

 Discovery of Meaningful Rules in Time Series
Mohammad Shokoohi-Yekta Yanping Chen Bilson Campana Bing Hu Jesin Zakaria Eamonn Keogh

University of California, Riverside
{mshok002, ychen053, bcampana, bhu002, jzaka001, eamonn} @cs.ucr.edu

ABSTRACT
The ability to make predictions about future events is at the heart
of much of science; so, it is not surprising that prediction has been
a topic of great interest in the data mining community for the last
decade. Most of the previous work has attempted to predict the
future based on the current value of a stream. However, for many
problems the actual values are irrelevant, whereas the shape of the
current time series pattern may foretell the future. The handful of
research efforts that consider this variant of the problem have met
with limited success. In particular, it is now understood that most
of these efforts allow the discovery of spurious rules. We believe
the reason why rule discovery in real-valued time series has failed
thus far is because most efforts have more or less indiscriminately
applied the ideas of symbolic stream rule discovery to real-valued
rule discovery. In this work, we show why these ideas are not
directly suitable for rule discovery in time series. Beyond our
novel definitions/representations, which allow for meaningful and
extendable specifications of rules, we further show novel
algorithms that allow us to quickly discover high quality rules in
very large datasets that accurately predict the occurrence of future
events.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Application – Data
Mining

Keywords
Rule Discovery, Prediction, Motif Discovery, Time Series

1. INTRODUCTION
Prediction and forecasting have been a topic of great interest in
the data mining community for the last decade. Most of the work
in the literature has dealt with discrete objects, such as keystrokes
(i.e. predictive text), database queries [16], medical interventions
[28], web clicks, etc. However, prediction may also have great
utility in real-valued time series. For concreteness we briefly
consider two examples:
• Researchers in robotic interaction have long noted the

importance of short-term prediction of human initiated forces to
allow a robot to plan its interaction with a human. For example
a recent paper notes the critical “importance of the prediction of
motion velocity and the anticipation of future perceived forces
[to allow the] robot to anticipate the partner’s intentions and
adapt its motion” [10].

• Doppler radar technology introduced in the last two decades has

increased the mean lead time for tornado warnings from 5.3 to
9.5 minutes, saving countless lives [3]. But progress seems to
have stalled, with 26% of tornados within the US occurring with
no warning. McGovern et al. argue that further improvements
will come not from new sensors, but from yet-to-be-invented
algorithms that “examine existing (time series) data for
predictive rules” [19].

Most of the current work has attempted to predict the future based
on the current value of a stream [18]. However, for many
problems the actual values are irrelevant, but the shape of the
current pattern may foretell the future. For clarity we call the
former forecasting, and the latter, the subject of this paper, rule-
based prediction (although the literature is inconsistent on this
convention). There is an additional critical distinction between
forecasting and rule-based prediction. Time series forecasting is
typically always-on; it predicts values at every time step. In
contrast, rule-based prediction monitors the incoming data at each
time step, but only occasionally makes a prediction about an
imminent occurrence of a pattern.
While forecasting is mature enough to have its own conferences
and commercial software (SAS, IBM Cognos, etc.), the handful of
research efforts to consider time series rule-based prediction have
met with limited success. In particular, it is widely accepted that
these efforts allow the discovery of spurious rules [12], including
finding high confidence “rules” in random walk data. We believe
that the reason why rule discovery in real-valued time series has
failed thus far is that most efforts have more or less
indiscriminately applied the ideas of symbolic stream rule
discovery to real-valued rule discovery. In this work, we argue
that such ideas are not directly transferable to rule discovery in
real-valued time series. Instead, we formulate a rule representation
and a Minimum Description Length (MDL) inspired search
strategy that evaluates candidate rules based on how well they can
compress the data.

2. BACKGROUND AND RELATED WORK
In a sequence of papers culminating in [21], Park and Chu
investigate a rule finding mechanism for time series. However, the
algorithm is only evaluated for speed and then only on random
walk data. No evidence was presented that the algorithm could
actually find generalizable rules in time series.
Work by Wu and colleagues also use a piecewise linear
representation to support rule discovery in time series. They tested
their algorithm on real (financial) data, reporting approximately
68% “correctness of trend prediction” [29]. However, the authors
graciously ran their algorithm on data provided by others and
when they ran their algorithms on pure random walk data, they
again achieved approximately 68% correctness of trend prediction
[30]. This suggests their original results did not outperform
random guessing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
KDD’15, August 11 – 14, 2015, Sydney, NSW, Australia
© 2015 ACM. ISBN 978-1-4503-3664-2/15/08…$15.00
DOI: http://dx.doi.org/10.1145/2783258.2783306

The most referenced time series rule-finding method in the
literature is [5], which quantizes the data with K-means clustering
of the entire training dataset and passes the (now) symbolic data
over to a classic association rule discovery algorithm. The success
of a rule is measured with a score called the J-measure. The
method was used in several papers before it was shown that the J-
measure gave the same significance to rules found in completely
random data as to rules found in real data [12]. Later analyses by
more than a dozen follow-up papers suggest that the problem is
with the quantization step; in essence any technique that involves
clustering all subsequences is doomed to produce cluster centers
that are independent of the data [12]. In Section 7.7 we have
compared our algorithm to the three highly cited rival methods.
For brevity, we forgo an in-depth review related work here,
referring the reader to an expanded version of this paper [31]. For
more background on MDL we direct the interested reader to
[1][15]. We will discuss our use of MDL in Section 5.1.

3. THE INTUITION OF RULE DISCOVERY
It may be instructive to first consider the analogue problem of rule
discovery in symbolic strings. Let us consider “The Raven”, by
Edgar Allan Poe. It begins:

Once upon a midnight dreary, while I pondered weak and …
What are the possible rules we might discover in this text? One
possible rule is that the word “door” often follows the word
“chamber,” a rule we can denote as:

chamber → door
The left side of the rule is the antecedent and the right side is the
consequent. This rule is based on our observation that we see the
phrase “chamber door” ten times in the text. We note that this is
not a perfect rule; the word “chamber” appears once without been
followed by “door” (“...into the chamber turning...”).
Furthermore, it is important to note that the rule does not make the
claim that all, or even many, occurrences of “door” are preceded
by “chamber”. In fact, there are four more examples of the word
“door” in the text.
A major difference between text and time series is that the latter
does not have a natural segmentation (i.e. spaces or periods), thus
we are facing data that is more like this:

onceuponamidnightdrearywhileIponderedweak....
Given such a text, there are (language agnostic) algorithms that
can segment the string into the original words [4], with varying
degrees of accuracy. However, segmenting a real-valued time
series into meaningful episodes is much more difficult.
Furthermore, the problem is further complicated by the fact that,
in most cases, the time series does not consist solely of discretely
concatenated events. Rather, the events may be interspersed with
filler symbols. For example, if we examine a motion capture of a
sign language version of this poem there will be locations that do
not correspond to discrete signs, but rather to transitions between
signs. This will produce something rather like this:

oncexauponwamidnightmtdrearydwhileuIpponderediweak...
Finally, time series are inherently real-valued and as such, tests
for equality are meaningless. This would be equivalent to our text
string having some misspellings:

qncexauponwamidmightmtdreerydwgileuIpponderediweek...
The problem is now significantly more difficult than the original
statement. We must generalize the antecedent to allow flexibility,
perhaps by triggering the occurrence of a pattern that is within a
certain threshold t distance under some suitable distance measure:

dist(“chamber”, substring) ≤ t → door
However, we are not done generalizing the rule model. The
existence of misspellings in our data means that we may wish to
accept similar consequents such as poor or dooor as successful
predictions. Furthermore, we originally assumed that the
consequent immediately followed the antecedent. However there
may be some additional symbols between words. Thus we need to
define a parameter, maxlag, which is the maximum number of
characters between the end of the antecedent and the beginning of
the consequent. For example, if maxlag, is set to two, then any of
the below would be considered successful predictions:

