
Matrix Profile XIV: Scaling Time Series Motif Discovery with

GPUs to Break a Quintillion Pairwise Comparisons a Day and

Beyond

Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari,

Brian Crites, Gareth Funning, Philip Brisk and Eamonn Keogh
University of California, Riverside

 {zzimm001, kkamg001, nshak006, bcrit001, gareth}@ucr.edu {philip, eamonn}@cs.ucr.edu

ABSTRACT

The discovery of conserved (repeated) patterns in time series is

arguably the most important primitive in time series data mining.

Called time series motifs, these primitive patterns are useful in their

own right, and are also used as inputs into classification, clustering,

segmentation, visualization, and anomaly detection algorithms.

Recently the Matrix Profile has emerged as a promising

representation to allow the efficient exact computation of the top-k

motifs in a time series. State-of-the-art algorithms for computing

the Matrix Profile are fast enough for many tasks. However, in a

handful of domains, including astronomy and seismology, there is

an insatiable appetite to consider ever larger datasets. In this work

we show that with several novel insights we can push the motif

discovery envelope using a novel scalable framework in

conjunction with a deployment to commercial GPU clusters in the

cloud. We demonstrate the utility of our ideas with detailed case

studies in seismology, demonstrating that the efficiency of our

algorithm allows us to exhaustively consider datasets that are

currently only approximately searchable, allowing us to find subtle

precursor earthquakes that had previously escaped attention, and

other novel seismic regularities.

CCS CONCEPTS
• Computer systems organization → Cloud computing;

• Theory of computation → Data structures and algorithms for

data management;

KEYWORDS

Time Series, Matrix Profile, SCAMP, Self-Join, AB-Join, Cloud

Computing, Spot Instance, GPU, Tiling, Fault-Tolerance,

Numerical Optimization, Seismology, Entomology.

ACM Reference format:

Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari, Brian

Crites, Gareth Funning, Philip Brisk, and Eamonn Keogh. 2019. Matrix

Profile XIV: Scaling Time Series Motif Discovery with GPUs to Break a

Quintillion Pairwise Comparisons a Day and Beyond. In Proceedings of the

ACM Symposium on Cloud Computing (SoCC’19), Santa Cruz, CA, USA,

November 20-23. 2019, 13 pages.

https://doi.org/10.1145/3357223.3362721

1 Introduction

Time series motifs are approximately repeated subsequences of

a longer time series. As Figure 1 (and Figure 4) suggest, motifs

often reveal unexpected regularities in large datasets. In the last

decade, time series motif discovery has become an increasingly

important primitive for time series analytics, and is used in domains

as diverse as seismology [4], astronomy, geology, ethology [44],

neuroscience [22], medicine [13], consumer behavior [41], music

[38] and sports analytics. In recent years, algorithmic advances

(coupled with hardware improvements) have greatly expanded the

purview of motif discovery. It has recently been shown that motif

discovery is trivial given a data structure called the Matrix Profile

(MP), and that the current state-of-the-art MP batch construction

algorithm STOMP, can discover motifs efficiently enough for

many users [44].

A survey of the literature suggests that many medical, scientific

and industrial laboratory analysts rarely deal will datasets with

more than a few million data points [24]. For such datasets,

STAMP which is an anytime algorithm, can produce a high-quality

approximate MP in minutes, which approaches “interactive” time

for most purposes [43]. “Minutes” may not seem impressively fast,

until one recalls that many datasets in question take days or weeks

to collect. For example, in Figure 1 the approximate motif

discovery for this full-day chicken behavior dataset takes well

under an hour. The biologist using this tool reports that “this is fast

enough for what I need.” [24].

Nevertheless, we argue that there is an insatiable need to scale.

Domains such as seismology and astronomy have a near-

inexhaustible appetite for ever-larger datasets. For example, a

recent paper reports that performing (approximate) motif search on

larger datasets “directly enabled the discovery of 597 new

earthquakes near the Diablo Canyon nuclear power plant in

California” [22]. Undoubtedly, exact search of the same dataset (or

larger) would elucidate further unexpected regularities.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with credit is permitted.

To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions

from Permissions@acm.org.
SoCC '19, November 20–23, 2019, Santa Cruz, CA, USA

© 2019 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-6973-2/19/11…$15.00

https://doi.org/10.1145/3357223.3362721

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

Figure 1: top) Twenty-four hours of time series from an

accelerometer worn by a chicken. bottom-left) A zoom-in shows

that the data is apparently void of structure; however, the top-

1 motif (bottom.right) suggests that some behaviors are

conserved. Inspection of video recorded in parallel suggests this

a dustbathing behavior [22].

To meet the needs of domain experts, this paper presents a

cloud-scale framework called SCAMP (SCAlable Matrix Profile)

that expands the purview of exact motif discovery. We summarize

our major contributions below:

1. We provide a general distributed framework for the ultra-

scalable computation of the MP [43]. Both the performance and

numerical stability are greatly improved via our method when

dealing with long time series.

2. Our framework allows us to work with time series data which

do not fit wholly into GPU memory, allowing MPs to be

computed which are larger than previously considered.

3. We introduce novel numerical methods to increase

performance and improve stability of the MP computation; this

allows the use of single-precision floating-point calculations

for some datasets, which allows our methods to be applied to

larger datasets at a cheaper amortized cost.

4. We deployed a fault-tolerant framework that is compatible

with “spot” instances [39], which major cloud providers

(Amazon, Google, and Microsoft) offer at a major discount,

making motif discovery more affordable.

5. We provide a freely available open-source implementation of

our framework which runs on Amazon Web Services in a

cluster of instances equipped with Nvidia Tesla V100 GPUs, as

well as optimized CPU code at [27].

The rest of this paper is organized as follows. In Section 2, we state

our assumptions, introduce necessary definitions, and summarize

related work. Section 3 has a description of our novel scalable

framework and the improvements we made that allow us to further

push the boundary of MP calculations. In Section 4, we illustrate a

few of the use cases for very large MPs through several case studies

on challenging datasets. In Section 5, we provide a detailed

empirical analysis of our ideas, before offering conclusions in

Section 6.

2 Definitions and Assumptions

We begin by stating a key assumption; it has been developed at

length elsewhere [43][44], but we repeat it here.

Key Assumption: Motif discovery under any reasonable

definition is trivial if given the MP data structure.

That is to say, there are a handful of definitions of time series

motifs, top-k motifs, range motifs, biased motifs [9], contextual

motifs [13] etc. Irrespective of the chosen definition, the MP alone

is all that is needed to extract the motif in linear time and space

[40][43]. Given this observation, this paper focuses exclusively on

computing the MP as efficiently as possible; the reader can

appreciate that this implicitly solves the task at hand. Our key

assumption actually understates the case. Having the MP in-hand is

sufficient to solve many additional time series data mining tasks,

including, discord discovery, chain discovery, snippet discovery,

segmentation etc. [40][43]. For simplicity we ignore these

additional uses of the MP here.

We now formally define the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued

numbers ti: T = t1, t2, ..., tn where n is the length of T.

We are interested not in global, but local properties of a time

series. A local region of time series is called a subsequence:

Definition 2: A subsequence Ti,m of a time series T is a

continuous subset of the values of T of length m starting from

position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤ n-m+1.

Given a query subsequence Ti,m and a time series T, we can

compute the distance between Ti,m and all the subsequences in T.

We call this a distance profile:

Definition 3: A distance profile Di corresponding to query Ti,m

and time series T is a vector of the Euclidean distances between a

given query subsequence Ti,m and each subsequence in time series

T. Formally, Di = [di,1, di,2,…, di,n-m+1], such that di,j (1 ≤ j ≤ n-m+1)

is the distance between Ti,m and Tj,m.

