has a magnitude 

of 8 or greater, but humans can feel earthquakes with magnitudes 

as low as 2.5, a difference of more than five orders of magnitude. 

Processing raw data with a large dynamic range is non-trivial (see 

Sections 3.2, 3.3, and 4.2).  

Before proceeding, we note that this illustration offers another 

example of the utility of motif discovery. The time series in Figure 

4 is a fraction of an entomologist’s data archive [23]. The 2nd motif 

represents ingestion of xylem sap behavior [35], which is common 

and immediately recognizable by an entomologist; however, the 1st 

motif was unexpected: there is a “missed beat” during the xylem 

sap ingestion cycle.  

 

Figure 2: The relationship between the distance matrix, 

distance profile and MP. A distance profile is a column (also a 

row) of the distance matrix. The MP stores the minimum (off-

diagonal) value of each distance matrix column; the MP Index 

stores the location of the minimum value within each column. 

 

Figure 3: top) A distance profile Di created from Ti,m shows the 

distance between Ti,m and all the subsequences in T. Values in 

the exclusion zone are ignored to avoid trivial matches. bottom) 

The MP P is the element-wise minimum of all the distance 

profiles. Note that the two lowest values in P are at the location 

of the 1st motif in T. 

 

Figure 4: top-row) A snippet of whitefly insect EPG data. 

second-row) The MP computed with 64-bit precision. third-row) 

Because the 64-bit and 32-bit MPs are visually identical at this 

scale, we subtracted them, and multiplied the difference by 

5,000.  bottom-row) The whitefly is tiny, yet it produces well 

conserved motifs. 

 

If we had observed a single example, we could attribute it to 

chance or noise; however, motif discovery shows us that there are 
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at least two strongly conserved examples. This suggests that there 

exists some semantic meaning to this motif, which entomologists 

are currently exploring [23]. To support scientific efforts to identify 

unexpected regularities in huge time-series archives, we introduce 

a GPU cloud system to compute large MPs. 

3 The SCAMP Framework 

To compute large MPs, we introduce a framework that can be 

used by a cluster with a host and one or more workers. A host can 

be a local machine, or a master server. A worker can be a CPU-

based system or an accelerator (e.g., a GPU), following the host’s 

direction. A cluster refers to the combination of a host and all of 

its associated workers. This can be the typical group of co-located 

nodes in a cloud, or a single node with accelerators attached (e.g. a 

server equipped with several GPUs).  

3.1 A Brief Overview of GPU-STOMPOPT 

GPU-STOMPOPT [41] is the current state of the art for 

computing MPs on the GPU. The SCAMP algorithm can best be 

described in terms of a set of modifications and extensions to GPU-

STOMPOPT. Thus, for completeness, we include a brief description 

of the GPU-STOMPOPT algorithm below. The reader familiar with 

this material can skip to Section 3.2. An illustration of the GPU-

STOMPOPT algorithm is shown in Figure 5.left.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In GPU-STOMPOPT, each thread computes a diagonal of the 

distance matrix shown in Figure 2 by updating the dot product, QT, 

at each point along the diagonal using Equation 1 and then 

computing the distance, di,j, via Equation 2. 

 

𝑄𝑇𝑖,𝑗 = 𝑄𝑇𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 (1) 

 

  

𝑑𝑖,𝑗 = √2𝑚 (1 −
𝑄𝑇𝑖,𝑗 − 𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗

) (2) 

 

Each GPU thread block computes the distances in a 

parallelogram-shaped tile along a ‘meta’-diagonal, and maintains a 

local copy of the MP (i.e., the column-wise and row-wise minimum 

of the tile) in the shared memory. When a tile computation 

completes, each thread compares the thread-block-local copy of the 

MP with the MP stored in global memory; if a smaller value is 

found, the thread updates the global MP via an atomic access. 

SCAMP improves several aspects of GPU-STOMPOPT, yielding a 

several-fold improvement in performance and allows efficient 

exploitation of newer GPU hardware. We explain these 

improvements in detail in the following sections. 

  

  

 

Figure 5: left) The GPU-STOMPOPT execution pattern, which is shared with the SCAMP_tile algorithm. right) The SCAMP 
tiling scheme using 4 GPUs. The illustration of the tiling scheme is for self-joins only; the lower triangular tile is computed with 
the same implementation, but with the inputs transposed. 
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3.2 Tiling Scheme 

Rather than computing the entire distance matrix in one 

operation, we split it into tiles. Each tile independently computes 

an AB-join between two segments of the input time series. This 

allows the computation to scale to very large input sizes and 

distribute the work to many independent machines, as depicted in 

Figure 5.right. The host maintains information about its workers, 

such as the number and type of available GPUs, the memory 

capacity, and the CPU speed, to determine a tile width that can 

saturate its workers. The host generates tiles of this width and 

delegates them among the workers. For simplicity, this paper 

assumes that all of the workers are homogeneous (V100 GPUs) and 

that the most effective tile size (~1 million) fully saturates each 

worker during execution. This tile width is currently discovered 

empirically, but could be hard-coded once it is known a given 

system configuration.  