...chamberdoor..., ...chamberzdoor..., ...chamberxydoor...
but the following:

...chamberxzuvdoor...
is not a successful prediction because the lag between the
antecedent and consequent is too long.
The maxlag parameter allows for meaningful falsifiable
predictions. The prediction that “this consequent will eventually
occur” is paradoxically both unfalsifiable and almost certainly
true (if we wait long enough). We can now show our final rule
format:

dist(chamber, substri,) ≤ t1 → dist(door, substrj) ≤ t2,
 j - (i + ρ - 1) ≤ maxlag

This can be read as follows: “If we see a substring of length ρ that
is within distance t1 of the word chamber, then we fire the rule and
expect to see a similar substring to word door, within a learned
distance t2, in the next maxlag time steps.”

3.1 Moving to Real-Valued Data
We are now ready to begin to “port” our ideas to the real-valued
time series that are of interest in this work. We will start with an
example for which we know the ground truth and for which the
reader has already developed some intuition. However, we note
that we are not using external knowledge to help our algorithm,
only to validate and explain it. As shown in Figure 1, we took an
audio recording of the first four verses of “The Raven”
(performed by an American male actor), and converted it to Mel-
frequency cepstrum coefficient (MFCC) space, keeping just the
second coefficient.

0 20 40 60 80 100
at door chambermy

First occurrence

Second occurrence

Figure 1. The motif pair discovered in the first 2,000 data
points (20 seconds) of “The Raven”. The shape corresponds to
the utterance “...at my chamber door”.

Using just the first 2,000 data points, which corresponds to the
first verse of the poem, we found the pair of non-overlapping
subsequences of length 100 (one second length in the original
data) that had the minimum distance to each other. Such a pair of
subsequences is referred to as a time series motif and extensively
studied in the literature [19][20].
The occurrence of such a highly conserved motif suggests one
possible method for specifying rules. We could simply split the
motif pattern in two, let the average of the left side be the
antecedent, and let the average of the right side be the consequent.
We need to set the maxlag and the threshold, t1, parameters. For
the moment, let us set the former to zero and the later to twice the

distance between the antecedent motif prefixes. Figure 2 shows
the rule.

0 20 40 60 0 20 40

t1 = 7.58

maxlag= 0

Figure 2. A rule learned (Figure 1) from the first 2,000 data
points of the “The Raven”. If the antecedent pattern (left) is
matched to a subsequence in a stream that is within Euclidean
distance of 7.58 to it, we predict the immediate occurrence of
the consequent pattern (right).

We can immediately test this rule by running it on the remainder
of The Raven data. The rule fires exactly three times and in every
case it maps to an utterance of “door.” In this simple example,
hard-coding the maxlag to zero is intuitive; however, we can
easily imagine examples that need the flexibility of a larger
maxlag constraint. Consider Figure 3 which shows accelerometer
data collected from a device worn by a student at USC as he went
about daily activities [22].

t1 = 0.4

maxlag = 4 sec 0 40 80 120-11

-10

-9 waiting for elevator

stepping inside

elevator moves up

elevator stops

walking away

y-
ac
ce
le
ra
tio
n

Figure 3. left) A rule for an accelerometer dataset encodes the
fact that the initial acceleration “bump” of going up in an
elevator must be eventually be matched by the elevator
stopping at a floor. right) Real data from which this rule was
learned [22].

This example shows a very easy rule to spot. The semicircular
bump created by an elevator accelerating must eventually be
matched by a bump in the opposite direction when the elevator
brakes (the rule for elevators going down is similar, but with the
consequent and antecedent swapped). The time lag between these
two events is highly variable and depends on the number of floors
serviced by the elevator.

4. THE RULE FRAMEWORK
We are now in a position to present the definitions necessary to
rigorously define our rule framework. First, we need to define a
distance measure between two subsequences. While there are
dozens of measures in the literature, recent empirical evidence
suggests that Euclidean distance is very difficult to beat [7].
Furthermore, Euclidean distance is parameter-free, fast to
compute, and is amiable to various data mining optimizations
such as indexing and early abandoning computation [20]. We
empirically considered other distance measures including DTW,
Swale, Spade and EPR [6], none improved the accuracy of the
rules (a finding consistent with [6]) and all required at least an
order of magnitude more time.
We formally define a time series antecedent as a subsequence
used to trigger a rule if it is similar to the current sliding window:

Definition 1: Assume we are monitoring a time series by
continuously extracting the sliding window, W. Given a positive
constant t (threshold), and an antecedent time series Ra, a binary
flag fired is set to TRUE if D(Ra, W) < t.

Note that in order for a candidate antecedent to be even
considered as a rule precursor, it must occur at least twice; we
cannot generalize from single exemplars. This is essentially the
definition of a time series motif [20]. In Section 6, we will exploit
this in order to reduce our search space of antecedents and
consequents.

In principle, the threshold, maxlag, and antecedent could be hand
chosen by a domain expert. However, as we show later it is
possible to find them automatically. As an antecedent is a
precursor to an event, a predicted subsequence shape which
follows an antecedent within a specified time (the maxlag) is
called the antecedent’s consequent:

Definition 2: A consequent, , is a time series subsequence
that is predicted to follow the detection of an antecedent within
maxlag time steps.

The maxlag parameter encodes the fact that for a time series
subsequence to be a meaningful consequent in a rule, it must
occur within some acceptable time after the rule’s antecedent has
been detected. Without such a constraint on time, a consequent's
occurrence may be coincidental.

Definition 3: The maxlag is the maximum number of time steps
allowed between a detected antecedent and its consequent. In
particular, if tk is the last value in W, the moment the rule is
triggered, then the consequent must be derived from a
subsequence of T, Ti, such that .

With an antecedent, its consequent, the maximum expected
maxlag delay between the two, and the threshold distance used to
trigger a subsequence match, we have all the necessary
components to specify a single time series rule:

Definition 4: A time series rule, R, is a 4-tuple of { , ,
maxlag, t}.

One obvious way to obtain an antecedent and consequent with a
zero maxlag is to take a subsequence and split it:

Definition 5: The Split Point is a ratio in the range (0, 1) which
indicates the end point of the antecedent and the beginning of
the consequent.