We assume that the distance is measured by Euclidean distance

between z-normalized subsequences [43][44]. Once we obtain Di,

we can extract the nearest neighbor of Ti,m in T. Note that if the

query Ti,m is a subsequence of T, the ith location of distance profile

Di is zero (i.e., di,i = 0) and close to zero just to the left and right of

i. This is called a trivial match. We avoid such matches by ignoring

an “exclusion” zone of length m/k before and after i, the location of

the query, where 1 < k < m-1.

What should the value of k be set to? In more than a dozen

works considering hundreds of diverse datasets it has been shown

to be inconsequential [9][43][44]. There is one possible case that

would require more careful introspection. It is best explained by an

analogy to text motifs in the presence of anadiplosis. Consider this

line of wordplay from a Monty Python sketch “.. the very meaning

of life itselfish bastard…”. Here the string “self’ belongs to both

‘itself’ and to ‘selfish’. Something similar can happen with time

series data. For example, in a motion captured ASL performance,

the end of one signed word can overlap the beginning of the next

word. In such a case the user needs to decide if he is willing to allow

such overlapping by setting k to a smaller value; however, given

the relative unimportance of k, in this paper we set k=4 and ignore

the exclusion zone by setting di,j = ∞ (i-m/4 ≤ j ≤ i+m/4). The

nearest neighbor of Ti,m can thus be found by evaluating min(Di).

We wish to find the nearest neighbor of every subsequence in

T. The nearest neighbor information is stored in two meta time

series, the Matrix Profile (MP) and the Matrix Profile Index.

Definition 4: A Matrix Profile P of time series T is a vector of

the Euclidean distances between every subsequence of T and its

nearest neighbor in T. Formally, P = [min(D1), min(D2),…, min(Dn-

m+1)], where Di (1 ≤ i ≤ n-m+1) is the distance profile Di

corresponding to query Ti,m and time series T.

8,000,000
-10

0

10

0 Twenty -f our hours

0 6000One minute 0 150One and a half seconds

night nightday

X-axis acceleration

Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA

The ith element in the MP tells us the Euclidean distance from

subsequence Ti,m to its nearest neighbor in time series T. However,

it does not tell us the location of that nearest neighbor; this

information is stored in the companion MP index:

Definition 5: A Matrix Profile Index I of time series T is an

integer vector: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di).

Figure 2 depicts the relationship between the distance matrix,

distance profile (Definition 3) and MP (Definition 4). Each distance

matrix element di,j is the distance between Ti,m and Tj,m (1 ≤ i, j ≤ n-

m+1) of time series T. Figure 3 illustrates a distance profile and a

MP created from the same time series.

As presented, the MP is a self-join: for every subsequence in a

time series T, we find its (non-trivial-match) nearest neighbor

within the same time series. However, we can trivially generalize

the MP to be an AB-join: for every subsequence in a time series A,

record information about its nearest neighbor in time series B

[44][41]. Note that A and B can be of different lengths, and

generally, AB-join ≠ BA-join.

2.1 Observations on Precision

Several independent research groups have noted that for some

time series retrieval tasks, 64-bit precision is unnecessarily precise

[3][40]. Researchers have shown that reduced precision can be

exploited to have significant performance benefits with minimal

observable difference in quality of results [40][15]. This

observation has been heavily exploited in deep learning [14][15];

however, it is rarely exploited for time series, except for allowing

the use of Minimal Description Length to score and rank models

[3], which is orthogonal to scalability considerations. Figure 4

shows an MP computed on some insect electrical penetration graph

(EPG) data using 64-bit precision.

This plot suggests that the difference between MPs computed

at 64 and 32-bit precision is so small it does not affect the motifs

discovered, and is not visible unless we multiply the difference by

a large constant; however, we must consider two caveats:

• The time series shown in Figure 4 is relatively short. To address

ever longer time series, there is more potential for accumulated

floating-point error to impact the result [18]. Even in this example

we can see that the difference vector gets larger as we scan from

left to right (Figure 4.third-row). We address this issue with our

tiling scheme in Section 3.2.

• The information contained in the time series in Figure 4 is

contained within a small range. This is true for some types of

data, such as ECGs, accelerometer and gyroscope readings;

however, there are also a handful of domains for which this is not

true, such as seismology. A “great” earthquake has a magnitude

of 8 or greater, but humans can feel earthquakes with magnitudes

as low as 2.5, a difference of more than five orders of magnitude.

Processing raw data with a large dynamic range is non-trivial (see

Sections 3.2, 3.3, and 4.2).

Before proceeding, we note that this illustration offers another

example of the utility of motif discovery. The time series in Figure

4 is a fraction of an entomologist’s data archive [23]. The 2nd motif

represents ingestion of xylem sap behavior [35], which is common

and immediately recognizable by an entomologist; however, the 1st

motif was unexpected: there is a “missed beat” during the xylem

sap ingestion cycle.

Figure 2: The relationship between the distance matrix,

distance profile and MP. A distance profile is a column (also a

row) of the distance matrix. The MP stores the minimum (off-

diagonal) value of each distance matrix column; the MP Index

stores the location of the minimum value within each column.

Figure 3: top) A distance profile Di created from Ti,m shows the

distance between Ti,m and all the subsequences in T. Values in

the exclusion zone are ignored to avoid trivial matches. bottom)

The MP P is the element-wise minimum of all the distance

profiles. Note that the two lowest values in P are at the location

of the 1st motif in T.

Figure 4: top-row) A snippet of whitefly insect EPG data.

second-row) The MP computed with 64-bit precision. third-row)

Because the 64-bit and 32-bit MPs are visually identical at this

scale, we subtracted them, and multiplied the difference by

5,000. bottom-row) The whitefly is tiny, yet it produces well

conserved motifs.

If we had observed a single example, we could attribute it to

chance or noise; however, motif discovery shows us that there are

D1 D2 … Dn-m+1

D1 d1,1 d1,2 … d1,n-m+1

D2 d2,1 d2,2 … d2,n-m+1

… … … … …

Dn-m+1 dn-m+1,1 dn-m+1,2 … dn-m+1,n-m+1

P min(D1) min(D2) … min(Dn-m+1)

0 250 500

time series T

distance profile Di

Ti,m

matrix profile P

time series Texclusion zone

|Di|=|T|-m+1

|P|=|T|-m+1

1 80

1 20,000

Matrix Profile (64-bits)

Whitefly EPG data

(Matrix Profile 64-bits - Matrix Profile 32-bits) times 5,000

1st motif

2nd motif

Actual size

Zoom-in

Whitefly

(Bemisia tabaci)

5.5 minutes

1.3 seconds

Missed “beat”

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

at least two strongly conserved examples. This suggests that there

exists some semantic meaning to this motif, which entomologists

are currently exploring [23]. To support scientific efforts to identify

unexpected regularities in huge time-series archives, we introduce

a GPU cloud system to compute large MPs.

3 The SCAMP Framework

To compute large MPs, we introduce a framework that can be

used by a cluster with a host and one or more workers. A host can

be a local machine, or a master server. A worker can be a CPU-

based system or an accelerator (e.g., a GPU), following the host’s

direction. A cluster refers to the combination of a host and all of

its associated workers. This can be the typical group of co-located

nodes in a cloud, or a single node with accelerators attached (e.g. a

server equipped with several GPUs).

3.1 A Brief Overview of GPU-STOMPOPT

GPU-STOMPOPT [41] is the current state of the art for

computing MPs on the GPU. The SCAMP algorithm can best be

described in terms of a set of modifications and extensions to GPU-

STOMPOPT. Thus, for completeness, we include a brief description

of the GPU-STOMPOPT algorithm below. The reader familiar with

this material can skip to Section 3.2. An illustration of the GPU-

STOMPOPT algorithm is shown in Figure 5.left.

In GPU-STOMPOPT, each thread computes a diagonal of the

distance matrix shown in Figure 2 by updating the dot product, QT,

at each point along the diagonal using Equation 1 and then

computing the distance, di,j, via Equation 2.

