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Abstract-Extensive research on time series classification in the 
last decade has produced fast and accurate algorithms for the 
single-dimensional case. However, the increasing prevalence 
of inexpensive sensors has reinforced the need for algorithms 
to handle multi-dimensional time series. For example, modern 
smartphones have at least a dozen sensors capable of 
producing streaming time series, and hospital-based (and 
increasingly, home-based) medical devices can produce time 
series streams from more than twenty sensors. The two most 
common ways to generalize from single to multi-dimensional 
data are to use all the streams or just the single best stream as 
determined at training time. However, as we show here, both 
approaches can be very brittle. Moreover, neither approach 
exploits the observation that different sensors may be 
considered “experts” on different classes. In this work, we 
introduce a novel framework for multi-dimensional time 
series classification that weights the class prediction from each 
time series stream. These weights are based not only on each 
stream’s previous track record on the class it is currently 
predicting, but also on the distance from the unlabeled object. 
As we demonstrate with extensive experiments on real data, 
our method is more accurate than current approaches and 
particularly robust in the face of concept drift or sensor noise.  
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I. INTRODUCTION 
Many physiological, medical, and scientific processes 

produce copious amounts of Multi-Dimensional Time 
series (MDT) data [20][26][36][41]. If we need to classify 
patterns manifest on just a single (independent) stream 
from an MDT, there is strong evidence that the simple 
nearest neighbor algorithm should be the algorithm of 
choice [9][15][19]. However, in many cases, the m 
individual time series in the MDT may reflect different 
views of the same underlying phenomena we want to 
classify. For example, we may have two different leads 
recording an ECG (Figure 1) or several gyroscopes on a 
Body Area Network (BAN) (Figure 2). In such a case, how 
should we use information from multiple sensors? The 
obvious choices are: 
• ALL: Use all m time series [36]. In this category, we 

include efforts that transform all m time series into a new 
space, using SVD [40] or Markov models [42], etc. 

• BEST: Use only the single best time series, which is 
either found empirically or suggested by domain 
knowledge [17]. In many research efforts the latter is 
probably done as a matter of course and reported fait 
accompli without discussion. 

• SUB: Use the best subset of the time series that is either 
found empirically or suggested by domain knowledge 
[14][20][31][34][40]. 

Note that while SUB includes ALL and BEST as 
special cases, the latter two choices are usually made 
without an effort to evaluate other possible subsets. 

There are two reasons why we believe that none of the 
above is the ideal solution for the task at hand.   

First, consider the two-lead ECG snippets shown in 
Figure 1 below. Here, we want to classify myocardial 
ischemias in this patient to correlate them with 
(independently recorded) sleep states. While the example 
shown in Figure 1.left could be classified from either the 
V5 or V5R lead, other examples are much more subtle and 
benefit from using both leads. However, suppose we use 
ALL, pooling evidence from both leads, then later on if 
either of them becomes noisy or disconnected (a very 
common occurrence [6][17]), we will do very poorly.  

 
Figure 1. left) A snippet from a two-lead polysomnogram. right) At certain 
times, V5R becomes noisy while V5 remains almost unaffected. At other 
times (not shown), we see these roles reversed.  

The second reason why most of the current approaches 
are sub-optimal is even more intuitive. The best subset of 
time series to use is almost always class-dependent. To see 
this, consider the BAN data shown in Figure 2. As we might 
expect, rope-jumping activities can be more easily 
classified using data from a sensor on the wrist than using 
data from a sensor on the shoe. Conversely, to classify 
ascending-stairs behavior, using data from a sensor 
on the shoe is more accurate than using data from a sensor 
on the wrist. This can be easily explained if we imagine 
how the body moves during these behaviors. 

 
Figure 2. Two snippets of gyroscope data (110Hz) from a physical activity 
dataset [26]. Activities denoted rope-jumping (red/left) and 
ascending-stairs (purple/right) are more obvious from the wrist 
and shoe sensors, respectively. 