Having defined time series rules and all supporting notation, we
have just two more tasks. We need to formalize a scoring function
to tell us how good a candidate rule is, and design an efficient
search strategy.
5. DATA DISCRETIZATION
Because of our intention to use MDL to measure the relative
merits of candidate rules, we must transform our real-valued time
series into a discretized space [15]. After consideration of the
many quantization options, we quantize the time series’ real
values into uniformly sized bins. For a subsequence length ρ, we
z-normalize all possible subsequences of that length and record
the minimum and maximum values across the normalized
subsequences. After attaining the global minimum value, min, and
global maximum value, max, across all subsequences, we set bin
boundaries that are uniformly sized between min and max. The
resulting bin width is then: (max - min) / cardinality.
We can show the (lack of) effect that discretization has on time
series with classification experiments, since the rule triggering
step is essentially a classification problem. We conducted
empirical tests on data from the UCR Archive [26]. For each
dataset, we ran leave-one-out one-nearest-neighbor classification
tests using uniform quantization with varying cardinalities. Table
1 provides a snapshot of the results.

It is demonstrated that a real-valued time series can be drastically
reduced through discretization without significantly affecting the
intrinsic information available. In fact, because cardinality
reduction of the original data can reduce the effects of noise and
outliers, we can sometimes see tiny improvements in accuracy.

Table 1. One-nearest-neighbor leave-one-out accuracy results
on UCR datasets for various cardinalities

Dataset 64-bit (raw)
Cardinality: 264

16-bit
Cardinality: 65536

6-bit
Cardinality: 64

50words 63.1% 63.1% 63.3%
CBF 85.2% 85.2% 85.2%
Beef 66.7% 66.7% 66.7%
ECG 88.0% 88.0% 88.0%

FaceAll 71.4% 69.6% 69.6%
Fish 78.3% 78.3% 77.7%

Lightning2 75.4% 75.4% 77.1%
OSULeaf 52.1% 52.1% 52.1%

These results allow us to use MDL with little fear that we are
throwing away valuable information. Which value of cardinality
should we use? Empirically, if the value is anywhere in the range
of [16, 65536], it makes no significant difference; we therefore
use a cardinality of 16 throughout this work.

5.1 MDL Scoring
We begin with an important disclaimer. We claim only that our
work in this section is inspired by, and in the spirit of MDL (and
MML [27]). In particular, we have adopted (cf. [11]) and
extended ideas may deviate slightly from the absolute purist’s
interpretation of MDL. Our goal here is to produce a pragmatic
scoring function that works in the real world. We thus defer
theoretical and philosophical discussions to an appropriate venue.
The intuition behind our scoring function is that if we make a
good prediction, the consequent shape we predict will be similar
to a subsequence that occurs within maxlag steps. We could
quantify this similarity with Euclidean distance (essentially the
mean squared prediction error used in forecasting [18]), however,
the Euclidean distance does not allow us to compare the quality of
consequents with different lengths. To make this clearer, let us
return to our expository text example. Suppose we have to
evaluate the following candidate rule: dist(“chamber”, substring)
≤ t → door, which when fired makes a prediction of length four.
When encountering this string:

... bustabovehischamberdoorwithsuchnameasnevermore…
it achieves a hamming distance (a good analogue of Euclidean
distance) of 0. Contrast this result with the following rule:
dist(“chamber”, substring) ≤ t → doorwithlikename, which when
fired makes a prediction of length sixteen. While encountering the
same string:

... bustabovehischamberdoorwithsuchnameasnevermore…
it achieves a hamming distance of four. Which of these two rules
is better?
The former is an exact but short prediction; the latter is an
approximate but longer and arguably more informative prediction.
Unfortunately, simply normalizing for length does not work here;
while it is not commonly understood, the Euclidean distance
between two subsequences of length ρ can actually decrease when
we expand to length ρ + 1 due to the (re)normalization of the data.
So not only is the effect of length not linear, it is not even
monotonic.
Our solution to this problem, and the reason for the earlier
digression into discretization of time series, is MDL [1][15]. For
several decades MDL has been used to solve very similar
problems in intrinsically discrete domains such as text, DNA,
MIDI, etc. However, this application to time series rules is novel.
The intuition behind our use of MDL is to consider a candidate
subsequence as a hypothesis, H, about a future event. This
hypothesis (the bold/green line in Figure 4) has some cost, the

number of bits it takes to store it. We denote this cost as the
Description Length, DL. If we store the subsequences as simple
integer arrays, we have DL(H) = length(H) × log2(cardinality).

0
1
2
3
4
5
6
7

0 10 20 30 0 10 20 30

-‐7	 -‐6	 -‐5	 -‐1	 -‐1	 1	 1	 0	 1	 1	 -‐4	 -‐4	 -‐1	 0	 0	 0	 0	 0	 -‐1	 -‐1	 -‐1	 -‐3	 -‐1	 -‐1	 -‐1	 -‐1	 0	 1	 0	 0	 0	 0	 1	 0	 0	 00	 0	 0	 1	 0	 1	 0	 0	 0	 0	 0	 -‐1	 -‐1	 0	 0	 -‐1	 -‐1	 0	 -‐1	 -‐1	 0	 -‐2	 -‐1	 0	 0	 -‐1	 0	 1	 0	 -‐1	 0	 0	 1	 0	 -‐1	 -‐1

H H

Figure 4. A hypothesis (green/bold) can be used to score
subsequences by subtracting it from them (producing the
small integers shown top) and encoding the difference vector
with Huffman encoding. Intuitively, here the left sequence
requires 57 bits, whereas the right sequence requires 84.

We then want to evaluate the quality of a predicted consequent by
asking how well the prediction matched the future. We do this by
asking, “Given our consequent H, what is the cost to encode the
error of the actual match m?” We denote this as DL(m⎟ H), that is,
the description length of a matching subsequence m, given our
hypothesized consequent H. We can measure this encoding cost
by simply subtracting the consequent from the matching time
series and encoding the difference vector efficiently. Thus the
score of a candidate subsequence, m, with a hypothesis, H, is:

(1) .

This idea is illustrated in Figure 4. Here we use a cardinality of
just eight values for visual clarity.
This equation allows us to measure the relative predictive power
of subsequences, independent of their length. In order to find rules
in a training set, we must have at least two firings. This means
that to evaluate the hypothesis we must measure how well it
encodes a set, M, of at least two consequents.

(2) total-‐bit-‐save(M,H)=

where the set M consists of all subsequences to be compressed
with the consequent H.

6. RULE DISCOVERY ALGORITHM
We are finally in a position to introduce our rule finding
algorithm. In essence, it has two parts: 1) a scoring function and
2) a search algorithm which repeatedly invokes this scoring
function while searching for high quality rules. As the scoring
function is at the heart of our ideas, we will detail the intuition
behind it next and then in Section 6.2 we will present our rule
search method which utilizes this function.