𝑄𝑇𝑖,𝑗 = 𝑄𝑇𝑖−1,𝑗−1 − 𝑡𝑖−1𝑡𝑗−1 + 𝑡𝑖+𝑚−1𝑡𝑗+𝑚−1 (1)

𝑑𝑖,𝑗 = √2𝑚 (1 −
𝑄𝑇𝑖,𝑗 − 𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗

) (2)

Each GPU thread block computes the distances in a

parallelogram-shaped tile along a ‘meta’-diagonal, and maintains a

local copy of the MP (i.e., the column-wise and row-wise minimum

of the tile) in the shared memory. When a tile computation

completes, each thread compares the thread-block-local copy of the

MP with the MP stored in global memory; if a smaller value is

found, the thread updates the global MP via an atomic access.

SCAMP improves several aspects of GPU-STOMPOPT, yielding a

several-fold improvement in performance and allows efficient

exploitation of newer GPU hardware. We explain these

improvements in detail in the following sections.

Figure 5: left) The GPU-STOMPOPT execution pattern, which is shared with the SCAMP_tile algorithm. right) The SCAMP
tiling scheme using 4 GPUs. The illustration of the tiling scheme is for self-joins only; the lower triangular tile is computed with
the same implementation, but with the inputs transposed.

Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA

3.2 Tiling Scheme

Rather than computing the entire distance matrix in one

operation, we split it into tiles. Each tile independently computes

an AB-join between two segments of the input time series. This

allows the computation to scale to very large input sizes and

distribute the work to many independent machines, as depicted in

Figure 5.right. The host maintains information about its workers,

such as the number and type of available GPUs, the memory

capacity, and the CPU speed, to determine a tile width that can

saturate its workers. The host generates tiles of this width and

delegates them among the workers. For simplicity, this paper

assumes that all of the workers are homogeneous (V100 GPUs) and

that the most effective tile size (~1 million) fully saturates each

worker during execution. This tile width is currently discovered

empirically, but could be hard-coded once it is known a given

system configuration.

3.2.1 Host Algorithm. The host executes the SCAMP_host

algorithm, which employs multiple asynchronous workers, which

could be threads or other nodes in a cluster (see Table 1). Line 1

determines the appropriate tile size for the problem instance and the

relative tile execution order. Line 2 precomputes all necessary

statistics of T needed to compute distances between subsequences.

Lines 3-5 initialize a data structure containing all information

necessary to compute the result for each tile in our problem

instance, and insert the tile into a global work queue. Line 6,

initializes asynchronous workers, who extract work from the queue.

Line 7 retrieves and merges and the tile result and Line 8 outputs

the result.

3.2.2 Tile Computation. All workers execute the SCAMP_tile

algorithm to compute each tile’s intermediate result (see Table 2),

while unprocessed tiles remain in the global work queue. Line 2-6

extracts a tile from the work queue, along with its relevant

information from the tile structure. Line 7 computes initial dot

product values associated with the upper triangular tile. Line 8

executes an architecture-optimized kernel to compute the local MP

and Index for that tile. Lines 9 and 10 compute the initial dot

product values associated with the lower triangular tile and the

result associated with that tile. The tile’s computation similar to

GPU-STOMPOPT [14][41], with additional optimizations,

described in the rest of this section.

3.2.3 Optimizations. The host may run out of memory if tiles

are sufficiently small and too many are pre-allocated; however, this

can be overcome via optimization. For example, in a single node

deployment, each worker, rather than the host, can construct the full

tile upon its execution. In a distributed deployment, the maximum

number of tiles in the queue can be limited, and more work can be

added as each tile’s processing completes. Further, it is possible to

cache the best-so-far MPvalues as tiles computed by workers,

enabling subsequent tiles to be initialized with more up-do-date MP

values. These optimizations reduce the number of memory accesses

during computation, but have been omitted from Table 1 and

Error! Reference source not found. for simplicity of presentation.

Prior work established that the self-join problem exhibits

symmetry in the distance matrix [41][44]; here, we note that the

memory access pattern and the order of distance computations in

SCAMP and GPU-STOMPOPT are similarly symmetric. The lower-

triangular portion of the distance matrix (Figure 2) can be computed

using the same subroutine as the upper-triangular portion simply by

transposing the input. The SCAMP framework exploits this

property to implement joins.

Table 1: The SCAMP_host Algorithm.

Procedure SCAMP_host()

Input: User provided time series T, window length w, tile size s

Output: Matrix Profile P and Matrix Profile Index I, of T

1

2

3

4

5

6

7

8

tiling ← GetTiling()

stats ← PrecomputeTileStats(T, w)

for row, col in tiling:

 tile ← CreateTile(T, w, stats, row, col, s)

 globalWorkQueue.add(tile)

StartAsyncronousWorkers()

P, I ← WaitForWorkerResults()

return P, I

Table 2: SCAMP Tile Computation

Procedure SCAMP_tile()

Input: Thread safe work queue of tiles workQueue

1

2

3

4

5

6

7

8

9

10

11

12

while workQueue is not empty:

 tile = workQueue.GetItem()

 if tile is null:

 return

 A = tile.A, B = tile.B,

 mp = tile.mp, mpi = tile.mpi, stats = tile.stats

 QT ← SlidingDotProducts(A,B)

 mp, mpi ← DoTriangularTile(A, B, stats, QT, mp, mpi)

 QT ← SlidingDotProducts (B,A)

 mp, mpi ← DoTriangularTile (B,A, stats, QT, mp, mpi)

 ReturnTileToHost(mp, mpi)

return

3.2.4 Comparison to GPU-STOMPOPT. Beyond the scope of the

preceding discussion, SCAMP offers several distinct advantages

over GPU-STOMPOPT:

Extensibility: Since tiles are computed independently,

SCAMP can provide different options for each tile’s computation,

which offers a pathway to run SCAMP on a heterogeneous compute

infrastructure.

Numerical Stability: Each new tile introduces a ‘reset’ point

for SCAMP’s extrapolation. When a new tile computation begins,

SCAMP directly computes high-precision initial dot products of the

distance matrix at that row and column. This reduces the likelihood

that rounding errors propagate along diagonals. In contrast, GPU-

STOMPOPT extrapolates the diagonals of the distance matrix from

a single initial value.

Fault-Tolerance: SCAMP_tile independently issues and

completes processing for each tile; as a result, it is inherently

preemptable, which increases the fault-tolerance of our framework.

If a worker executing a tile “dies” or otherwise fails to complete its

work, the host can simply reissue a new instance of the incomplete

tile into the work queue. As mentioned in Section 1, many

commercial cloud providers allow users to purchase spot instances

at discounted prices. Spot instances are only useable by fault-

tolerant applications because the cloud provider can kill the

instance at any time. Thus, SCAMP provides a pathway for lower-

cost cloud-based MP computation, which GPU-STOMPOPT cannot

provide. SCAMP users can increase the number of compute

resources purchased at a fixed cost point, which increases the size

of the time series datasets they can process using SCAMP.

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

3.3 Numerical Optimization and Unrolling

To improve performance and numerical stability, SCAMP

reorders GPU-STOMPOPT’s floating-point computations and

replaces its sliding dot product update (Equation 1) with a centered-

sum-of-products formula (Equations 3-7). These transformations

reduce each thread’s demand for shared memory; at the same time,

increasing the amount of shared memory allocated to each thread,

allows each worker to compute four separate diagonals (Figure 6).