In this work, we introduce a novel framework to 
address these two observations. At classification time, each 
sensor is polled for its vote on the class label. However, the 
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vote is weighted by the sensor’s self-reported confidence in 
its prediction. This self-reported confidence is based on two 
factors: 
• Confidence-based classification: the sensor’s expertise 

on the class in question. This element is independent of 
the object to be classified. The expertise simply reflects 
that a sensor should not be confident in predicting one 
class if it was mostly wrong when it predicted this class 
during the training phase. 

• Distance-based classification: the similarity of the 
object to be classified and the examples seen during the 
training phase should be considered. This element 
reflects the fact that a sensor should not be confident in 
predicting any class if the object to be classified is 
significantly different than exemplars encountered 
during training.   
As we shall demonstrate, by taking into account these 

two factors, we can make MDT classification both more 
accurate and more robust.  

The rest of this paper is organized as follows. We first 
introduce the notations and intuition behind our framework 
in Section II. We will defer the discussion of related work 
in Section III, when the reader’s intuition for the domain 
has been developed. Section IV explains how our novel 
voting framework works. In Section V, we provide an 
extensive evaluation of our ideas with several real-world 
datasets from diverse domains. Finally, we offer 
conclusions and directions for future work in Section VI. 

II. NOTATION AND BACKGROUND 
In this section, we describe the definitions and intuition 

of our framework. We begin with the basic definitions. 

A. Basic Time Series Definitions  
We begin with the definition of a time series: 

Definition 1: A time series T = {t1,t2,...,tn} is a 
continuous sequence of n real-valued numbers. 

The recent ubiquity of inexpensive sensors, for 
example, in smartphones or medical devices, has led to 
greater interest in multi-dimensional time series 
[27][36][41]. We define multi-dimensional time series 
(MDT) as follows: 

Definition 2: A multi-dimensional time series MDT = 
{T1; T2;…Tm}consists of m time series Ti, which are 
synchronously recorded streams.  

For convenience in this work, we refer to each 
dimension in MDT as a stream or a sensor, where there is 
no ambiguity. 

There is near unanimous consensus that the nearest 
neighbor (NN) classifier is the best option for time series 
data [9][15][19]. Thus, this is our classifier of choice. In 
order to use the nearest neighbor classifier in classification 
of MDT, we must slightly generalize from ubiquitous single 
time version [9][15][19]. We define the nearest neighbor 
classifier in the classification of MDT as follows: 

Definition 3: The nearest neighbor classifier for an 
MDT is an algorithm that for each dimension qi in an 
incoming MDT query q = {q1;q2;…qm} finds its 
nearest neighbor only in  the corresponding dimension Ti  
from the MDT training data {T1; T2;…Tm}. The class 

label of q is determined by a combination of the nearest 
neighbor results for qi. 

Hereafter, when we refer to a classifier, we mean a 
single nearest neighbor classifier operating on a single 
dimension in MDT. 

As shown in Figure 3, the query qi from a given 
dimension only finds its nearest neighbor in the respective 
dimension Ti in training data; the query qi does not find its 
nearest neighbor in any other dimension Tj.  

 
Figure 3. The red dot/blue triangle represent sensors mounted in 
wrist/shoe, respectively. left) A two dimensional time series (T1 , T2), T1 
from a sensor on the wrist and T2 from a sensor on the shoe. right) A query 
q with two dimensions (q1 and q2), will find their nearest neighbors in T1 
and T2 , respectively. 

B. Supporting Confidence-Based Classification 
As noted above, rather than using an approach that uses 

the ALL, BEST, or SUB streams of an MDT, we propose 
to evaluate and exploit the expertise of each data stream. In 
other words, for each time series stream in MDT, we have 
an individual nearest neighbor classifier, and a 
(dynamically determined) combination of classifier’s 
predictions is used as the overall class prediction. 

At query time, each classifier tells us not only what it 
predicts for the class label, but also how confident it is in its 
prediction. Our central claim in this work is that by 
judiciously considering these confidence-annotated 
predictions, we can outperform all the obvious rival 
methods. While similar ideas (weighted voting 
[7][13][18][45], Bayesian classification [7]) exist in the 
literature for general classification (cf. Section III), the 
application and adaption to the unique structure of time 
series data we present in this work is novel. 