6.1 Rule Scoring
For clarity of presentation we begin by considering the case in
which maxlag is constrained to be zero.
Our MDL scoring function is given two inputs: a candidate time
series (like either one of the two time series in Figure 1) and an
expected maxlag value (recall for the moment, it is hardcoded to
zero). The function then returns three things: an antecedent, a
consequent and the quality score of the resulting rule. Note that
the antecedent concatenated with the consequent are simply the
input time series, R, (much like Figure 2), however the split point
is not known in advance. Table 2 illustrates the algorithm. Note
that we propose a parameter-lite algorithm (Table 2), which is

described by hierarchical functions that automatically generate
most of the required inputs in Tables 3 to 6.
Table 2. Algorithm to score all rules that can be created from
a single time series subsequence R, returning the antecedent,

consequent and quality of the best rule derived from R
Procedure find_Best_Rule (T, R)
Input: A time series subsequence, R, extracted from a time series, T;
Output: The antecedent (a), consequent (c) and quality score (s) of
 the best rule that can be derived from R;
1
2
3
4
5
6
7
8
9

for i ← 1 to 99 do //Test over all splitting points
 splitPoint ← i / 100
 ruleScore(i) ← Best_Rule_Score (T, R, splitPoint) //Table 3
end for
 s ← max (ruleScore)
 sp ← find (ruleScore == s) / 100
 a ← R (1 : sp × Length(R))
 c ← R (sp × Length(R) + 1: end)
Return a, c, s

In lines 1 to 4 the algorithm iterates on all possible split points for
the candidate time series, R, and calculates the quality score
described in Table 3. In line 5 we find the maximum quality score
(s). In lines 6 to 8 we find the split point corresponding to the
maximum quality score and we split R to the antecedent (a) and
the consequent (c). The procedure returns a, c, and s.
In Table 3 we describe how the rules are scored. For every
antecedent that can be produced by R, we search for locations in T
in which that rule would have fired. Given each firing, we
“predict” the relevant consequent as a hypothesis H to explain the
next |c| datapoints in T. We then calculate how many bits MDL
could save using this prediction. If, as in Figure 4.left, our
“prediction” was accurate we will save many bits. A less accurate
prediction (Figure 4.right) will save fewer bits. The number of
bits saved; summed over all firings (i.e. Eq. 2) is the score
returned for the tentative rule.

Table 3. Algorithm to find the best instances of a rule
Procedure Best_Rule_Score (T, R, sp)
Input: A time series subsequence, R, extracted from a time series, T;
 Split point for the antecedent/consequent, a number between
 zero and one, sp;
Output: Greatest possible bit-saves by predicting rule R in the time
 series T, bestTotalBitSave;
1
2
3
4

ac ← find_Antecedent_Candidates (T, R, sp) //Table 4
n ← find_Best_Number_of_Rule_Instances (T, R, sp, ac) // Table 5
bestTotalBitSave ← Rule_Bit_Saves (T, R, sp, n, ac) // Table 6
Return bestTotalBitSave

Concretely, in line 1 we find the set of subsequences similar to the
antecedent of R. In line 2 we learn a threshold for the distance that
leads to the largest quality score for R. In line 3 the algorithm
calculates the largest number of bits saved for the rule instances
and finally returns that value as a quality score for the rule.
We find the set of subsequences similar to the antecedent of R in
the subroutine described in Table 4. The first element of the set is
the antecedent itself, the second element is the most similar
subsequence to the antecedent, the next subsequence is the second
closest and so on. This set includes all firings of R which need to
be tested in Table 5.

Table 4. Algorithm to find a set of antecedent candidates
Procedure find_Antecedent_Candidates (T, R, sp)
Input: A time series subsequence, R, extracted from a time series, T;
 Split point for the antecedent/consequent, a number between
 zero and one, sp;
Output: locations of antecedents in T ordered by distances from R’s
 antecedent, ac;
1
2
3
4
5
6
7

antecedentLength ← Length(R) × sp
antecedent ← R (1:antecedentLength)
Distances ← Euclidean (antecedent, each subsequence in T)
AntecedentDistances ← sort (localMinimums (Distances))
AntecedentCandidates ← Locations (AntecedentDistances)
ac ← AntecedentCandidates
Return ac

In lines 1 and 2 we find the antecedent of the rule R. In line 3 we
slide the antecedent across the entire time series, T, and calculate
the Euclidean distances for each subsequence of the same length.
In line 4 the algorithm finds the local minimums and sorts them
according to their distances (ignoring trivial matches [20]). In line
5 we find the locations of the sorted distances in the time series T
and finally the procedure returns a set of antecedent candidates
sorted by their distances to the antecedent of R.
Recall that in Table 3 we search for locations in T in which that
rule would have fired. However the number of firings clearly
depends on the distance threshold we have chosen. A conservative
(small) threshold is more likely to produce an accurate rule, but
may miss opportunities when it could have fired and produce
predictions that are at least better than random. We generally have
no idea what a suitable threshold could be, fortunately we only
have to test |AntecedentCandidates| different values. In particular we
just need to test all the values in the sorted list AntecedentDistances,
as each new value ensures exactly one additional firing of the rule
on our training data, this occurs in Table 5.

Table 5. Algorithm to discover the best number of rule
instances to maximize the total number of bit-saves

Procedure find_Best_Number_of_Rule_Instances (T, R, sp, ac)
Input: One instance of a rule, R, extracted from a time series, T;
 Split point for the antecedent/consequent, between zero and
 one, sp;
 Locations of antecedents in T ordered by distances from R’s
 antecedent, ac; (i. e. AntecedentCandidates)
Output: Best Number of instances of R to pick in the time series, n;
1
2
3
4
5
6
7
8
9

totalBitSaves (1) ← 0
instances ← 1
 while (totalBitSaves is monotonically increasing) do
 instances ← instances +1
 totalBitSaves(instances)←Rule_Bit_Saves(T,R,sp,instances,ac)
 end while
bestBitSaves ← max (totalBitSaves)
n ← find (totalBitSaves == bestBitSaves)
Return n

In lines 3 to 6 we iterate on the number of rule instances and each
time calculate the total number of bit-saves as in Eq. 2. The loop
terminates when the totalBitSaves starts decreasing. This use of a
greedy approach to avoid searching all possible rules produces
several orders of magnitude speedup, with little chance of missing
a useful rule. In Section 6.2 we show that we can use the
Euclidean distance as a heuristic to both guide the “rule test”
order, and to tell us when we can abandon the rule test with a
small, user-defined probability of missing the optimal answer (cf.
Figure 5). We further justify a probabilistic early abandoning
approach in our supporting webpage [31]. In line 7 we calculate
the maximum number of total bit-saves and in line 8 we find the

corresponding number of rule instances picked during the iteration
in lines 3 to 6. In the subroutine in Table 5 (and its invoking
functions) we used Euclidean distance to process the data and
create a large set of candidate rules with their observed outcomes
on the training data. In Table 6 we move from Euclidean distance
to MDL to score these rules.
We consider the consequent of R as a model/hypothesis and
calculate the total number of bit-saves in order to predict other
consequents. A larger number of bit-saves indicates more accurate
predictions. After discovering antecedent candidates, we consider
their following subsequences as consequents. The procedure then
calculates the number of bits required to record the differences of
the consequent saved as a model and the subsequences following
antecedent candidates.
In lines 1 and 2 the algorithm finds the consequent of R. In line 3
we discretize the consequent into 16 values and we z-normalize it.
We will use this consequent as the hypothesis therefore we
exclude the antecedent of R in line 6. In lines 7 to 10 for all n-1
AntecedentCandidates we find their corresponding consequents.
In line 11 the algorithm discretizes and z-normalizes the
corresponding consequents. In line 12 we calculate the number of
bits required to record the consequents by using Huffman coding.
In line 13 we use the consequent of R as a hypothesis and
calculate the number of bits to save all other consequents by using
MDL.