𝑑𝑓0 = 0; 𝑑𝑓𝑖 =
𝑇𝑖+𝑚−1 − 𝑇𝑖−1

2
 (3)

𝑑𝑔0 = 0; 𝑑𝑔𝑖 = (𝑇𝑖+𝑚−1 − 𝜇𝑖) + (𝑇𝑖−1 − 𝜇𝑖−1) (4)

𝑄𝑇̅̅ ̅̅
𝑖,𝑗 = 𝑄𝑇̅̅ ̅̅

𝑖−1,𝑗−1 + 𝑑𝑓𝑖𝑑𝑔𝑗 + 𝑑𝑓𝑗𝑑𝑔𝑖 (5)

𝑃𝑖,𝑗 = 𝑄𝑇̅̅ ̅̅
𝑖,𝑗 ∗

1

‖𝑇𝑖,𝑚 − 𝜇𝑖‖
∗

1

‖𝑇𝑗.𝑚 − 𝜇𝑗‖
 (6)

𝐷𝑖,𝑗 = √2𝑚(1 − 𝑃𝑖,𝑗) (7)

Equations 3 and 4 precompute the terms used in the sum-of-

products update formula of Equation 5, and incorporate

incremental mean centering into the update. Equations 3, 4, and 5

are specific to self-joins and are a special case of a more general

formula for an AB-join [27]. This new formula reduces the number

of incorrectly rounded bits.

Equation 6 replaces the Euclidean distance used in previous MP

computations [43][44][41] with the Pearson Correlation; Pearson

Correlation can be computed incrementally using fewer

computations than ED, and can be converted to z-normalized ED

in O(1) by Equation 7. SCAMP also precomputes the inverse L2-

norms in Equation 6 to eliminate redundant division operations

from SCAMP’s inner loop.

Unrolling the innermost loop 4x requires each thread to

compute 16 new distances per iteration (four distances for each of

four diagonals), while ensuring the per-thread-block register and

memory usage remains low enough to achieve 50% occupancy on

a Tesla V100 GPU (see Ref. [11] for details). MP computation on

the GPU is bound by shared memory loads not compute time.

Unrolling permits SCAMP to use vectorized shared memory loads

for dependencies, enabling consolidation of shared memory

transactions.

SCAMP tracks the maximum per-row and per-column

distances and updates the corresponding MP value in shared

memory when an improvement occurs, resulting in a single update

per row. In contrast, GPU-STOMPOPT compares every newly

computed distance to the MP cache.

3.4 Floating-point Precision Options

We evaluated SCAMP under two precision modes:

SCAMPDP performs all computation and stores all intermediate

shared memory values in double-precision. SCAMP DP generated

accurate results for all datasets that we tested, regardless of size,

noise, ill-conditioned regions, etc.

SCAMPSP performs all computation and stores all intermediate

shared memory values in single-precision, which increasing

performance and memory utilization by ~2x. SCAMPSP was

adequate for highly regular datasets, such as ECG or accelerometer

data, but may yield incorrect results for ill-conditioned data (see

Section 4.2 for a detailed analysis). Using vectorized shared

memory loads, SCAMPSP executes two 128-bit loads per column

dependency and one 128-bit load per row dependency. This

enabled all intermediate values to be stored in registers without

spilling.

Figure 6: One iteration of the innermost loop of GPU-STOMPOPT (left) and SCAMP (right). Self-joins require only half of the
distance matrix, but we must track both the MP value for the columns and for the rows. AB-joins only require the columns or
the rows.

Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA

We tested SCAMP using half-precision (16-bit) floating-point

operations but found that SCAMP identified incorrect motifs for

many data sets; we do not consider half-precision any further.

3.5 Multi-Node AWS Deployment

We deployed SCAMP on Amazon Web Services (AWS), as

representative commercially available cloud platform (see Figure

7). We first partition our time series data set into equal-sized chunks

ranging from 20 to 100 million elements. There is a tradeoff here

between the overhead of initiating new jobs, intermediate data size,

and the risk of a job being preempted and losing work. We

compress each chunk and store it on the cloud (Amazon S3), where

it can be read by worker nodes. There is existing work on array

stores, [54], that might be leveraged in providing access to the input

array among worker nodes, but for simplicity we defer a study on

these methods to future work.

We use AWS batch to set up a job queue backed by a compute

cluster of p3.16xlarge spot instances. We issue an array batch job

in which each job computes the MP for one tile. We issue one job

per worker, and the tile size is specified to ensure full saturation of

each worker’s compute resources. This maximizes throughput of

the processing pipeline without risking exorbitant progress loss if

Amazon preempts a worker.

Each worker first copies and decompresses its input segments

corresponding to the row and column of its tile. Each tile has two

inputs: a segment corresponding to the tile-row, and another

corresponding to the tile-column; each job computes an AB-join on

the inputs. Next, the worker executes SCAMP_host on the input,

further subdividing the tile among its GPUs. Once the worker

computes the MP and index associated with the tile, the result is

compressed and written back to Amazon S3.

Each job dequeues after it terminates. After all jobs terminate,

another job decompresses and merges each tile’s MP into the final

result; as long as intermediate data growth is limited, this is

relatively simple. In a 1 billion datapoint experiment, we merged

196 GB of intermediate results in ~1 hour using one AWS machine.

The merging step could be further parallelized using a framework

such as MapReduce [10].

Intermediate output data volumes can grow to tens or hundreds

of gigabytes for input sizes up to 1 billion elements. Small tile sizes

produce too much local information to reasonably store. SCAMP’s

space requirement is O(RN) where R is the number of tile rows, and

N is the length of the final MP. If the tile size is 1, then R = N and

processing one billion elements necessitates storing the distance

matrix (~1 quintillion values). If each intermediate value is eight

bytes compressed on disk, the total storage requirement would be

~8 exabytes, the estimated aggregate storage capacity of Google’s

datacenters in 2014 [42].

4 Experimental Evaluation

All experiments reported here are reproducible. All code and

data (and additional experiments omitted for brevity) are archived

in perpetuity [27].

4.1 Performance Comparison

4.1.1 Comparison to GPU-STOMPOPT. Table 3 reports the

result of a direct comparison of SCAMP to GPU-STOMPOPT using

random walk datasets of various lengths. The first column reports

the performance of GPU-STOMPOPT using the code from Ref. [41]

on an Nvidia Tesla K80 GPU. The results here are similar, but vary

slightly due to a change in the timing of the experiment to improve

precision.

Figure 7: Illustration of how to distribute SCAMP in a cluster of GPU instances on AWS.

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

Table 3: SCAMP Runtime Evaluation

Algorithm STOMP-GPUOPT SCAMP

Architecture K80 V100 V100 V100

Precision DP DP DP SP

218 3.04s 0.34s (8.9x) 0.28s (10.9x) 0.24s (12.7x)

219 11.4s 1.24s (9.2x) 0.68s (16.8x) 0.57s (20.1x)

220 44.1s 4.81s (9.2x) 2.05s (21.5x) 1.42s (31.1x)

221 174s 19.0s (9.2x) 6.99s (24.9x) 4.38s (39.8x)

222 629s 69.2s (9.1x) 25.8s (24.4x) 15.5s (40.7x)

223 2514s 277s (9.1x) 96.8s (26.0x) 52.5s (47.9x)

The second column reports the execution time of the same code

(still GPU-STOMPOPT) running on a single Nvidia Tesla V100

SXM2 on Amazon EC2. The reported speedup is due to the V100’s

higher instruction throughput compared to the K80, which is

bottlenecked by the latency of atomic updates to shared memory.

Nvidia implemented shared memory atomics in hardware and

included them in their instruction set architecture (ISA) starting

with the Maxwell GPU family [30]; they are no longer a

performance bottleneck on newer GPU architectures. The third and

fourth columns report the execution time and speedups (relative to

Column 1) of SCAMPDP and SCAMPSP running on the V100 GPU.

The reported speedups are due to the optimizations described in

Sections 3.2 and 3.4 (SCAMPDP) and the conversion from double

to single precision (SCAMPSP); SCAMPSP does not always produce

the same result as SCAMPDP.

4.1.2 Scalability. Figure 8 depicts an analytical performance

model for SCAMP’s execution time under ideal conditions. Given

the runtime of SCAMP (To) on one GPU on a dataset of a size (No)

which sufficiently saturates compute performance, we construct an

analytical model (Equation 8) to estimate SCAMP’s execution time

across G GPUs on a time series of length N under ideal assumptions

(e.g., no communication overhead).