Our technique opens several questions, the most 
immediate of which is how to learn each classifiers’ 
expertise?  

The expertise of each classifier could be labeled by 
domain experts. For example, a clinician may know that an 
ECG from electrodes placed on the right of the sternum 
(S5) are generally better for recognizing atrial flutter, 
whereas data from the patient’s back (V7, V8, V9) tends to 
be better for detecting myocardial infraction [6][12]. 
However, experts are expensive. Thus, we will create a 
framework that automatically learns the expertise of each 
classifier directly from the training data. As our framework 
requires that each classifier must report a score indicating 
how confident it is for its predicted class label, we define 
confidence score as follows: 

Definition 4: A confidence score C with range [0, 1] is a 
self-reported confidence of a classifier on its prediction 
result. Numbers closer to 1 indicate higher confidence in 
prediction.  
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T1 from wrist

T2 from shoe

q1

q2



Before we demonstrate how we learn and use the 
confidence scores in Section IV, we show an intuitive 
example to demonstrate that the expertise of classifiers 
does vary. In Figure 4, we show the confidence score of 
classifiers learned for various human activities (more 
details in Section V) in a heavily cited benchmark dataset 
for human activity recognition [26].  

 
Figure 4. The performance of four classifiers (a), (b), (c), and (d) on four 
activities. In each classifier, the height of the bar is the confidence score 
for each activity. 

Note that classifier (b) which tracks a sensor on the 
wrist has high confidence in the upper body activities 
ironing and rope-jumping1, but has relatively low 
confidence in ascending-stairs and running, 
which are clearly lower body activities. Conversely, 
classifiers (c) and (d), which are embedded in the 
participant’s shoes, have the opposite expertise. 

If there are p concepts to be learned, then we must learn 
a confidence score vector C_vector = [C1,C2,…Cp] for each 
stream in MDT. Each element Ci represents how confident 
the classifier is when predicting the ith class label.  

Accordingly, for an MDT comprised of m streams, our 
framework learns a confidence score matrix C_matrix = 
{C_vector1; C_vector2; …C_vectorm} with row number m 
and column number p for the m classifiers. This, in essence, 
is what Figure 4 illustrates.  

C. Supporting Distance-Based Classification 
The confidence scores in Figure 4 are learned offline in 

training phase. However, as noted in the introduction, we 
have an additional observation we plan to exploit, and this 
observation requires adjustment of confidence in the testing 
(or deployment) stage. Our observation is that an individual 
stream classifier should not be confident predicting any 
class if the object being classified is significantly different 
than the exemplars encountered during training. This 
problem was hinted at in Figure 1 and was observed in 
nearly all of the case studies in Section V. A common 
trivial reason for this occurring is that a battery dies on one 
sensor, and thus the time series to be classified is just a 
constant line. This effect is very commonly seen in 
medicine when one lead is unplugged or falls off the 
patient. Moreover, the sensor failure problem has been 
frequently observed in the literature. For example, a recent 
paper states: “…part of the sensed data is missed due to 
battery failure…” [44].  

Furthermore, there are other possible reasons why the 
testing data might differ from the training data. If one of the 
                                                                 
1 We classify rope-jumping as upper body because the participant 

may have variable footwork, skipping on left, right or both legs; 
however their wrist action has very low variability.   

concepts we learned with high confidence is ascending-
stairs, we may find the new behaviors to be classified 
range from near identical time series patterns to more and 
more distorted patterns. This is because we may encounter 
data from a user that is tired, or wearing new shoes, or 
carrying heavy groceries, or encountering fresh snow etc.  
In these cases, even if the time series is still closer to 
ascending-stairs than any other class, the relevant 
classifier should signal a more tentative class prediction.  

In Figure 5, we show a concrete example to 
demonstrate the importance of integrating the nearest 
neighbor distance with the confidence score. This is real-
world data which we have slightly contrived for clarity. For 
simplicity, assume that there is an MDT with two 
dimensions. Further assume that at query time there is an 
incoming query q with two dimensions (q1 and q2). We 
want to determine the class membership of q using the 
confidence score approach.  