3.2.1 Host Algorithm. The host executes the SCAMP_host 

algorithm, which employs multiple asynchronous workers, which 

could be threads or other nodes in a cluster (see Table 1).  Line 1 

determines the appropriate tile size for the problem instance and the 

relative tile execution order. Line 2 precomputes all necessary 

statistics of T needed to compute distances between subsequences. 

Lines 3-5 initialize a data structure containing all information 

necessary to compute the result for each tile in our problem 

instance, and insert the tile into a global work queue. Line 6, 

initializes asynchronous workers, who extract work from the queue. 

Line 7 retrieves and merges and the tile result and Line 8 outputs 

the result. 

3.2.2 Tile Computation. All workers execute the SCAMP_tile 

algorithm to compute each tile’s intermediate result (see Table 2), 

while unprocessed tiles remain in the global work queue. Line 2-6 

extracts a tile from the work queue, along with its relevant 

information from the tile structure. Line 7 computes initial dot 

product values associated with the upper triangular tile. Line 8 

executes an architecture-optimized kernel to compute the local MP 

and Index for that tile. Lines 9 and 10 compute the initial dot 

product values associated with the lower triangular tile and the 

result associated with that tile. The tile’s computation similar to 

GPU-STOMPOPT [14][41], with additional optimizations, 

described in the rest of this section. 

3.2.3 Optimizations. The host may run out of memory if tiles 

are sufficiently small and too many are pre-allocated; however, this 

can be overcome via optimization. For example, in a single node 

deployment, each worker, rather than the host, can construct the full 

tile upon its execution. In a distributed deployment, the maximum 

number of tiles in the queue can be limited, and more work can be 

added as each tile’s processing completes. Further, it is possible to 

cache the best-so-far MPvalues as tiles computed by workers, 

enabling subsequent tiles to be initialized with more up-do-date MP 

values. These optimizations reduce the number of memory accesses 

during computation, but have been omitted from Table 1 and 

Error! Reference source not found. for simplicity of presentation. 

Prior work established that the self-join problem exhibits 

symmetry in the distance matrix [41][44]; here, we note that the 

memory access pattern and the order of distance computations in 

SCAMP and GPU-STOMPOPT are similarly symmetric. The lower-

triangular portion of the distance matrix (Figure 2) can be computed 

using the same subroutine as the upper-triangular portion simply by 

transposing the input. The SCAMP framework exploits this 

property to implement joins. 

Table 1: The SCAMP_host Algorithm. 

Procedure SCAMP_host() 

Input: User provided time series T, window length w, tile size s 

Output: Matrix Profile P and Matrix Profile Index I, of T 

1 

2 

3 

4 

5 

6 

7 

8 

tiling ← GetTiling() 

stats ← PrecomputeTileStats(T, w) 

for row, col in tiling: 

  tile ← CreateTile(T, w, stats, row, col, s) 

  globalWorkQueue.add(tile) 

StartAsyncronousWorkers() 

P, I ← WaitForWorkerResults() 

return P, I 

 

Table 2: SCAMP Tile Computation 

Procedure SCAMP_tile() 

Input: Thread safe work queue of tiles workQueue 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

while workQueue is not empty: 

  tile = workQueue.GetItem() 

  if tile is null: 

    return 

  A = tile.A, B = tile.B, 

  mp = tile.mp, mpi = tile.mpi, stats = tile.stats 

  QT ← SlidingDotProducts(A,B) 

  mp, mpi ← DoTriangularTile(A, B, stats, QT, mp, mpi) 

  QT ← SlidingDotProducts (B,A) 

  mp, mpi ← DoTriangularTile (B,A, stats, QT, mp, mpi) 

  ReturnTileToHost(mp, mpi) 

return 

 

3.2.4 Comparison to GPU-STOMPOPT. Beyond the scope of the 

preceding discussion, SCAMP offers several distinct advantages 

over GPU-STOMPOPT: 

Extensibility: Since tiles are computed independently, 

SCAMP can provide different options for each tile’s computation, 

which offers a pathway to run SCAMP on a heterogeneous compute 

infrastructure.  

Numerical Stability: Each new tile introduces a ‘reset’ point 

for SCAMP’s extrapolation. When a new tile computation begins, 

SCAMP directly computes high-precision initial dot products of the 

distance matrix at that row and column. This reduces the likelihood 

that rounding errors propagate along diagonals. In contrast, GPU-

STOMPOPT extrapolates the diagonals of the distance matrix from 

a single initial value. 

Fault-Tolerance: SCAMP_tile independently issues and 

completes processing for each tile; as a result, it is inherently 

preemptable, which increases the fault-tolerance of our framework. 

If a worker executing a tile “dies” or otherwise fails to complete its 

work, the host can simply reissue a new instance of the incomplete 

tile into the work queue. As mentioned in Section 1, many 

commercial cloud providers allow users to purchase spot instances 

at discounted prices. Spot instances are only useable by fault-

tolerant applications because the cloud provider can kill the 

instance at any time. Thus, SCAMP provides a pathway for lower-

cost cloud-based MP computation, which GPU-STOMPOPT cannot 

provide. SCAMP users can increase the number of compute 

resources purchased at a fixed cost point, which increases the size 

of the time series datasets they can process using SCAMP.  
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3.3 Numerical Optimization and Unrolling 

To improve performance and numerical stability, SCAMP 

reorders GPU-STOMPOPT’s floating-point computations and 

replaces its sliding dot product update (Equation 1) with a centered-

sum-of-products formula (Equations 3-7). These transformations 

reduce each thread’s demand for shared memory; at the same time, 

increasing the amount of shared memory allocated to each thread, 

allows each worker to compute four separate diagonals (Figure 6). 