N = 𝑁𝑜√
𝑇𝐺

𝑇𝑜
 (8)

No and To are initialization parameters provided by one trial run on

a single V100 GPU. We use this equation and the SCAMPDP

runtime for input size 223 (Table 3) to construct the model:

Each data point in Figure 8 corresponds to an experiment we

ran, which demonstrates that the empirical model is highly

accurate. The data for our distributed workloads in the next section

also align well was this plot but were not included due to space and

readability constraints. More detail is available on our supporting

webpage [27]. Under this model, the cost of a problem remains

constant if there is no distributed overhead. For example, to

compute a join of 530 million using double-precision, one can

either use 8 GPUs for 8 hours, or 64 GPUs for 1 hour. The cost is

identical as long as there is no difference in the cost per hour for

GPU compute time.

4.1.3 Distributed Performance: p3 spot instances. Next, we

evaluate SCAMP’s performance on two very large earthquake

datasets. Both experiments ran on 40 V100 GPUs, each in a

different configuration, on an AWS EC2 spot instance fleet. A spot

instance fleet automatically provisions a consistent number of spot

instances for the job queue. If one instance is preempted, AWS

provisions another for the fleet as long as there are available

instances. A spot instance user accesses compute resources not sold

to customers who pay full price for non-preemptable instances.

Spot instance prices increase when demand is high; when demand

is low, the provider loses money, but mitigates losses by selling

preemptable access to the highest bidder.

The Parkfield dataset ran on a five p3.16xlarge spot instance

fleet, where each instance is equipped with eight V100 GPUs. The

p3.16xlarge instances were in high demand at the time of the

experiment: many jobs remained queued at times that AWS could

not provide capacity to execute; we were only charged for active

GPU compute time. The Cascadia Subduction Zone dataset ran on

ten Amazon EC2 p3.8xlarge instances each equipped with four

V100 GPUs. These instances were in lower demand than those used

for the Parkfield data set experiments, allowing faster job

completion time with less queuing overhead. The spot price of

Amazon spot instances is dynamic and demand-driven [39], and we

were charged a higher spot price. Table 4 reports the results of these

experiments.

Figure 8: Equation 8 plotted using No and To from Table 3, the V100 double precision result for a dataset with 223 data points.
Dots correspond to values measured during experiments reported in this paper. Results are for a single non-preemptable
instance equipped with G GPUs. Equation 8 also generalizes to multi-instance distributed workloads.

Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA

Table 4: Summary of various distributed runs on AWS spot
instances

Dataset Parkfield Cascadia

Size 1 Billion 1 Billion

Tile Size ~52M (1 month) ~ 25M (2 weeks)

Total GPU time 375.2 hours 375.3 hours

Spot Job Time 2.5 days 10hours 3min

Approximate Spot Cost 480 USD 620 USD

Intermediate Data Size 102.2 GB 196.4 GB

Table 5: Optimized CPU and GPU SCAMPDP cost on a single
AWS spot instance

 Instance Type

Input Size

c5.18xlarge

72 cores

3.06 USD/hr
Seconds

p3.2xlarge

1 Tesla V100

3.06 USD/hr
Sec/speedup

218 7 0.28 (25x)

219 14 0.68 (20x)

220 32 2.0 (16x)

221 76 7.0 (11x)

222 252 25.8 (9.8x)

223 933 96.8 (9.6x)

4.1.4 CPU Comparison. Table 5 compares the performance of

our GPU implementation of SCAMPDP to a CPU implementation

running on a 72-core c5 18xlarge spot instance (Intel Skylake

CPU). The CPU implementation saturates performance at an input

size of 221, after which its runtime scales quadratically, as expected.

At the time of writing, the c5.18xlarge has the same on-demand

price on AWS as a p3.2xlarge which employs one V100 GPU.

While it is difficult to compare cross-architecture performance, we

can and do compare price per performance, which is shown in bold

as a factor of improvement of the GPU over the CPU. In this case,

the GPU is approximately one order of magnitude more cost-

efficient. The price per performance for smaller input sizes is an

imperfect basis for comparison: we could have used a smaller spot

instance type to achieve better price per performance on a CPU

when small input data sizes fail to saturate the 72 available cores

on the c5 18xlarge instance.

4.2 Precision Evaluation

Consider the three data snippets shown in Figure 9. Each has a

constant region longer than the chosen motif length m. Constant

regions are a source of numerical instability. Many scientists are

interested in the similarity of z-normalized subsequences. Z-

normalization divides each data point by the standard deviation of

the entire subsequence. For a constant region, the standard

deviation is 0. Near-constant subsequences are also problematic,

because they pass a bit-level test for two distinct values but result

in division by a number very close to 0.

 Constant regions are common. For example, in medical

datasets, we have observed constant regions caused by:

Disconnection Artifacts: These may occur due to disconnection

of a monitoring lead, e.g., during a bed change.

Hard-Limit Artifacts: Some devices have a minimum and/or

maximum threshold defined by a physical limit of the technology.

If the true value exceeds the limit for a period of time, a constant

value occurs for the duration (Figure 9.center).

Figure 9: Three time series containing a constant region caused
by different issue [9]. left) An ECG (heart) with a disconnection
artifact. center) An EOG (eye movement) with a hard-limit
artifact. right) An ECoG (finger flexion) with constant region
caused by low precision recording.

Low Precision Artifacts: Many devices record at low-

precision fixed-point; observed constant values may not be constant

at a higher precision.

In most cases, disconnection artifacts saturate to a Pearson

Correlation of 1 or a z-normalized Euclidean Distance of 0, and are

removed later via a post processing step. If small peaks and valleys

are important in a low-precision artifact scenario, the MP can be

computed and stored in double-precision.

4.2.1 Comparison with Previous Update Method. Figure 10,

compares SCAMP’s update method (Equations 3-7) with the prior

method implemented in GPU-STOMPOPT. We compute the result

first in double precision, then plot the absolute error in computed

Pearson Correlation between the double and single precision for

both SCAMP and GPU-STOMPOPT.

The bottom and middle of Figure 10 elucidate how Equations 1

and 2 (GPU-STOMPOPT’s update method), completely fail in single

precision on this dataset. We capped the error at 1 for GPU-

STOMPOPT, which is half of the range of Pearson Correlation. The

actual values reported by GPU-STOMPOPT were many times larger

than the entire range of Pearson Correlation.

In contrast, SCAMP only exhibits error in constant regions that

arise due to disconnection artifacts. Here, a domain expert can

easily clean up SCAMP’s results with minimal effort by omitting

these regions from consideration when analyzing the output of

SCAMP. In contrast, GPU-STOMPOPT fails to produce a

meaningful result across almost most of the dataset.

4.2.2 General Considerations for Precision. Next, we analyze

the effect of reducing precision on various datasets of different

lengths. We use a tile size of 1 million for SCAMP while GPU-

STOMPOPT computes across the entire length of the input in one

go, as it does not perform tiling. We generate the MP using

SCAMPDP, SCAMPSP and GPU-STOMPOPT with single and double

precision. We used a window length longer than the longest flat

artifact region in the data, to allow us to isolate errors caused by the

update formula from the inherent loss of information from artifacts

that cannot be represented in lower precision.

Table 6 presents the results of the experiment. Altogether

SCAMP was three or more orders of magnitude more accurate than

STOMP on these datasets. Each entry in Table 6 is the maximum

absolute error found between the double and single-precision MP

calculations. We highlight absolute errors that exceed 0.01 in red

to emphasize that a domain scientist would not consider these

results sufficiently accurate to use or report.