Consider a case when we discover that among a dozen 
possible classes, q1 and q2 report that their nearest 
neighbors are different, say running and rope-
jumping, respectively. (If they had agreed on a class 
label, then our prediction would have just been the agreed 
upon that label.) Given our observation about the 
confidence scores, we can break the tied vote by trusting 
the more confident classifier, which in this case was 
running with a confidence score 0.82. 

However, as shown in Figure 5, this may not be the 
optimal decision. While q1 is a little closer to running 
than q2 is to rope-jumping, neither is particularly 
similar to its class prototypes.  We simply do not have 
much experience with such objects. Nevertheless, if we 
take into account the learned distributions of nearest 
neighbor distances for the two classifiers, we find that the 
probability of being a true positive for q2 is much higher 
than q1.  In Section IV.C, we formalize this visual intuition 
of how we adjust the prior knowledge –the confidence 
score − to a posterior probability by integrating the nearest 
neighbor distance as the new evidence. We discover that 
the prediction rope-jumping from the second classifier 
has a higher confidence score after this adjustment, which 
is the correct answer in this example. 

 
Figure 5. The distributions of nearest neighbor distances for true positives 
(green/left) and false positives (red/right) in the classification of activity 
running using data from wrist (top) and activity rope-jumping using 
data from shoe (bottom).  

Note that the above observation only makes an overall 
difference in accuracy if there is variability in the 
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distributions observed in each class. Empirically, we find 
that this is almost always the case for real-world problems.  
Some classes are intrinsically simple; for example there is 
only so much variability possible in say, running. 
However, some behaviors such as ironing are much 
more amiable to individual idiosyncrasies. Moreover, 
variability in equipment or clothing being ironed will also 
tend to produce distributions with greater means and larger 
standard deviations.  

In summary, simply voting with the confidence score 
learned in the training phase may be sub-optimal, unless the 
testing data is exactly like the training data, an unlikely 
eventuality.   

To take into account the above observation, we define 
the adjusted confidence score as follows: 

Definition 5: The adjusted Confidence score (adC) with 
range [0, 1] is a score that subsumes the confidence score 
(c.f. Definition 4) by incorporating information about the 
distance between testing objects and the training objects 
as measured at query time. 

In Section IV.C, we show how we adjust the confidence 
score in a principled way by combining the nearest 
neighbor distance at query time using Bayes theorem [7]. If 
the query is not similar to any class that the classifier 
learned, the adC for predicting the label of this query 
should be very low.  

We use ACV as the abbreviation for our algorithm 
Adjusted Confidence Vote, which incorporates these 
observations. 

As we have shown in Figure 5, the nearest neighbor 
distance distributions of true positives and false positives 
for each class play an important role in adjusting the 
confidence score at query time. We define distributions of 
nearest neighbor distances as: 

Definition 6: The distributions of nearest neighbor 
distances (DN) are two distributions; one is the 
distribution for nearest neighbor distances of the true 
positives and another one is for the false positives. For 
each concept that a classifier learns during the training 
phase has two such distributions. 

In Definition 4, we showed that our algorithm learns C 
in the training phase by evaluating the classification 
performances for each classifier. During this process, we 
also store the distributions of nearest neighbor distances. 
For each classifier, we have a vector of distributions 
DN_vector = [DN1,DN2,…DNp] with length p.  

D. Allowing Real World Deployment 
Recently, it has been noted that much of the literature 

on time series classification implicitly or explicitly makes 
unjustified assumptions that limit the applicability of the 
proposed algorithms to real-world scenarios [15][16]. 
These assumptions are: 

Large amounts of perfectly aligned atomic patterns can 
be obtained [8][15][19]. That is to say, the algorithms 
assume they will only be given whole and complete 
heartbeats/gait cycles/atomic behaviors, with no extra 
spurious leading or trailing data. 