Table 6. Algorithm to score rule instances based on MDL
Procedure Rule_Bit_Saves (T, R, sp, n, ac)
Input: A time series subsequence, R, extracted from a time series, T;
Split point for the antecedent/consequent, between zero and one, sp;
The Number of instances of R to pick in the time series, n; locations
of antecedents in T ordered by distances from R’s antecedent, ac;
Output: totalBitSave;
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

antecedentLength ← Length(R) × sp
consequent ← R (antecedentLength:end)
Discretize and z-normalize (consequent)
AntecedentCandidates ← ac
totalBitSave ← 0
antecedentsSelected ← AntecedentCandidates (2 : n)
 for i ← 1 to Length(antecedentsSelected) do
 s1 ← AntecedentCandidates(i) + antecedentLength +1
 s2 ← AntecedentCandidates(i) + Length(R)
 subConsequent ← T (s1 : s2)
 Discretize and z-normalize (subConsequent)
 subConsequentBits ← Huffman (subConsequent)
 subConsequentMDLbits←MDL(subConsequent, consequent)
 totalBitSave ← totalBitSave + subConsequentBits -
 subConsequentMDLbits
 end for
Return totalBitSave – Huffman (consequent) // Eq. 2

In lines 14 and 15 our algorithm calculates the total number of bit-
saves by subtracting the number of bits to record the consequents
by using MDL from the number of bits to save the consequents by
using Huffman coding (i.e. Eq. 2) and finally returns the total
number of bit-saves, which tells us the quality of the rule.
6.2 Motif-Based Rule Searching
The previous section explained the rule scoring operator
algorithm (Table 2), all that remains is to explain the search
algorithm that uses this operator. In principle we could use a brute
force search, testing all subsequences of T. However this would
be intractable. Fortunately we have an exploitable observation, a
good rule candidate must be a time series motif in T, and efficient
algorithms for discovering the top K motifs in a time series are

well-known [19][20]. Thus as illustrated in Table 7, we simply
evaluate motifs from T, until we can claim the probability of
finding a better rule is less than some small user-supplied
threshold.
In lines 3 to 8 we iterate over the motifs to discover the best rule.
In line 4 our procedure calls the subroutine motif_Discovery (T, L,
K), which uses the MK motif discovery algorithm [20] to return
the Kth best motif of length L in the time series T.

Table 7. Algorithm to discover rules in a time series
Procedure Discover_Rules (T, L)
Input: A user provided time series, T, and the rule length, L;
Output: A set of discovered rules, Rules;
1
2
3
4
5
6
7
8
9

Rules ← [] // Initialize rules to empty set
K ← 1 // Initialize which motif to consider
 while (earlyAbandoning is False) do
 motif ← motif_Discovery (T, L, K) // MK algorithm
 [a, c, s] ← find_Best_Rule(T, motif) // Table 2
 Rules. add([a, c, s])
 K ← K + 1
 end while
Return best(Rules) //returns the rule with the maximum score, s

Note that by definition, the distance between each pair of motifs is
non-decreasing in K [20]. We exploit this to create an
earlyAbandoning function, described later in this section, to
terminate the loop. In line 5 we pass the discovered motif to the
rule scoring function (Table 2) which finds the best rule that can
be derived from that motif. In line 6 we add the discovered rule to
the set of existing rules and finally we return the rule which has
the largest score s in line 9.
We have glossed over the termination condition for our algorithm
(line 3). Here we describe it in more detail. Note that there is a
strong relationship between Euclidean Distance (which motif
discovery is minimizing) and bit-saves defined in Eq. 1 (which
Table 2 is maximizing). To illustrate this we performed the
following experiment. From the MFCC time series of a recitation
of the poem “The Dream within a Dream”, we randomly sampled
20,000 subsequence pairs of length 100 (1 sec of audio), denoting
one subsequence H and the other m. We measured
and the (Eq. 1), and use the two values to
create the scatterplot shown in Figure 5.

4 6 8 10 12 14 16 18 20
-200

-150

-100

-50

0

50

100

150

-40 0 40 80 120

bsf_bs =	 99
P	 =	 0.040

(a)

-40 0 40 80 120

bsf_bs =	 99
P	 =	 0.005

(b)

Euclidean Distance

bi
t-s

av
e

(a) (b)

The	 area	 under	 red curve	 to	 the	 right	 of	 green bar	 is	 the	 probability there	 exists	
an	 untested	 pair	 of	 subsequences	 with	 bit-‐saves	 greater	 than	 best-‐so-‐far

Figure 5. bottom) The empirical relationship between
Euclidean and bit-save. top) As we search in Euclidean order
(the x-axis order) from left to right, the expected value of the
bit-save (the mean of the Gaussians) decreases.

The figure suggests we can use the Euclidean distance between
motifs as a heuristic to tell us when we can abandon the motif
discovery with a small, user-provided probability of missing the
optimal answer. In essence, we propose to allow rule search in the
form “stop searching when there is only a one in a thousand
chance that the current best-so-far is not the best rule.”
Let Pbit-save(best-so-far) be the probability that the remaining pairs
of subsequences in the Euclidean searching order (the x-axis
ordering of Figure 5.bottom) contains a better rule than the rule
represented by the current best-so-far. Concretely, we compute
the bit-saves (Eq. 1) for the subsequences on the left side of the
dash-line (a) in Figure 5.bottom to form the histogram shown at
the top left of Figure 5.
The bit-saves property of the distribution can be realized by a
Gaussian process (GP) [8]. The probability vector {φk} is drawn
from a GP as φk ~ N(𝜇k, 𝜎k