SCAMPSP suffers a substantial accuracy loss compared to

SCAMPDP but achieves much higher performance. If a user’s

dataset and application can tolerate the loss of accuracy, there is

much to be gained in terms of efficiency. We observe that

1850 2350

-100

0

100

200

1000 1500

-100

-50

0

50

100

2100 2450

-0.8

-0.6

-0.4

-0.2

0

0.2

Electrooculogram (EOG) Electrocorticogram (ECoG) Electrocardiogram (ECG)

m

m

m

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

SCAMPSP works well on data that is highly regular with a small

min-max range, exemplified by ECG data.

Figure 10: Single precision error comparison between GPU-
STOMPOPT and SCAMP on White Fly EPG dataset. top)
original data. middle) SCAMP absolute error. bottom) GPU-
STOMP absolute error.

Table 6: Maximum absolute error (Pearson Correlation) for
various datasets/algorithms. Red denote high error

Maximum

absolute error

Size (m) SCAMP

SP

STOMP SP

Whitefly EPG 2.5M (1000) 3.75*10-2 1.89*101

ECG 8.4M (100) 3.14*10-4 2.07*10-3

Earthquake 1.7M (200) 6.35*10-1 3.17*103

Power Demand 10M (4000) 4.85*10-2 2.22*10-1

Chicken 9M (1000) 4.92*10-2 2.27*101

99.9 percentile
absolute error

Size (m) SCAMP
SP

STOMP SP

Whitefly EPG 2.5M (1000) 3.00*10-3 1.55*101

ECG 8.4M (100) 4.40*10-5 4.02*10-4

Earthquake 1.7M (200) 6.08*10-1 1.94*103

Power Demand 10M (4000) 8.52*10-3 1.29*10-1

Chicken 9M (1000) 1.96*10-3 1.70*101

SCAMPSP completely fails on the Earthquake dataset in Table

6. This is because the large earthquake’s signal has a magnitude

greater than 107, which cannot be represented precisely by single-

precision floats. It may be possible to reduce the error of SCAMPSP

for more types of data, but we leave this task for future work.

5 Case Studies in Seismology

Figures 1 and 4 suggest that motifs are important to many

domains. Due to space limitations, we limit our case studies

reported in this paper to seismic data, which provide information

about Earth’s interior structure and processes. We define seismic

data to be any recorded motion (e.g., displacement, velocity,

acceleration) measured using seismic instruments at the Earth’s

surface. Detected and located seismic events (i.e. earthquakes) can

be used for studying earthquake source processes and source

physics, fault behavior and interactions, for determining Earth’s

velocity structure, and to constrain seismic hazard [12]. Many of

these applications benefit from detection of smaller events, which

can be missed due to insensitive detection algorithms, or human

analyst error [48]. Improvements to seismic data instruments,

networking and data management, and reductions in cost, have

resulted in a power law increase in seismic data volume [19].

Probing this huge volume of data is an ongoing challenge.

Performing query searches for seismic data can increase the

detectability of seismic events by one order of magnitude [29][36].

However, this method requires a priori known queries (often

referred to as ‘waveform templates’ in seismology) as input.

Although waveforms of events in a local earthquake catalog can

be used, this relies on suitable events being present in the catalog.

While an ‘autocorrelation’ motif discovery method can identify

suitable queries, it is expensive computationally in terms of

memory and time [6][34]. The analysis in [6] was restricted to one

hour of data, which limited the number of discoverable motifs.

Other studies have performed motif discovery by converting

seismic time series to small and dense proxies, and computing a

Locality-Sensitive Hash (LSH) [4][7][32], an approximate and

reduced-dimension nearest neighbor search. This approach was

~143x faster than autocorrelation for one week of continuous data,

but produced false positive and false negative results [7]. In

addition, LSH requires the careful selection of multiple, data set-

specific tuning parameters, a process that requires visual inspection

and validation against the results of other methods.

In contrast, SCAMP can exactly search datasets that can only

be searched approximately using current methods. We consider the

milestone of one billion data points (~579 days, ~1.5 years) of

seismic data with a 20 Hz sample rate. In two examples, we

demonstrate how and why transitioning motif discovery timescales

from hours of data to years of data is a potential game changer for

the field of seismic data mining.

5.1 Detecting Foreshocks and Aftershocks

The town of Parkfield, located on the San Andreas fault in

central California, experienced four magnitude ~6 earthquakes in

the 20th Century: 1901, 1922, 1934 and 1966 [45]. A repeat event

was predicted to occur between 1985 and 1993, spurring the

‘Parkfield Earthquake Prediction Experiment’, which tried to

capture the earthquake with the best available instrumentation. The

actual event (the ‘mainshock’) occurred ‘late’ in 2004, and was

recorded in extraordinary detail by the low-noise, borehole

seismometers of the Parkfield High Resolution Seismic Network

(HRSN) [45][47]. Many of these earthquakes were detected and

cataloged in real-time at the Northern California Earthquake Data

Center (NCEDC) by an automated procedure, and quality checked

for false positives by human analysts. We use this catalog as a

reference. To investigate i) whether the HRSN data contain

information on any aftershocks that were not included in the

NCEDC catalog, and ii) whether there was any change in behavior

before the mainshock, we ran SCAMP on 580 days (1,002,240,008

points) of data from Parkfield. We use 20 Hz horizontal component

seismic data (from 28-11-03 to 9-7-05) from the HRSN station

VCAB, centered on the 2004 Parkfield mainshock time (i.e. 28-9-

04). We set the query length at 100 samples (5 seconds). We band-

pass filtered the data between 2 and 8 Hz, a frequency range that

can detect low signal-to-noise ratio earthquakes.

Figure 11 shows a zoom-in of two sections of the waveform and

their corresponding MPs. The motifs for aftershocks of the

Parkfield earthquake have a very characteristic shape. The MP

drops abruptly as the query window begins to capture the beginning

of the earthquake waveforms, followed by a gradual increase back

to the background noise level, indicating that the two waveforms

0

2

4

6 White Fly EPG

0

1

0

1

0 2,500,000

SCAMP error

STOMP error

Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA

being compared have similar shapes at their beginnings, and

dissimilar shapes at their ends.

Figure 11: Examples of a waveform snippet (top) and
corresponding MP shape (bottom) for aftershocks of the
Parkfield earthquake. left) a small aftershock. right) a larger
aftershock with a waveform amplitude that is three orders of
magnitude larger.

The first arrivals (first motions) of seismic waves have

polarities (either up or down) that reflect both the mechanism of the

earthquakes that generated them and their location relative to the

station. The initial drop in the MP indicates the waveforms have the

same first motion polarity. The next few seconds of arrivals to the

station include reflections, refractions and reverberations of seismic

waves – collectively referred to as the seismic ‘coda’ – which are

much more sensitive to differences in earthquake location, and

therefore much less similar between pairs of events [1]. The

duration of the gradual increase in the MP is longer for the larger

event (Figure 11.right), consistent with the empirical relationships

of signal duration (and coda length) with event magnitude [21][8].

We propose two important applications of MP results to

seismology: ii) The abrupt initial drop of the MP can select the first

motions of seismic events, which is an ongoing challenge in

seismology [26][33]. (ii) The length of the MP valley from the

sudden drop to its recovery can help to measure the coda length,

which correlates with earthquake magnitude [8][21].

Next, we performed an event-detection experiment using a MP

containing the Pearson Correlation Coefficient (MPCC, for short).

Pearson correlation is bounded in the range [-1,+1], can be trivially

converted to Euclidean Distance, and is widely used in seismology

studies [31][25][37]. We count the number of MPCC peaks

separated by at least 100 samples (5 seconds) to prevent

overcounting the same earthquake when multiple peaks are present

for one event. Long traces of seismograph data often contain

repeated patterns corresponding to special types of sensor noise;

these are easy to filter, as they create near perfect motifs. We count

the number of MPCC peaks in the range [0.90, 0.99].