The patterns are all of equal length [17][19][32][37]. 
For example, in the world’s largest collection of time series 

datasets, the UCR classification archive, all forty-five time 
series datasets contain only equal-length data [19].  

All patterns presented to the classifier will belong to 
one of two or more well-defined classes, that is to say, 
there is no possibility for the classifier to label an object as 
unknown [9][19].    

These unrealistic assumptions are violated by most real-
world datasets. In particular at least one assumption is 
violated by all five datasets we consider in Section V. 
Thus, while we know a lot about the ability of various 
classification paradigms on the datasets found in the UCR 
archive [19], based on the hundred-plus research efforts 
that report results on it [37], we know a lot less about how 
well these ideas will perform in a real-world deployment.   

Thus, while it is not strictly necessary to demonstrate 
our novel observations, in this work we will follow the lead 
of [15] and introduce our framework in a way that does not 
make such unwarranted assumptions about the data. The 
next two definitions are required to remove these 
assumptions.  

We define the weakly-labeled training data as follows: 
Definition 7: weakly-labeled training data (WT) is a 
collection of the weakly-labeled time series annotated by 
behavior/state or some other mapping to the ground 
truth. 

This is best understood by contrast to strongly-labeled 
training data (i.e. all of the UCR datasets [19]). Strongly-
labeled data presents objects with explicitly labeled 
sections. For example, in the Kitchen Activity Dataset we 
consider in Section V.E, someone has taken the effort to 
annotate the precise moment that the various atomic food 
preparation activities begin and end. In contrast, in WT 
data, we are given data labeled like this: “in these two 
minutes of data there are some examples of chopping.” 
This is clearly a more realistic and scalable way to annotate 
data and our efforts are made with these more assumptions 
in mind.   

There are two important properties of WT that we must 
consider and which are illustrated in Figure 6.a. 

First, WT will generally contain extraneous/irrelevant 
sections. For example, when recoding ECG data, a section 
of recoding is clearly extraneous when the machine was not 
plugged in, as shown by the “flatline” in Figure 6.a. Similar 
phenomena occur in all the datasets we examined. Second, 
WT will almost certainly contain significant redundancies. 
Consider Figure 6.a again. Once we have a single normal 
heartbeat, say pattern N1 (Normal beat), then there is little 
utility in adding additional examples of the same type of 
ECG in the training data. Rather, what we should add into 
the training data are representative examples of other types 
of heartbeats, in this case, one example of the pattern S 
(Supraventricular Ectopic Atrial) and one example of the 
pattern V1 or V2 (Premature Ventricular Contraction). 

 
Figure 6. A snippet of BIDMC Congestive Heart Failure Database ECG, 
Record-03. (a) WT, which exhibits both extraneous and redundant data. 
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There are two types of anomalous heartbeats (V, S) and normal beat (N) in 
WT. (b) A minimally redundant set of representative heartbeats (a data 
dictionary) could be used as training data. 

Rather than having the redundant data in WT, we desire 
a smaller but smarter training subset that does not have the 
spurious data, while still covering the target concepts. For 
example, Figure 6.b consists of just one example of N, V 
and S. We define the minimally redundant training subset 
as a data dictionary: 

 Definition 8: A data dictionary D is a (potentially very 
small) “smart” subset of WT, while covering all the p 
concepts in WT. 

Note that in our simple example in Figure 6.b, it 
happens to be the case that one example from each of {N, 
S, V} suffices to cover the concept space. This does not 
have to be the case; for example, the class V could be 
polymorphic and we may need to have multiple examples 
of it in order to represent its variability.  

While D could be manually built by domain experts, 
again we note that human domain expertise is expensive. 
The framework in [15] demonstrates how to build D 
automatically using a simple data editing technique, which 
removes data redundancy while retaining just enough 
examples of the concept to cover the space of its 
“variability.”  

There are two important properties of D. First, the 
classification accuracy obtained from using just D is 
generally much higher than that obtained from using all WT 
[15]. This may be a little surprising, as we generally think 
more is better when it comes to data. Recall that D is 
designed so that it does not contain spurious data. If we 
have voluminous spurious data, then there is a high 
probability that some of it will be close to an exemplar 
from a different class, reducing classification accuracy. 