2), where µk is the mean and 𝜎k
2 is the

variance shown as the red “bell” curve. For example, the best-so-
far bit-saves is 99 bits for both histograms in Figure 5.top and the
Pbit-save(best-so-far) of the distribution changes from 0.040 to
0.005 from left to right as shown in Figure 5.top. The area below
the red curve to the right of the best-so-far marker, is the
probability that there exists an untested pair of subsequences with
bit-saves greater than the best-so-far bit-saves. If Pbit-save(best-so-
far) is less than the user threshold then we simply set the
earlyAbandoning flag to be True, and the invoking search
algorithm will terminate.
This method has a few assumptions; for example that a thin
vertical “slice” of the scatterplot is Gaussian. These assumptions
are empirically observed on most datasets (see [31]), and
violations tend to result in a more conservative algorithm. That is
the say, the algorithm may run a little longer, but will over-deliver
on the requested probability of a true positive.
Our illustration in Figure 5 makes one assumption that is
unwarranted, that total bit-saves come from exactly two of
subsequences. Recall from Table 6 that in fact the total bit-saves
come from at least two subsequences. We can easily generalize
the earlyAbandoning function to account for this, but as it makes
no empirical difference on the datasets we considered, for
simplicity we ignore this idea in this work.
We conclude this section with a simple experiment to reinforce
the intuition that motif distances are a good proxy for rules. We
took every subsequence of length 100 (one sec) of the MFCC
version of “The Raven” and recorded its distance to its nearest
neighbor. The distribution of these distances is shown in Figure 6
with a few annotated examples. Note that one occurrence of the
phrase “...chamber door...” has a very small distance to its nearest
neighbor, which is naturally just another occurrence of the phrase.
Similarly, the repeated phrases such as “...the raven....”, “…on the
floor…”, etc., also have small distances to their nearest neighbors.
In contrast, phrases featuring hapax legomena1 such as “caught”
or “crest” have a huge distance to their nearest neighbor. If we
were attempting to find rules in the text space, unique words or
phrases do not need to be considered since we clearly cannot
generalize rules from a single example. Moreover, Zipf's law tells
us that about half the words in an English text are hapax legomena
[14], and an even larger proportion of phrases must be unique.
This observation is for text and, as Figure 6 hints, it is also true for
most real-valued time series.

1 A hapax legomena is a word that appears only once in a body of text.

0 50 100 150 200 250 300 350 400 450
distance to nearest neighbor

…caught from some…

… the raven… … though thy crest…
…chamber door…

(pauses)

Figure 6. Distribution of nearest neighbor distances for one
second snippets of the audio (in MFCC space) of “The
Raven.”

6.3 Generalizing to allow a Maxlag
Our rule discovery algorithm described in Section 6.1 assumes a
zero maxlag. To generalize to the arbitrary maxlag value case, we
just need to slightly modify the “algorithm to score rule instances
based on MDL” (Table 6). All other algorithms in our approach
(Tables 2, 3, 4, 5 and 7) remain unchanged. While maxlag is
allowed, we should consider a maxlag interval to search the
consequent after the split point. The highlighted section of Table 8
shows the modifications of Table 6 which allows a non-zero
maxlag in our rule discovery algorithm.
In line 10 we allow a maxlag value after the split point
(subConsequent) to search for a subsequence in T closest to the
consequent. In lines 11 to 14 we slide the consequent through
each subsequence of the subConsequent and find the closest
subsequence to the consequent. The remainder of the algorithm is
the same as Table 6. In Section 7.2 we conduct an experiment
which requires a non-zero maxlag.

Table 8. Algorithm to score rule instances based on MDL
(allowing maxlag) Differs from Table 6, only in lines 10 to 14
Procedure Rule_Bit_Saves (T, R, sp, n, ac, mlag)
Input: A time series subsequence, R, extracted from a time series, T;
Split point for the antecedent/consequent, between zero and one, sp;
The Number of instances of R to pick in the time series, n; locations
of antecedents in T ordered by distances from R’s antecedent, ac;
Maxlag allowed between the antecedent and consequent, mlag;
Output: totalBitSave;
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

antecedentLength ← Length(R) × sp
consequent ← R (antecedentLength:end)
Discretize and z-normalize (consequent)
AntecedentCandidates ← ac
totalBitSave ← 0
antecedentsSelected ← AntecedentCandidates (2 : n)
 for i ← 1 to Length(antecedentsSelected) do
 s1 ← AntecedentCandidates(i) + antecedentLength +1
 s2 ← AntecedentCandidates(i) + Length(R)
 subConsequent ← T (s1 : s1 + mlag) // considering maxlag
 consequentDist ← Euclidean (consequent, each subsequence
 of subConsequent)
 conseqLoc ← find (consequentDist == min(consequentDist))
 subConsequent ← T (s1 + conseqLoc : s2 + conseqLoc)
 Discretize and z-normalize (subConsequent)
 subConsequentBits ← Huffman (subConsequent)
 subConsequentMDLbits←MDL(subConsequent, consequent)
 totalBitSave ← totalBitSave + subConsequentBits -
 subConsequentMDLbits
 end for
Return totalBitSave – Huffman (consequent) // Eq. 2

7. EXPERIMENTAL EVALUATION
To ensure that our experiments are reproducible, we have built a
website which contains all data/code/raw spreadsheets for the
results, in addition to many experiments that are omitted here for
brevity [31]. The visualization of the rules suffers from space
limitations/BW formatting; we encourage the reader to view high-
resolution color versions at [31].
We provide two sources of evaluation for quality. In some cases,
as in “The Raven” example above, we show the rules are

meaningful by considering the annotation available by external
labels of some kind. In the more general case we use the
Euclidean distance between our predicted consequent and the F
matching locations where the rule fired, a value we denote as Ferror
(this is essentially the root-mean-squared error). Because this
number is difficult to interpret by itself, we do the following: On
the same testing set, using the same consequent, we fire the rule
randomly F times and measure the Euclidean distance between
our predicted consequent and the F random locations. We denote
this value as Rerror (which is averaged over 1,000 random runs).
Our reported measure of quality then is just . Values
close to one suggest our rules are no better than random guessing
and values significantly less than one indicate that we are finding
true structure in the data. For all experiments, except where
otherwise stated, the maxlag parameter is set to zero.
We compared our work to the three most obvious and widely
cited rival methods. None perform above chance levels, therefore
for brevity and clarity we push the details of these comparisons to
the expanded version of our paper in [31].

7.1 Finding Rules in Bird Vocalization
We consider the task of finding rules in Zebra finch vocalizations
(in MFCC space). Such rules may help weigh in on the “nature vs.
nurture” debate [13], but here, simply show that we can learn
robust accurate rules from complex and noisy datasets.
The vocal learning lab at Hunter College provided recordings of
Zebra finches singing (~one minute) every ten days, from day 40
to 100 (post hatching). Starting from day 40, we split data into a
train (first 30-sec) and test set. Our algorithm finds several high
quality rules, one of them shown in Figure 7.

500 1000 1500 2000 2500 3000
0 90 0 60

Figure 7. left) 25 seconds of zebra finch vocalization from the
day-40 training data set. The discovered locations
(orange/bold) are used to find a rule (right).

The rule shown in Figure 7.right looks plausible, but does it
generalize to the test set? In Figure 8 we show one rule firing on
an excerpt of the test set.

1300 1400 1500 1600 1700 1800
Figure 8. The rule learned in Figure 7 fires (bold/orange) on
the test set of day 40 (only an excerpt is shown). The Q (cf.
Section 7) for the fired rule is 0.33, suggesting high accuracy.

It is interesting to ask if the discovered rule generalizes over time,
as the bird’s song evolves (i.e. concept drift). To test this we apply
the learned rule in Figure 7 to the zebra finch song from day 50.

3500 4000 4500 5000 5500 6000
Figure 9. The rule learned in Figure 7 is applied to the same
Zebra finch ten days later. The Q for the left and right
instances are 0.19 and 0.40 respectively.