𝑑𝑓0 = 0;  𝑑𝑓𝑖  =
𝑇𝑖+𝑚−1 − 𝑇𝑖−1

2
 (3) 

𝑑𝑔0 = 0;  𝑑𝑔𝑖  = (𝑇𝑖+𝑚−1 − 𝜇𝑖) + (𝑇𝑖−1 − 𝜇𝑖−1)   (4) 

𝑄𝑇̅̅ ̅̅
𝑖,𝑗 =  𝑄𝑇̅̅ ̅̅

𝑖−1,𝑗−1 + 𝑑𝑓𝑖𝑑𝑔𝑗 + 𝑑𝑓𝑗𝑑𝑔𝑖  (5) 

𝑃𝑖,𝑗 =  𝑄𝑇̅̅ ̅̅
𝑖,𝑗 ∗

1

‖𝑇𝑖,𝑚 − 𝜇𝑖‖
∗

1

‖𝑇𝑗.𝑚 − 𝜇𝑗‖
 (6) 

𝐷𝑖,𝑗  = √2𝑚(1 − 𝑃𝑖,𝑗) (7) 

Equations 3 and 4 precompute the terms used in the sum-of-

products update formula of Equation 5, and incorporate 

incremental mean centering into the update. Equations 3, 4, and 5 

are specific to self-joins and are a special case of a more general 

formula for an AB-join [27]. This new formula reduces the number 

of incorrectly rounded bits.  

Equation 6 replaces the Euclidean distance used in previous MP 

computations [43][44][41] with the Pearson Correlation; Pearson 

Correlation can be computed incrementally using fewer 

computations than ED, and can be converted to z-normalized ED 

in O(1) by Equation 7. SCAMP also precomputes the inverse L2-

norms in Equation 6 to eliminate redundant division operations 

from SCAMP’s inner loop.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unrolling the innermost loop 4x requires each thread to 

compute 16 new distances per iteration (four distances for each of 

four diagonals), while ensuring the per-thread-block register and 

memory usage remains low enough to achieve 50% occupancy on 

a Tesla V100 GPU (see Ref. [11] for details). MP computation on 

the GPU is bound by shared memory loads not compute time. 

Unrolling permits SCAMP to use vectorized shared memory loads 

for dependencies, enabling consolidation of shared memory 

transactions.  

SCAMP tracks the maximum per-row and per-column 

distances and updates the corresponding MP value in shared 

memory when an improvement occurs, resulting in a single update 

per row. In contrast, GPU-STOMPOPT compares every newly 

computed distance to the MP cache.  

3.4 Floating-point Precision Options 

We evaluated SCAMP under two precision modes: 

SCAMPDP performs all computation and stores all intermediate 

shared memory values in double-precision. SCAMP DP generated 

accurate results for all datasets that we tested, regardless of size, 

noise, ill-conditioned regions, etc. 

SCAMPSP performs all computation and stores all intermediate 

shared memory values in single-precision, which increasing 

performance and memory utilization by ~2x. SCAMPSP was 

adequate for highly regular datasets, such as ECG or accelerometer 

data, but may yield incorrect results for ill-conditioned data (see 

Section 4.2 for a detailed analysis). Using vectorized shared 

memory loads, SCAMPSP executes two 128-bit loads per column 

dependency and one 128-bit load per row dependency. This 

enabled all intermediate values to be stored in registers without 

spilling. 

 

 

  

 

Figure 6: One iteration of the innermost loop of GPU-STOMPOPT (left) and SCAMP (right). Self-joins require only half of the 
distance matrix, but we must track both the MP value for the columns and for the rows. AB-joins only require the columns or 
the rows.  
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We tested SCAMP using half-precision (16-bit) floating-point 

operations but found that SCAMP identified incorrect motifs for 

many data sets; we do not consider half-precision any further. 

3.5 Multi-Node AWS Deployment 

We deployed SCAMP on Amazon Web Services (AWS), as 

representative commercially available cloud platform (see Figure 

7). We first partition our time series data set into equal-sized chunks 

ranging from 20 to 100 million elements. There is a tradeoff here 

between the overhead of initiating new jobs, intermediate data size, 

and the risk of a job being preempted and losing work. We 

compress each chunk and store it on the cloud (Amazon S3), where 

it can be read by worker nodes. There is existing work on array 

stores, [54], that might be leveraged in providing access to the input 

array among worker nodes, but for simplicity we defer a study on 

these methods to future work. 

We use AWS batch to set up a job queue backed by a compute 

cluster of p3.16xlarge spot instances. We issue an array batch job 

in which each job computes the MP for one tile. We issue one job 

per worker, and the tile size is specified to ensure full saturation of 

each worker’s compute resources. This maximizes throughput of 

the processing pipeline without risking exorbitant progress loss if 

Amazon preempts a worker.  