The second important property of D is its size. In most 
real-world settings, D is a very small fraction of WT, 
perhaps only one-hundredth its size. This allows real-time 
deployment on resource limited devices (embedded 
devices, smartphones, etc. [5]).  

For an MDT with m dimensions, our framework must 
learn m data dictionaries for the respective dimension. 

III. RELATED WORK 

Since the adjusted confidence score is at the heart of our 
contribution, we will take the time to discuss its 
relationship with the related work.  

A. Relationship to Ensemble Methods  
We are finally in a position to clarify the relationship 

between our algorithm ACV and the ensemble methods that 
it superficially resembles, for example, Boosting or 
Bagging [3][13][18][22][28][30][45].  

In brief, our approach is different from such ensemble 
methods in the sense that we do not generate redundant 
classifiers that later combine for prediction [45].   

 The common approach in the first step of Boosting and 
Bagging is that they both generate multiple base classifiers 
in order to produce diverse “views” of the data [45]. 
However, we do not generate classifiers. Instead, we 
perform the classic nearest neighbor classifier on each 
single data stream as an individual classifier. For example, 
the most famous algorithm in Boosting is AdaBoost [45]. 

In order to focus more on the training examples that are 
“difficult” to classify, AdaBoost iteratively generates 
different classifiers to focus on the training examples that 
are incorrectly classified. However, our ACV framework 
does not generate classifiers to adapt the data. 

The last step of ensemble methods performs a 
combination of the votes from the base classifiers [45]. Our 
contribution of the novel voting scheme using adC was 
informed by this combination step. In particular, using just 
C is similar to the weight in weight voting. (There is still a 
difference between using just C and the weight in weighted 
voting, which we clarify in Section III.B). However, we 
augment weighted voting by adjusting the weight with the 
similarity measure at query time.  

In Section V, we show using several large datasets from 
diverse domains that ACV framework beat the most popular 
voting methods: majority weight and weighted voting [45]. 

B. The Adjusted Confidence vs. the Weight in Weighted 
Voting  

In general, our voting framework is similar to weighted 
voting [7][13][18][29][45]. Since adC is an augmentation 
of C, we first clarify the difference between C (Definition 4) 
and the “weight” in weighted voting.  

In weighted voting, the key decision is how to choose 
the weight [45]. To obtain the best performance, the 
general intuition is that the weights should be chosen in 
proportion to the performance of individual classifiers [45]. 
Our confidence score C has a similar intuition in the sense 
that both of them are chosen based on the performance of 
the classifiers in the training phase. However, unlike the 
weights in weighted voting, which are chosen based on the 
overall performance of the classifier, C is calculated based 
on the performance of the classifier for each individual 
class in the classifier.  

In other words, for all the classes considered by a 
classifier, there is a corresponding C for each class. As 
shown in Section II.B, instead of having a single weight for 
each classifier as the weighted voting does, we have a 
C_vector = [C1,C2,…Cp] for each classifier. 

As adC is an augmentation of C, it can also be seen as 
an extension of the strategy of the weighted voting 
algorithm [7][13][18][45]. The modification lies in the fact 
that adC is the posterior probability by combining the new 
evidence (nearest neighbor distance at query time) and a 
prior knowledge (the confidence score) using Bayes 
theorem [10]. In contrast, the weighted voting only uses 
prior knowledge, in particular the past performance of the 
classifiers [45].  

As we will show in Table I, our framework takes the 
predicted label with the highest posteriori probability, the 
highest sum of adC. The optimality of using the maximum 
posteriori estimation together with Naïve Bayes over other 
approaches has already been proven [1][10][43]. These 
optimality results require that we treat the multiple data 
streams as independent of each other. This may be an 
unrealistic assumption, but it has been shown that Naïve 
Bayes is surprisingly robust to violations of this assumption   
[10][43]. The experimental results in Section V will show 
that our ACV approach is more accurate and robust than all 
the rival methods. 