The low Q-scores in Figure 9 indicate that the rule discovered on
day 40 (Figure 7) still generalizes. In Figure 10 we repeat the
same experiment for day 100.

2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 3500
Figure 10. The rule learned in Figure 7 is applied to the
singing of the same Zebra finch sixty days later.

Here we find that while the rule does predict the future much
better than chance, the song seems to have undergone some
modifications. This finding is consistent with the literature which
suggests that young birds vocally improvise until about 90 days,
after which the song “crystallizes” [2]. In [31] we show many
addition experiments in this domain, and allow the reader to
actually hear the data/rules.

7.2 Finding Rules in Energy Disaggregation
A home-based intelligent energy conservation system needs to
know what appliances (or loads) are being used in the home and
when they are being used in order to provide intelligent feedback
or to make decisions that can reduce costs. The AMPds, Almanac
of Minutely Power dataset, contains one year of such data that
includes eleven measurements at one-minute intervals for twenty-
one sub-meters [17].
For our experiments we consider a single meter into which the
Fridge, Dishwasher, Clothes Washer and Clothes Dryer are
plugged in. We run our rule discovery algorithm on the first
month of the data and find the rule shown in Figure 11.right as
one of the top rules. Then we apply it to our test set and show one
of the firings in Figure 11.left.

maxlag = 20 minutes

0 120 180015500 16000 16500 17000
Figure 11. right) One of the top rules learned from the first
month of the AMPds data set. left) One firing of the learned
rule in the right which contains a 20 minute lag between its
antecedent and consequent.

The antecedent and consequent in Figure 11.right correspond to
the Clothes Washer and Clothes Dryer respectively. The
discovered rule in Figure 11.right can be interpreted as: when the
tenant uses the Clothes Washer, after a while they will run the
Clothes Dryer. It is obvious that the tenant may immediately run
the dryer or may spend some time doing something else first.
Therefore in this case a non-zero maxlag must be allowed. For
example the rule fired in Figure 11.left contains a 20 minute gap
between its antecedent and consequent. Other firings of the rule
contained different values. In order to assure we capture most of
the firings, we allowed a 100 minute maxlag. Our algorithm to
allow maxlag is described in Section 6.3.
An examination of the data suggests that our algorithm did not
report any false positives for this experiment; however we did
observe some true negatives. Most of these omissions may be
attributed to the fact (as visually hinted at in Figure 11.right) that
the Clothes Washer patterns are complicated and polymorphic.
That is to say, the patterns depend on many settings of the
washing machine (whites/colors, rinse/spin etc). Automatically
generalizing to handle such situations is ongoing work.

7.3 Finding Rules in an Activity Data Set
We consider a benchmark data set that contains daily activity
telemetry [23], of four subjects wearing seven inertial
measurement units (IMUs). Each subject created five recordings,

which we randomly divided into disjoint train/test partitions. We
consider only the data from the right upper arm. Figure 12 shows
one of the top rules learned from a recording of a subject.

6900 7400 7900 8400

0 20 40 0 20 40

Figure 12. left) A subsequence from a recording of a subject
that contains a rule discovered by our algorithm. The
discovered locations (orange/bold) are generalized by our
algorithm into a rule (right).

To test if the discovered rule generalizes to other instances of the
activity, we applied the discovered rule in Figure 12 to other
recordings of the same subject. Figure 13 shows the rule firings
found in the test recording.

500 1000 1500 2000
Figure 13. Three instances of the rule shown in Figure 12
discovered in the test set. The Q for the three instances from
left to right are 0.22, 0.10 and 0.41 respectively.

According to the labels provided with the dataset, the rule
discovered is a part of the activity: drinking from a cup while
standing. To better understand the rule, we reproduced the data by
having an actor wear an IMU on the same part of the body. We
recorded the actor drinking from a cup using both the IMU (at
100Hz) and a camera to capture simultaneous video. Figure 14.top
shows some stills from the video. The time series of the complete
activity from the IMU is shown in Figure 14.bottom.

Begin
lifting
cup to
mouth
level

0 30 60 90 120 150 180 210 240

Cup
reaches
mouth
level

Rotate
cup to lips

Tilt head to drink

Tilt
head
forward

Rotate
cup away
from lips

Remove cup
from lips

Return to
starting
position

Figure 14. bottom) The IMU data of an actor drinking from a
cup. top) Stills from a video aligned with the IMU.

Our data is very similar to the original benchmark data (our actor
may have a different physique, mannerisms etc), and gives us
some hints to understand the rule we discovered. As shown in
Figure 14, the rule appears to describe the first half part of the
drinking activity: a lifting of the cup to the mouth is immediately
followed by a slightly tilting head to drink from the cup.

7.4 Finding Rules in NASA Telemetry Data
The NASA valve data set consists of 36 events of interleaved
nominal and erroneous solenoid voltage measurements recorded
from Marrotta series MPV-41 valves as they are tested in a
laboratory [9]. Figure 15 shows one of the top rules learned from

this time series where the first peak in Figure 15.left is that of a
failed solenoid.

0 500 1000 1500 2000 2500 3000 3500 4000 0 180 0 120
Figure 15. left) A snippet of the NASA data. right) The first

ranked rule learned which characterizes a nominal discharge.

We applied the discovered rule in Figure 15 to the test set and
found the rule fires four times. Figure 16 shows the rule instances
fired on the test set.

4000 8000 14000 18000
Figure 16. The rule discovered in Figure 15 on the test set.

This rule appears to describe a normal solenoid discharge event: a
rapid decrease in the current is immediately followed by a slight
ramp and gradual, complete discharge.
Because of the variety of malfunction events in contrast to the
homogeneity of normal solenoid readings in this data set, this rule
learned from successful tests achieves the highest MDL score as
well as very low average Q-value of 0.10. Note that the rule fails
to fire in several locations in Figure 16. According to the domain
experts [9], most of the non-firing locations correspond to a valve
assembly miss-cycled for which the solenoid still experienced a
nominal discharge. Apart from these outliers, all normal solenoid
trials were detected with this rule. Thus, we can imagine using the
negation of the rule firing as an anomaly detector.

7.5 An Important Sanity Check
We conducted a sanity check experiment that is very simple, but
would nevertheless had demonstrated the problems with the
approaches in [5][29] (as [12] also demonstrated, but in a different
context). We reran all the experiments above, making a single
change, which was to replace the data with random walk data. In
no such case does our algorithm find any rules. This finding
bolsters our confidence that our scoring function is valid.

7.6 Time Complexity
If maxlag is set to zero, then the time complexity for our
algorithm is O(nlogn). Allowing a maxlag increases this to
O(nlogn×|maxlag|). In essence, the time required by our
algorithm is dominated by the speed of motif discovery, which
fortunately has received a lot of attention in recent years [20][25].
We do not include explicit timing experiments because in general
the time needed for rule discovery is inconsequential. For
example, the insect EPG data took several months to collect, so
the few minutes our algorithm needed to find rules is not likely to
be a burden. Likewise, the Zebra finch data reflects years of
painstaking work, so the few minutes our algorithm needs is
simply negligible.