Each worker first copies and decompresses its input segments 

corresponding to the row and column of its tile. Each tile has two 

inputs: a segment corresponding to the tile-row, and another 

corresponding to the tile-column; each job computes an AB-join on 

the inputs. Next, the worker executes SCAMP_host on the input, 

further subdividing the tile among its GPUs. Once the worker 

computes the MP and index associated with the tile, the result is 

compressed and written back to Amazon S3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each job dequeues after it terminates. After all jobs terminate, 

another job decompresses and merges each tile’s MP into the final 

result; as long as intermediate data growth is limited, this is 

relatively simple. In a 1 billion datapoint experiment, we merged 

196 GB of intermediate results in ~1 hour using one AWS machine. 

The merging step could be further parallelized using a framework 

such as MapReduce [10]. 

Intermediate output data volumes can grow to tens or hundreds 

of gigabytes for input sizes up to 1 billion elements. Small tile sizes 

produce too much local information to reasonably store. SCAMP’s 

space requirement is O(RN) where R is the number of tile rows, and 

N is the length of the final MP. If the tile size is 1, then R = N and 

processing one billion elements necessitates storing the distance 

matrix (~1 quintillion values). If each intermediate value is eight 

bytes compressed on disk, the total storage requirement would be 

~8 exabytes, the estimated aggregate storage capacity of Google’s 

datacenters in 2014 [42].  

4 Experimental Evaluation 

All experiments reported here are reproducible. All code and 

data (and additional experiments omitted for brevity) are archived 

in perpetuity [27]. 

4.1 Performance Comparison 

4.1.1 Comparison to GPU-STOMPOPT. Table 3 reports the 

result of a direct comparison of SCAMP to GPU-STOMPOPT using 

random walk datasets of various lengths. The first column reports 

the performance of GPU-STOMPOPT using the code from Ref. [41] 

on an Nvidia Tesla K80 GPU. The results here are similar, but vary 

slightly due to a change in the timing of the experiment to improve 

precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 7: Illustration of how to distribute SCAMP in a cluster of GPU instances on AWS. 
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Table 3: SCAMP Runtime Evaluation 

Algorithm STOMP-GPUOPT SCAMP 

Architecture K80 V100 V100 V100 

Precision DP DP DP SP 

218 3.04s 0.34s (8.9x) 0.28s (10.9x) 0.24s (12.7x) 

219 11.4s 1.24s (9.2x) 0.68s (16.8x) 0.57s (20.1x) 

220 44.1s 4.81s (9.2x) 2.05s (21.5x) 1.42s (31.1x) 

221 174s 19.0s (9.2x) 6.99s (24.9x) 4.38s (39.8x) 

222 629s 69.2s (9.1x) 25.8s (24.4x) 15.5s (40.7x) 

223 2514s 277s (9.1x) 96.8s (26.0x) 52.5s (47.9x) 

 

The second column reports the execution time of the same code 

(still GPU-STOMPOPT) running on a single Nvidia Tesla V100 

SXM2 on Amazon EC2. The reported speedup is due to the V100’s 

higher instruction throughput compared to the K80, which is 

bottlenecked by the latency of atomic updates to shared memory. 

Nvidia implemented shared memory atomics in hardware and 

included them in their instruction set architecture (ISA) starting 

with the Maxwell GPU family [30]; they are no longer a 

performance bottleneck on newer GPU architectures. The third and 

fourth columns report the execution time and speedups (relative to 

Column 1) of SCAMPDP and SCAMPSP running on the V100 GPU. 

The reported speedups are due to the optimizations described in 

Sections 3.2 and 3.4 (SCAMPDP) and the conversion from double 

to single precision (SCAMPSP); SCAMPSP does not always produce 

the same result as SCAMPDP. 

4.1.2 Scalability. Figure 8 depicts an analytical performance 

model for SCAMP’s execution time under ideal conditions. Given 

the runtime of SCAMP (To) on one GPU on a dataset of a size (No) 

which sufficiently saturates compute performance, we construct an 

analytical model (Equation 8) to estimate SCAMP’s execution time 

across G GPUs on a time series of length N under ideal assumptions 

(e.g., no communication overhead).  

N = 𝑁𝑜√
𝑇𝐺

𝑇𝑜  
 (8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No and To are initialization parameters provided by one trial run on 

a single V100 GPU. We use this equation and the SCAMPDP 

runtime for input size 223 (Table 3) to construct the model: 

Each data point in Figure 8 corresponds to an experiment we 

ran, which demonstrates that the empirical model is highly 

accurate. The data for our distributed workloads in the next section 

also align well was this plot but were not included due to space and 

readability constraints. More detail is available on our supporting 

webpage [27]. Under this model, the cost of a problem remains 

constant if there is no distributed overhead. For example, to 

compute a join of 530 million using double-precision, one can 

either use 8 GPUs for 8 hours, or 64 GPUs for 1 hour. The cost is 

identical as long as there is no difference in the cost per hour for 

GPU compute time. 

4.1.3 Distributed Performance: p3 spot instances. Next, we 

evaluate SCAMP’s performance on two very large earthquake 

datasets. Both experiments ran on 40 V100 GPUs, each in a 

different configuration, on an AWS EC2 spot instance fleet. A spot 

instance fleet automatically provisions a consistent number of spot 

instances for the job queue. If one instance is preempted, AWS 

provisions another for the fleet as long as there are available 

instances. A spot instance user accesses compute resources not sold 

to customers who pay full price for non-preemptable instances. 