Figure 12 shows the number of MPCC motifs per day for our

580 days of VCAB data. Although we targeted the Parkfield

earthquake, we detected other nearby earthquakes and their

aftershocks, notably the 2003 Mw 6.5 San Simeon event, and two

other moderate (Mw 4.0–4.5) earthquakes nearby. A series of motif

peaks in the lead-up to the Parkfield mainshock (around 04/07/01)

do not correspond to events in the regional earthquake catalog, and

may represent previously undetected foreshock activity; we have

reported them to collaborators in seismology to investigate.

Figure 13 compares the total number of motifs in the MPCC

range [0.9, 0.99] over the first 90 days of the Parkfield aftershock

sequence with the number of catalog aftershocks reported in the

NCEDC catalog. This analysis reports ~16x more detections than

those reported by the NCEDC. Some of these thresholding-based

detections may be station artifacts, but visual inspection suggests

that they account for less than 5% of the events.

We also fit the Omori-Utsu aftershock rate equation [46] to the

detected and catalogued aftershocks of the Parkfield earthquake.

Figure 14 shows that the number of motifs per day fit the Omori-

Utsu law almost perfectly. Values retrieved from the Omori-Utsu

rate equation can provide information about the physics of the

mainshock [16] and also even can be used for forecasting large

aftershocks [28].

5.2 Detecting Subtle Seismic Motifs

Low frequency earthquakes (LFEs) are seismic events that

occur deep in the crust and typically have very low signal-to-noise

ratio signals. LFE recurrence is a proxy for movements at the roots

of fault zones, and may be useful in short-term earthquake

forecasting [51][52][53]. LFEs have been observed in the Cascadia

subduction zone, where the Juan de Fuca plate subducts beneath the

North American plate, from coastal Northern California to

Vancouver Island. This ‘megathrust’ fault has the potential to

produce great (magnitude ~9) earthquakes [2], motivating LFE

detection in this region. Their low signal-to-noise ratios make

detecting them challenging and time consuming (e.g., requiring

sophisticated methods and visual inspection; [49][[50][6]).

In order to see if we can detect these novel events in this region,

we ran SCAMP on 579 days of data (start date 2006/03/01) for the

vertical component of station I02A, located near Mapleton, OR. We

band-pass filter these data at 2–8 Hz and resample them to 20 Hz.

We set the query length to 200 (10 seconds), based on the length of

LFE templates used in previous studies [49].

Figure 15 shows the motif density over time for this

experiment. The number of motifs starts to increase around August

2006 and decrease in November 2006, and again increase in June

2007 and start to decrease around October 2007. We visually

inspected some of these motifs (in both time and frequency domain)

and classified them in four categories: i) regular earthquakes (less

frequent, Figure 16. left.) ii) weather or human related signals

(frequent), iii) Station artifact (less frequent), iv) LFE-like signals

(frequent, Figure 16.right). Confirming a signal to be LFE is not

easy, typically requiring detection at several stations and visual

inspection of its frequency spectrum. In Figure 16 we show a

discovered motif that was confirmed as a true LFE in [49]. Note

that the MP for the LFE is not as low as regular earthquake but

much lower than the background noise (Figure 16).

In general, we detect fewer than 150 motifs per day in this

dataset. This means that in order to discover LFEs a seismologist

needs to inspect fewer than 150 sub-windows per day of data, a task

that would take minutes to perform. In contrast, the traditional

visual inspection method for detecting LFEs (e.g., brute force

checking [50]) requires inspection of thousands of sub-windows

(e.g., 17280 sub windows with a 5 second skip), potentially taking

hours for each day of seismic data. Running SCAMP before

searching for these subtle and important motifs could potentially

provide a large time savings for seismologists and make their

discovery much easier in this domain.

0 0

a
m

p
li

tu
de

Small aftershock of the
Parkfield earthquake.

(note the units)

Large aftershock of the
Parkfield earthquake.

(note the units)

0 600 1200 18000

2
4

6
8

10

0 600 1200 1800

Five Seconds Five Seconds

M
a

tr
ix

 P
ro

fil
e

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

Figure 13: The number of events in the USGS NCSN Catalog
(green line) and the number of motifs detected using SCAMP
(red line) for the Parkfield earthquake aftershock sequence.
For the catalog events we considered all events in a box with
length ~200 km centered on the Parkfield mainshock epicenter.
The start of seismicity in this plot is 4 days prior to the Parkfield
earthquake

Figure 14: A fit of an Omori-Utsu relationship [46] (i.e. the law
that describes aftershock rate behavior) to the number of
motifs per day for the first 30 days after the Parkfield
mainshock. The R-squared of 0.988 indicates a very good fit
and shows how the number of motifs can describe the expected
aftershock behavior almost perfectly.

These results were obtained by post-processing an MP

produced by SCAMP; possibilities for further refinement remain

open. These results show that SCAMP can detect LFEs, and has the

potential to more generally explore the seismicity of the southern

Cascadia subduction zone and other similar regions. We believe

that SCAMP has a rich future in seismic data mining – a discipline

that traditionally suffers from false negatives – and other domains

that produce time series.

Figure 15: Discovered motifs for 579 days of seismic data
recorded on the vertical channel of station I02A, located near
Mapleton, OR. The number of discovered motifs based on
MPCC thresholding method shows two six-month periods were
detected motifs gradually increase, that start in mid-2006 and
mid-2007. We believe many of these motifs are low frequency
earthquakes (see Figure 16).

Figure 16: left) An example of an earthquake waveform snippet
(top) and MP shape (bottom) in the vicinity of a discovered
motif for a ‘regular’ earthquake. right) A waveform snippet
and corresponding MP from a confirmed LFE (identified by
[49]).

6 Conclusion

SCAMP exactly searches for motifs in time series at the data-

center scale. To the best of our knowledge, this work is the first

time any research effort has reported performing a quintillion exact

pairwise comparisons on a single time series dataset. Likewise, we

believe this to be the first work to do exact motif search on more

than one year (1.59 years to be precise) of continuous earthquake

data. All code has been made freely available to the general public

[27], whom we invite to confirm, extend, and exploit our efforts.

ACKNOWLEDGMENTS

#
 o

f
d
e
te

c
te

d

s
e
is

m
ic

e
v
e
n
ts Number of MP peaks

NCSN catalog

2004/10/01 2004/11/01 2004/12/01
0

2000

2006/04/01 2006/10/01 2007/04/01 2007/10/01
0

50

100

150

of

 M
P

C
C

pe

ak
s

pe
r

da
y

a
m

p
li

tu
d

e
M

a
tr

ix
 P

ro
fil

e

0

0 800 1600
0

5

10

15

0

0 800 1600
0

10

20

Figure 12: Daily number of discovered motifs for 580 days of data centered on the Parkfield earthquake (04/09/28), measured
on the horizontal component of station VCAB, located ~10 km from the epicenter. Motifs are selected based on the peak
MPCC values.

Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA

This work was supported in part by NSF Awards #1161997,

#1528181, and #1763795.

SoCC’19, November, 2019, Santa Cruz, California USA Z. Zimmerman et al.

REFERENCES
[1] K. Aki and B. Chouet. Origin of coda waves: source, attenuation, and scattering

effects. Geophysical Research, 80(23): 3322-3342, 1975.

[2] B. Atwater, et al. Summary of coastal geologic evidence for past great earthquakes at

the Cascadia subduction zone. Earthquake spectra, 11(1): 1-18, 1995.

[3] N. Begum, B. Hu, T. Rakthanmanon, and E. J. Keogh. Towards a minimum

description length-based stopping criterion for semi-supervised time series

classification. IRI, 333-340, 2013.

[4] K. J. Bergen and G. C. Beroza. Detecting earthquakes over a seismic network using

single-station similarity measures. Geophysical Journal International, 213(3): 1984-

1998, 2018.

[5] D. Boyarko, Det al. (2015). Automated detection and location of tectonic tremor along

the entire Cascadia margin from 2005 to 2011. Earth and Planetary Science Letters,

430, 160-170.