7.7 On Comparisons to Rival Methods
We compared our algorithm to the two (very different) Piecewise
Linear Approximation (PLA) based approaches in [21] and [29],
and also the highly cited paper [5]. To be as fair to them as
possible we tested over many combinations of reasonable
parameters, using both human-guided and brute force search for
the best parameters. For all data sets in Section 7, the best results
for all approaches had Q values, measure of quality, at the default
rate (consistent with random guessing). Due to space limitations,
we push the details of these comparisons to the expanded version
of our paper in [31].

8. CONCLUSIONS
We have introduced a technique for finding rules in time series
which leverages of recent advances in time series motifs
discovery to provide a tractable search. Our novel application of
MDL to time series rule discovery allows us to meaningfully rank
and compare varied length rules, and rules with different levels of
“support”. Our rule representation is expressive enough to allow
rules with different length antecedents/consequents/lags/firing
thresholds, but at the same time does not require extensive human
intervention or tweaking. We have also demonstrated our method
by comparing it to the three most widely cited rival methods and
show how we make much more accurate predictions [31].
There are many avenues for future work. On some datasets,
Dynamic Time Warping, in single or multi-dimensional cases,
may be more robust than the Euclidean distance, adapting to the
concept drift that will be inevitable in some applications [24], and
for some domains scalability to massive datasets remains an issue.
It may be possible to generalize the rule representation to allow
more expressive logical connectives, i.e.
 D(Ra, W1) < t1 AND D(Rb, W2) < t2 → Rc
However this would require significantly more training data to
guard against overfitting. Such flexibility would allow a rule to
consider antecedents from two different sources. Finally, unlike
time series classification [26], there are currently no standard
benchmarks for time series rule discovery. We plan to repair this
omission, and invite the community to donate challenging datasets
for which the ground truth is known, and archiving them [31].

Acknowledgements
We would like to thank all the donors of the datasets. We further
wish to acknowledge funding from NSF IIS-1161997 II and a gift
from Samsung Research.

9. REFERENCES
[1] Barron, A., Rissanen, J., and Yu, B., The minimum

description length principle in coding and modeling. IEEE
Trans. Information Theory, vol. 44, no. 6. 1998.

[2] Brainard, M. S. & Doupe, A. J. Auditory feedback in learning
and maintenance of vocal behaviour. Nature Rev. Neurosci.
1, 31–40 (2000).

[3] Brotzge, J. and Erickson, S., Tornadoes without NWS
warning. Weather Forecasting, 25, 159-172. 2010.

[4] Cohen, P.R and Adams, N.M. An Algorithm for Segmenting
Categorical Time Series into Meaningful Episodes. ICAIDA
2001, p.198-207, 2001.

[5] Das, G., Lin, K., Mannila, H., Renganathan, G., Smyth, P.
Rule Discovery from Time Series. KDD 1998.

[6] Denton, A., Besemann, C., Dorr, D. H.: Pattern-based time-
series subsequence clustering using radial distribution
functions. Knowl. Inf. Syst. 18(1): 1-27 (2009)

[7] Ding, H., et al. Querying and mining of time series data:
experimental comparison of representations and distance
measures. PVLDB 1(2): 1542-1552. 2008.

[8] Dudley, R. Sample Functions of the Gaussian Process. The
Annals of Probability, Vol. 1, No. 1, pp. 66-103, 1973.

[9] Ferrell, B., and Santuro, S., NASA shuttle valve data.
http://cs.fit.edu/~pkc/nasa/data/. 2005.

[10] Gribovskaya, E., Kheddar, A., and Billard, A. Motion
Learning and Adaptive Impedance for Robot Control during
Physical Interaction with Humans. ICRA 2011.

[11] Hu, B., et al. Discovering the Intrinsic Cardinality and
Dimensionality of Time Series Using MDL. ICDM 2011:

[12] Keogh, E., Lin, J. Clustering of time-series subsequences is
meaningless: implications for previous and future research.
Knowl. Inf. Syst. 8(2). 2005. 154-177.

[13] Kojima, S. and Doupe, A. (2011). Social performance reveals
unexpected vocal competency in young songbirds. Proc Natl
Acad Sci USA. Vol 108 pp 1687-92.

[14] Kornai, A., Mathematical Linguistics, Springer. 2008.
[15] Grunwald, P.D., Myung, I. J. Advances in Minimum

Description Length Theory and Applications. 2003.
[16] Li, G., Ji, S., Li, C., and Feng, J. Efficient type-ahead search

on relational data: a TASTIER approach. SIGMOD
Conference 2009: 695-706.

[17] Makonin, S., Popowich, F., Bartram, L., Gill, B., and Baijic,
I. AMPds: A Public Dataset for Load Disaggregation and
Eco-Feedback Research. Electrical Power and Energy
Conference (EPEC), 2013 IEEE, pp. 1-6, 2013.

[18] Makridakis, S., Wheelwright, S., and Hyndman, R. J.,
Forecasting: methods and applications. New York: John
Wiley & Sons. ISBN 0-471-53233-9. 1998.

[19] McGovern, et al. Identifying Predictive Multi-Dimensional
Time Series Motifs: An application to severe weather
prediction. Data Mining and Knowledge Discovery. 2010.

[20] Mueen, A., Keogh, E., Zhu, Q., Cash, S. and Westover, B.
Exact Discovery of Time Series Motif. SDM 2009.

[21] Park, S., and Chu, S.W. Discovering and Matching Elastic
Rules from Sequence Databases. Fundam. Inform. 47, 2001.

[22] Parnandi, A., Le, K., Vaghela, P., Kolli, A., Dantu, K.,
Poduri, S., and Sukhatme, G. Coarse In-building Localization
with Smartphones. Mobiecase 2009.

[23] Ricardo C., et al. The Opportunity challenge: A benchmark
database for on-body sensor-based activity recognition,
Pattern Recognition Letters, 2013.

[24] Shokoohi-Yekta, M., Wang, J., and Keogh, E. On the Non-
Trivial Generalization of Dynamic Time Warping to the
Multi-Dimensional Case. SDM 2015.

[25] Tanaka, Y., Iwamoto, K., and Uehara, K. Discovery of time-
series motif from multi-dimensional data based on MDL
principle. Machine Learning. 58(2), 2005.

[26] UCR Time Series, Classification and Clustering.
http://www.cs.ucr.edu/~eamonn/time_series_data/

[27] Wallace, C., and Dowe, D. Minimum message length and
Kolmogorov complexity. Computer Journal vol. 42-4, 1999.

[28] Weiss, S., Indurkhya, N., and Apte, C., Predictive Rule
Discovery from Electronic Health Records. ACM IHI, 2010.

[29] Wu, H., Salzberg, B., and Zhang, D., Online Event-driven
Subsequence Matching over Financial Data Streams,
SIGMOD Conference, 2004: 23-34.

[30] Wu. H (2005). Personal email communication.
[31] Project URL: https://sites.google.com/site/ruleDiscovery