Spot instance prices increase when demand is high; when demand 

is low, the provider loses money, but mitigates losses by selling 

preemptable access to the highest bidder.  

The Parkfield dataset ran on a five p3.16xlarge spot instance 

fleet, where each instance is equipped with eight V100 GPUs. The 

p3.16xlarge instances were in high demand at the time of the 

experiment: many jobs remained queued at times that AWS could 

not provide capacity to execute; we were only charged for active 

GPU compute time. The Cascadia Subduction Zone dataset ran on 

ten Amazon EC2 p3.8xlarge instances each equipped with four 

V100 GPUs. These instances were in lower demand than those used 

for the Parkfield data set experiments, allowing faster job 

completion time with less queuing overhead. The spot price of 

Amazon spot instances is dynamic and demand-driven [39], and we 

were charged a higher spot price. Table 4 reports the results of these 

experiments.  

 

  

 

Figure 8: Equation 8 plotted using No and To from Table 3, the V100 double precision result for a dataset with 223 data points. 
Dots correspond to values measured during experiments reported in this paper. Results are for a single non-preemptable 
instance equipped with G GPUs. Equation 8 also generalizes to multi-instance distributed workloads.  
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Table 4: Summary of various distributed runs on AWS spot 
instances 

Dataset Parkfield Cascadia  

Size 1 Billion 1 Billion 

Tile Size ~52M (1 month) ~ 25M (2 weeks) 

Total GPU time 375.2 hours 375.3 hours 

Spot Job Time 2.5 days 10hours 3min 

Approximate Spot Cost 480 USD 620 USD 

Intermediate Data Size 102.2 GB 196.4 GB 

 

Table 5: Optimized CPU and GPU SCAMPDP cost on a single 
AWS spot instance 

         Instance Type 

 

Input Size 

c5.18xlarge 

72 cores 

3.06 USD/hr     
Seconds 

p3.2xlarge  

1 Tesla V100 

3.06 USD/hr  
Sec/speedup 

218 7    0.28 (25x) 

219 14   0.68 (20x) 

220 32   2.0  (16x) 

221   76   7.0  (11x) 

222 252 25.8  (9.8x) 

223 933 96.8  (9.6x) 

 

4.1.4 CPU Comparison. Table 5 compares the performance of 

our GPU implementation of SCAMPDP to a CPU implementation 

running on a 72-core c5 18xlarge spot instance (Intel Skylake 

CPU). The CPU implementation saturates performance at an input 

size of 221, after which its runtime scales quadratically, as expected. 

At the time of writing, the c5.18xlarge has the same on-demand 

price on AWS as a p3.2xlarge which employs one V100 GPU. 

While it is difficult to compare cross-architecture performance, we 

can and do compare price per performance, which is shown in bold 

as a factor of improvement of the GPU over the CPU. In this case, 

the GPU is approximately one order of magnitude more cost-

efficient. The price per performance for smaller input sizes is an 

imperfect basis for comparison: we could have used a smaller spot 

instance type to achieve better price per performance on a CPU 

when small input data sizes fail to saturate the 72 available cores 

on the c5 18xlarge instance.  

4.2 Precision Evaluation 

Consider the three data snippets shown in Figure 9. Each has a 

constant region longer than the chosen motif length m. Constant 

regions are a source of numerical instability. Many scientists are 

interested in the similarity of z-normalized subsequences. Z-

normalization divides each data point by the standard deviation of 

the entire subsequence. For a constant region, the standard 

deviation is 0. Near-constant subsequences are also problematic, 

because they pass a bit-level test for two distinct values but result 

in division by a number very close to 0.  

 Constant regions are common. For example, in medical 

datasets, we have observed constant regions caused by: 

Disconnection Artifacts: These may occur due to disconnection 

of a monitoring lead, e.g., during a bed change. 

Hard-Limit Artifacts: Some devices have a minimum and/or 

maximum threshold defined by a physical limit of the technology. 

If the true value exceeds the limit for a period of time, a constant 

value occurs for the duration (Figure 9.center). 

 

Figure 9: Three time series containing a constant region caused 
by different issue [9]. left) An ECG (heart) with a disconnection 
artifact. center) An EOG (eye movement) with a hard-limit 
artifact. right) An ECoG (finger flexion) with constant region 
caused by low precision recording.  

 

Low Precision Artifacts: Many devices record at low-

precision fixed-point; observed constant values may not be constant 

at a higher precision. 

In most cases, disconnection artifacts saturate to a Pearson 

Correlation of 1 or a z-normalized Euclidean Distance of 0, and are 

removed later via a post processing step. If small peaks and valleys 

are important in a low-precision artifact scenario, the MP can be 

computed and stored in double-precision. 

4.2.1 Comparison with Previous Update Method. Figure 10, 

compares SCAMP’s update method (Equations 3-7) with the prior 

method implemented in GPU-STOMPOPT. We compute the result 

first in double precision, then plot the absolute error in computed 

Pearson Correlation between the double and single precision for 

both SCAMP and GPU-STOMPOPT.  