[6] J. Brown, G Beroza, & D. Shelly (2008). An autocorrelation method to detect low

frequency earthquakes within tremor. Geophysical Research Letters, 35(16).

[7] Yoon, C. E, et al. Earthquake detection through computationally efficient

similarity search. Science advances, 1(11): e1501057, 2015.

[8] B. Castello, M. Olivieri, and G. Selvaggi. Local and duration magnitude determination

for the Italian earthquake catalog, 1981–2002. Seismological Society of America,

97(1B): 128-139, 2007.

[9] H. Dau and E. Keogh. Matrix Profile V: A Generic Technique to Incorporate Domain

Knowledge into Motif Discovery. KDD, 125-134, 2017.

[10] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Communications of the ACM, 51(1): 107-113, 2008.

[11] Nvidia Tesla V100 Whitepaper: http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf

[12] E. H. Field, et al. Uniform California earthquake rupture forecast, version 3

(UCERF3)—The time-independent model. Bulletin of the Seismological Society of

America, 104(3): 1122-1180, 2014.

[13] I. Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens. Contextual motifs: Increasing

the utility of motifs using contextual data. In Proceedings of the 23rd ACM SIGKDD

(2017), pages 155– 164.

[14] Han, S., Mao, H. and Dally, W.J. Deep compression: Compressing deep neural

networks with pruning, trained quantization and huffman coding. ICLR, 2016

[15] S. Gupta, et al. Deep learning with limited numerical precision. In Proceedings of the

32nd ICML, pages. 1737-1746. JMLR, 2015.

[16] S. Hainzl and D. Marsan. (2008). Dependence of the OmoriUtsu law parameters on

main shock magnitude: Observations and modeling. Journal of Geophysical

Research: Solid Earth, 113(B10), 2008.

[17] D. Hill, et al. The 1989 earthquake swarm beneath Mammoth Mountain, California:

An initial look at the 4 May through 30 September activity. Seismological Society of

America, 80(2): 1990.

[18] N. M. Ho and W. F. Wong. Exploiting half precision arithmetic in Nvidia GPUs.

HPEC, 1-7, 2017.

[19] A. Hutko, M. Bahavar, C. Trabant, R. Weekly, M. Fossen, and T. Ahern. Data

products at the IRIS‐DMC: Growth and usage. Seismological Research Letters, 88(3):

892-903, 2017.

[20] R. Hyndman and K. Wang. The rupture zone of Cascadia great earthquakes from

current deformation and the thermal regime. Journal of Geophysical Research: Solid

Earth, B11: 22133, 1995.

[21] F. Klein. (2002). User's guide to HYPOINVERSE-2000, a Fortran program to solve

for earthquake locations and magnitudes. US Geological Survey, 02-171(1.0), 2002.

[22] I. Kolb et al. Evidence for long-timescale patterns of synaptic inputs in CA1 of awake

behaving mice. Neuroscience, 1519-17, 2017.

[23] K. Mauck. (2018) Personal communication

[24] A. Murillo (2018). Personal Communication.

[25] R. Nadeau, W. Foxall, and T. McEvilly. Clustering and periodic recurrence of

microearthquakes on the San Andreas fault at Parkfield, California. Science, 267: 503-

7, 1995.

[26] S. E. J. Nippress, A. Rietbrock, and A. E. Heath. Optimized automatic pickers:

application to the ANCORP data set. Geophysical Journal International, 181(2): 911-

925, 2010.

[27] SCAMP Supporting Webpage: https://sites.google.com/view/2019scamp

[28] T. Omi, Y. Ogata, Y. Hirata, and K. Aihara. Forecasting large aftershocks within one

day after the main shock. Scientific reports, 3: 2218, 2013.

[29] Z. Peng and P. Zhao. Migration of early aftershocks following the 2004 Parkfield

earthquake. Nature Geoscience, 2(12): 877, 2009.

[30] https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-using-shared-atomics-

maxwell/

[31] G. Poupinet, et al. Monitoring velocity variations in the crust using earthquake

doublets: An application to the Calaveras Fault, California. Geophysical Research:

Solid Earth, 89(B7): 1984.

[32] K. Rong, et al. Locality sensitive hashing for earthquake detection: a case study of

scaling data-driven science. In VLDB 2017.

[33] Z. Ross and Y. Ben-Zion. Automatic picking of direct P, S seismic phases and fault

zone head waves. Geophysical Journal International, 199(1): 368-381, 2014.

[34] A. Royer and M. Bostock. A comparative study of low frequency earthquake

templates in northern Cascadia. Earth and Planetary Science Letters, 402: 247-256,

2014.

[35] W. Sandanayaka, Y. Jia, and J. G. Charles. EPG technique as a tool to reveal host plant

acceptance by xylem sap-feeding insects. Journal of Applied Entomology, 137: 519–

529, 2013.

[36] D. P. Schaff and F. Waldhauser. One magnitude unit reduction in detection threshold

by cross correlation applied to Parkfield (California) and China seismicity. Bulletin of

the Seismological Society of America, 100(6): 3224-3238, 2010.

[37] D. Schaff and F. Waldhauser. Waveform cross-correlation-based differential travel-

time measurements at the Northern California Seismic Network. Seismological

Society of America, 95(6): 2005.

[38] D. Silva, C-C M. Yeh, G. Batista, E. Keogh: SiMPle: Assessing Music Similarity

Using Subsequences Joins. ISMIR 2016: 23-29.

[39] https://aws.amazon.com/ec2/spot/

[40] R. D. Vatavu. Small gestures go a long way: how many bits per gesture do recognizers

actually need? In DIS ‘12, pp 328-337, 2012.

[41] Y. Zhu, et al. Exploiting a novel algorithm and GPUs to break the ten quadrillion

pairwise comparisons barrier for time series motifs and joins. KAIS 1-34, 2018.

[42] What-if. https://what-if.xkcd.com/63/.

[43] C. C. M. Yeh, et al. Matrix Profile I: All Pairs Similarity Joins for Time Series: A

Unifying View that Includes Motifs, Discords and Shapelets. In ICDM, pages 1317-

1322. IEEE, 2016.

[44] Y. Zhu, et al. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the

One Hundred Million Barrier for Time Series Motifs and Joins. In ICDM, pages 739-

748. IEEE, 2016.

[45] Bakun, W. H., et al. The Parkfield, California, earthquake prediction

Experiment. Science, 229(4714): 619-624, 1984.

[46] Utsu, T., & Ogata, Y. The centenary of the Omori formula for a decay law of

aftershock activity. Journal of Physics of the Earth, 43(1): 1-33, 1995.

[47] "HRSN (2014), High Resolution Seismic Network. UC Berkeley Seismological

Laboratory. Dataset. doi:10.7932/HRSN."

[48] Brodsky, E. E. (2019). The importance of studying small earthquakes. Science,

364(6442), 736-737.

[49] Boyarko, D. C., & Brudzinski, M. R. (2010). Spatial and temporal patterns of

nonvolcanic tremor along the southern Cascadia subduction zone. Journal of

Geophysical Research: Solid Earth, 115(B8).

[50] Shelly, D. R. (2010). Migrating tremors illuminate complex deformation

beneath the seismogenic San Andreas fault. Nature, 463(7281), 648.

[51] Shelly, D. R., G. C. Beroza, and S. Ide (2007). Non-volcanic tremor and low-

frequency earthquake swarms, Nature 446, no. 7133, 305.

[52] Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge

earthquakes. Science, 353(6296), 253-257.

[53] Rubinstein, J. L., Shelly, D. R., & Ellsworth, W. L. (2009). Non-volcanic

tremor: A window into the roots of fault zones. In New Frontiers in Integrated

Solid Earth Sciences (pp. 287-314). Springer, Dordrech

[54] The TileDB Array Data Storage Manager, VLDB'16. https://tiledb.io/

https://tiledb.io/