The bottom and middle of Figure 10 elucidate how Equations 1 

and 2 (GPU-STOMPOPT’s update method), completely fail in single 

precision on this dataset.  We capped the error at 1 for GPU-

STOMPOPT, which is half of the range of Pearson Correlation. The 

actual values reported by GPU-STOMPOPT were many times larger 

than the entire range of Pearson Correlation.   

In contrast, SCAMP only exhibits error in constant regions that 

arise due to disconnection artifacts. Here, a domain expert can 

easily clean up SCAMP’s results with minimal effort by omitting 

these regions from consideration when analyzing the output of 

SCAMP. In contrast, GPU-STOMPOPT fails to produce a 

meaningful result across almost most of the dataset. 

4.2.2 General Considerations for Precision. Next, we analyze 

the effect of reducing precision on various datasets of different 

lengths. We use a tile size of 1 million for SCAMP while GPU-

STOMPOPT computes across the entire length of the input in one 

go, as it does not perform tiling. We generate the MP using 

SCAMPDP, SCAMPSP and GPU-STOMPOPT with single and double 

precision. We used a window length longer than the longest flat 

artifact region in the data, to allow us to isolate errors caused by the 

update formula from the inherent loss of information from artifacts 

that cannot be represented in lower precision. 

Table 6 presents the results of the experiment. Altogether 

SCAMP was three or more orders of magnitude more accurate than 

STOMP on these datasets. Each entry in Table 6  is the maximum 

absolute error found between the double and single-precision MP 

calculations. We highlight absolute errors that exceed 0.01 in red 

to emphasize that a domain scientist would not consider these 

results sufficiently accurate to use or report.  

SCAMPSP suffers a substantial accuracy loss compared to 

SCAMPDP but achieves much higher performance.  If a user’s 

dataset and application can tolerate the loss of accuracy, there is 

much to be gained in terms of efficiency. We observe that 
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SCAMPSP works well on data that is highly regular with a small 

min-max range, exemplified by ECG data.  

 

 

Figure 10: Single precision error comparison between GPU-
STOMPOPT and SCAMP on White Fly EPG dataset. top) 
original data. middle) SCAMP absolute error. bottom) GPU-
STOMP absolute error.  

 

Table 6: Maximum absolute error (Pearson Correlation) for 
various datasets/algorithms. Red denote high error 

Maximum 

absolute error 

Size (m) SCAMP 

SP 

STOMP SP 

Whitefly EPG 2.5M (1000) 3.75*10-2 1.89*101 

ECG 8.4M (100) 3.14*10-4 2.07*10-3 

Earthquake 1.7M (200) 6.35*10-1 3.17*103 

Power Demand 10M (4000) 4.85*10-2 2.22*10-1 

Chicken 9M (1000) 4.92*10-2 2.27*101 

99.9 percentile 
absolute error 

Size (m) SCAMP 
SP 

STOMP SP 

Whitefly EPG 2.5M (1000) 3.00*10-3 1.55*101 

ECG 8.4M (100) 4.40*10-5 4.02*10-4 

Earthquake 1.7M (200) 6.08*10-1 1.94*103 

Power Demand 10M (4000) 8.52*10-3 1.29*10-1 

Chicken 9M (1000) 1.96*10-3 1.70*101 

 

SCAMPSP completely fails on the Earthquake dataset in Table 

6. This is because the large earthquake’s signal has a magnitude 

greater than 107, which cannot be represented precisely by single-

precision floats. It may be possible to reduce the error of SCAMPSP 

for more types of data, but we leave this task for future work. 

5 Case Studies in Seismology 

Figures 1 and 4 suggest that motifs are important to many 

domains. Due to space limitations, we limit our case studies 

reported in this paper to seismic data, which provide information 

about Earth’s interior structure and processes. We define seismic 

data to be any recorded motion (e.g., displacement, velocity, 

acceleration) measured using seismic instruments at the Earth’s 

surface. Detected and located seismic events (i.e. earthquakes) can 

be used for studying earthquake source processes and source 

physics, fault behavior and interactions, for determining Earth’s 

velocity structure, and to constrain seismic hazard [12]. Many of 

these applications benefit from detection of smaller events, which 

can be missed due to insensitive detection algorithms, or human 

analyst error [48]. Improvements to seismic data instruments, 

networking and data management, and reductions in cost, have 

resulted in a power law increase in seismic data volume [19]. 

Probing this huge volume of data is an ongoing challenge. 

Performing query searches for seismic data can increase the 

detectability of seismic events by one order of magnitude [29][36]. 

However, this method requires a priori known queries (often 

referred to as ‘waveform templates’ in seismology) as input.  

Although waveforms of events in a local earthquake catalog can 

be used, this relies on suitable events being present in the catalog. 

While an ‘autocorrelation’ motif discovery method can identify 

suitable queries, it is expensive computationally in terms of 

memory and time [6][34]. The analysis in [6] was restricted to one 

hour of data, which limited the number of discoverable motifs.  

Other studies have performed motif discovery by converting 

seismic time series to small and dense proxies, and computing a 

Locality-Sensitive Hash (LSH) [4][7][32], an approximate and 

reduced-dimension nearest neighbor search. This approach was 

~143x faster than autocorrelation for one week of continuous data, 

but produced false positive and false negative results [7]. In 

addition, LSH requires the careful selection of multiple, data set-

specific tuning parameters, a process that requires visual inspection 

and validation against the results of other methods.  

In contrast, SCAMP can exactly search datasets that can only 

be searched approximately using current methods. We consider the 

milestone of one billion data points (~579 days, ~1.5 years) of 

seismic data with a 20 Hz sample rate. In two examples, we 

demonstrate how and why transitioning motif discovery timescales 

from hours of data to years of data is a potential game changer for 

the field of seismic data mining. 

5.1 Detecting Foreshocks and Aftershocks 

The town of Parkfield, located on the San Andreas fault in 

central California, experienced four magnitude ~6 earthquakes in 

the 20th Century: 1901, 1922, 1934 and 1966 [45]. A repeat event 

was predicted to occur between 1985 and 1993, spurring the 

‘Parkfield Earthquake Prediction Experiment’, which tried to 

capture the earthquake with the best available instrumentation. The 

actual event (the ‘mainshock’) occurred ‘late’ in 2004, and was 

recorded in extraordinary detail by the low-noise, borehole 

seismometers of the Parkfield High Resolution Seismic Network 

(HRSN) [45][47]. Many of these earthquakes were detected and 

cataloged in real-time at the Northern California Earthquake Data 

Center (NCEDC) by an automated procedure, and quality checked 

for false positives by human analysts. We use this catalog as a 

reference. To investigate i) whether the HRSN data contain 

information on any aftershocks that were not included in the 

NCEDC catalog, and ii) whether there was any change in behavior 

before the mainshock, we ran SCAMP on 580 days (1,002,240,008 

points) of data from Parkfield. We use 20 Hz horizontal component 

seismic data (from 28-11-03 to 9-7-05) from the HRSN station 

VCAB, centered on the 2004 Parkfield mainshock time (i.e. 28-9-

04). We set the query length at 100 samples (5 seconds). We band-

pass filtered the data between 2 and 8 Hz, a frequency range that 

can detect low signal-to-noise ratio earthquakes.   

Figure 11 shows a zoom-in of two sections of the waveform and 

their corresponding MPs. The motifs for aftershocks of the 

Parkfield earthquake have a very characteristic shape. The MP 

drops abruptly as the query window begins to capture the beginning 

of the earthquake waveforms, followed by a gradual increase back 

to the background noise level, indicating that the two waveforms 
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being compared have similar shapes at their beginnings, and 

dissimilar shapes at their ends.  

 

 

Figure 11: Examples of a waveform snippet (top) and 
corresponding MP shape (bottom) for aftershocks of the 
Parkfield earthquake. left) a small aftershock. right) a larger 
aftershock with a waveform amplitude that is three orders of 
magnitude larger.  

The first arrivals (first motions) of seismic waves have 

polarities (either up or down) that reflect both the mechanism of the 

earthquakes that generated them and their location relative to the 

station. The initial drop in the MP indicates the waveforms have the 

same first motion polarity. The next few seconds of arrivals to the 

station include reflections, refractions and reverberations of seismic 

waves – collectively referred to as the seismic ‘coda’ – which are 

much more sensitive to differences in earthquake location, and 

therefore much less similar between pairs of events [1]. The 

duration of the gradual increase in the MP is longer for the larger 

event (Figure 11.right), consistent with the empirical relationships 

of signal duration (and coda length) with event magnitude [21][8]. 

We propose two important applications of MP results to 

seismology: ii) The abrupt initial drop of the MP can select the first 

motions of seismic events, which is an ongoing challenge in 

seismology [26][33]. (ii) The length of the MP valley from the 

sudden drop to its recovery can help to measure the coda length, 

which correlates with earthquake magnitude [8][21]. 

Next, we performed an event-detection experiment using a MP 

containing the Pearson Correlation Coefficient (MPCC, for short). 

Pearson correlation is bounded in the range [-1,+1], can be trivially 

converted to Euclidean Distance, and is widely used in seismology 

studies [31][25][37]. We count the number of MPCC peaks 

separated by at least 100 samples (5 seconds) to prevent 

overcounting the same earthquake when multiple peaks are present 

for one event. Long traces of seismograph data often contain 

repeated patterns corresponding to special types of sensor noise; 

these are easy to filter, as they create near perfect motifs. We count 

the number of MPCC peaks in the range [0.90, 0.99].  

Figure 12 shows the number of MPCC motifs per day for our 

580 days of VCAB data. Although we targeted the Parkfield 

earthquake, we detected other nearby earthquakes and their 

aftershocks, notably the 2003 Mw 6.5 San Simeon event, and two 

other moderate (Mw 4.0–4.5) earthquakes nearby. A series of motif 

peaks in the lead-up to the Parkfield mainshock (around 04/07/01) 

do not correspond to events in the regional earthquake catalog, and 

may represent previously undetected foreshock activity; we have 

reported them to collaborators in seismology to investigate. 

Figure 13 compares the total number of motifs in the MPCC 

range [0.9, 0.99] over the first 90 days of the Parkfield aftershock 

sequence with the number of catalog aftershocks reported in the 

NCEDC catalog. This analysis reports ~16x more detections than 

those reported by the NCEDC. Some of these thresholding-based 

detections may be station artifacts, but visual inspection suggests 

that they account for less than 5% of the events. 

We also fit the Omori-Utsu aftershock rate equation [46] to the 

detected and catalogued aftershocks of the Parkfield earthquake. 

Figure 14 shows that the number of motifs per day fit the Omori-

Utsu law almost perfectly. Values retrieved from the Omori-Utsu 

rate equation can provide information about the physics of the 

mainshock [16] and also even can be used for forecasting large 

aftershocks [28].  

5.2 Detecting Subtle Seismic Motifs 

Low frequency earthquakes (LFEs) are seismic events that 

occur deep in the crust and typically have very low signal-to-noise 

ratio signals. LFE recurrence is a proxy for movements at the roots 

of fault zones, and may be useful in short-term earthquake 

forecasting [51][52][53]. LFEs have been observed in the Cascadia 

subduction zone, where the Juan de Fuca plate subducts beneath the 

North American plate, from coastal Northern California to 

Vancouver Island. This ‘megathrust’ fault has the potential to 

produce great (magnitude ~9) earthquakes [2], motivating LFE 

detection in this region. Their low signal-to-noise ratios make 

detecting them challenging and time consuming (e.g., requiring 

sophisticated methods and visual inspection; [49][[50][6]). 

In order to see if we can detect these novel events in this region, 

we ran SCAMP on 579 days of data (start date 2006/03/01) for the 

vertical component of station I02A, located near Mapleton, OR. We 

band-pass filter these data at 2–8 Hz and resample them to 20 Hz. 

We set the query length to 200 (10 seconds), based on the length of 

LFE templates used in previous studies [49]. 

Figure 15 shows the motif density over time for this 

experiment. The number of motifs starts to increase around August 

2006 and decrease in November 2006, and again increase in June 

2007 and start to decrease around October 2007. We visually 

inspected some of these motifs (in both time and frequency domain) 

and classified them in four categories: i) regular earthquakes (less 

frequent, Figure 16. left.) ii) weather or human related signals 

(frequent), iii) Station artifact (less frequent), iv) LFE-like signals 

(frequent, Figure 16.right). Confirming a signal to be LFE is not 

easy, typically requiring detection at several stations and visual 

inspection of its frequency spectrum. In Figure 16 we show a 

discovered motif that was confirmed as a true LFE in [49]. Note 

that the MP for the LFE is not as low as regular earthquake but 

much lower than the background noise (Figure 16).   

In general, we detect fewer than 150 motifs per day in this 

dataset. This means that in order to discover LFEs a seismologist 

needs to inspect fewer than 150 sub-windows per day of data, a task 

that would take minutes to perform. In contrast, the traditional 

visual inspection method for detecting LFEs (e.g., brute force 

checking [50]) requires inspection of thousands of sub-windows 

(e.g., 17280 sub windows with a 5 second skip), potentially taking 

hours for each day of seismic data. Running SCAMP before 

searching for these subtle and important motifs could potentially 

provide a large time savings for seismologists and make their 

discovery much easier in this domain. 
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Figure 13: The number of events in the USGS NCSN Catalog 
(green line) and the number of motifs detected using SCAMP 
(red line) for the Parkfield earthquake aftershock sequence. 
For the catalog events we considered all events in a box with 
length ~200 km centered on the Parkfield mainshock epicenter. 
The start of seismicity in this plot is 4 days prior to the Parkfield 
earthquake 

 

Figure 14: A fit of an Omori-Utsu relationship [46] (i.e. the law 
that describes aftershock rate behavior) to the number of 
motifs per day for the first 30 days after the Parkfield 
mainshock. The R-squared of 0.988 indicates a very good fit 
and shows how the number of motifs can describe the expected 
aftershock behavior almost perfectly. 

 

These results were obtained by post-processing an MP 

produced by SCAMP; possibilities for further refinement remain 

open. These results show that SCAMP can detect LFEs, and has the 

potential to more generally explore the seismicity of the southern 

Cascadia subduction zone and other similar regions. We believe 

that SCAMP has a rich future in seismic data mining – a discipline 

that traditionally suffers from false negatives – and other domains 

that produce time series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Discovered motifs for 579 days of seismic data 
recorded on the vertical channel of station I02A, located near 
Mapleton, OR. The number of discovered motifs based on 
MPCC thresholding method shows two six-month periods were 
detected motifs gradually increase, that start in mid-2006 and 
mid-2007. We believe many of these motifs are low frequency 
earthquakes (see Figure 16). 

 

Figure 16: left) An example of an earthquake waveform snippet 
(top) and MP shape (bottom) in the vicinity of a discovered 
motif for a ‘regular’ earthquake. right) A waveform snippet 
and corresponding MP from a confirmed LFE (identified by 
[49]). 

6 Conclusion 

SCAMP exactly searches for motifs in time series at the data-

center scale. To the best of our knowledge, this work is the first 

time any research effort has reported performing a quintillion exact 

pairwise comparisons on a single time series dataset. Likewise, we 

believe this to be the first work to do exact motif search on more 

than one year (1.59 years to be precise) of continuous earthquake 

data. All code has been made freely available to the general public 

[27], whom we invite to confirm, extend, and exploit our efforts.  
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Figure 12: Daily number of discovered motifs for 580 days of data centered on the Parkfield earthquake (04/09/28), measured 
on the horizontal component of station VCAB, located ~10 km from the epicenter. Motifs are selected based on the peak 
MPCC values.  
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