IV. ALGORITHMS 
In order to best explain our framework, we first explain 

how our classification model works given that the 
confidence scores of an MDT  C_matrix, the distributions 
of nearest neighbor distances DN_matrix, and the data 
dictionaries D_matrix for WT have already been created. 
Later, in Section IV.B and C, we revisit the task of learning 
them. 

A. Classification of Multi-Dimensional Time Series using 
the Adjusted Confidence Scores  

For an incoming m-dimensional unlabeled object q, we 
classify each dimension with the corresponding classifier in 
D_matrix using the classic one nearest neighbor algorithm 
[19]. For each class pj, we sum the adC of each classifier 
that assigned class pj to query q. The class with the highest 
sum is returned as the class prediction for q.  

In Table I, we explain the algorithm in more detail. We 
begin in line 1 by initializing all of the m adC from the m 
classifiers to zeros. In line 3, we calculate the nearest 
neighbor for each dimension of q with the corresponding 
classifier in D_matrix. To be clear, each dimension is 
considered completely independently of all others.  

The function One_NN_search is simply the classic 
one nearest neighbor algorithm discussed in Definition 3 
[19]. We omit details of the function One_NN_search, 
as it is well known [9][36]. Note that while the distance 
measure used in line 3 could be any measure [9], we only 
consider the Euclidean distance，as it has been shown to 
be an extremely competitive measure [15][19][39]. In line 
4, the algorithm computes the adjusted confidence score 
calculated by equation (1) in Section IV.C.  

Note that if we only use the confidence score retrieved 
from C_matrix without any adjustment, ACV degenerates to 
the weighted voting algorithm scheme [45]. (Although to 
our knowledge, this has never been done for time series 
before.) However, as we argued in Section II, we need to 
augment this confidence score with the observed nearest 
neighbor distances. 

We take the class label that has the highest sum of 
adjusted confidence scores.  

Table I. ADJUSTED CONFIDENCE CLASSIFICATION ALGORITHM 

I
n
p
u
t
 

    C_matrix, a confidence score matrix that contains p 
columns and m rows(from m classifiers)  
DN_matrix, distributions of nearest neighbor distances 
D_matrix, a matrix that has m data dictionaries 
q, a query with m dimensions O

u
t
p
u
t
 

The class membership of q 
score, the total confidence for the prediction 

1 
2 
3 
 
4 
5 
6 

adC_vector ← zeros(1,m);  
for i ← 1 to m 
[NN_labels(i),NN_dist] ← One_NN_search(q{i},D_matrix{i}); 
              // NN_labels is a vector with m elements for the m classifiers 
 adC_vector(m) ← calculate_adC(NN_labels(i),NN_dist); 
endfor 
[class_label,score]← 
class_with_highest_sum(adC_vector,NN_labels); 

Having demonstrated how the classification model 
works in conjunction with C_matrix and DN_matrix, we 
are now in a position to illustrate how to learn them. 

B. Learning the Confidence Score  
We learn the confidence scores by evaluating the 

classification performance for each classifier during the 
training phase. As a byproduct of this, we also obtain DN 

for every class in all the classifiers, which we use to 
calculate the probability of being a true positive given the 
nearest neighbor distance at query time. To be concrete, for 
each class, we use the precision [35] of the classification as 
the confidence score.  

In Table II, we show how we learn C_matrix and 
DN_matrix. Note that we randomly split the weakly-labeled 
training data into two parts. We learn the data dictionaries 
from one fold using the framework in [15] and treat another 
fold as holdout data.   

We first randomly sample a large number of queries 
from the holdout data in line 1. From lines 2 to 10, we 
calculate the C_vector and DN_vector for each classifier. In 
line 3, we calculate the classification result for queries in 
the ith classifier. Then the algorithm retrieves the DN (i.e. 
NN_true and NN_false) from NN_dists in lines 5 to 
6. Line 7 shows that the algorithm adds DN to DN_matrix. 
In line 8 the algorithm calculates the precision for the 
classification result as the confidence score for the jth class 
in the ith classifier. 

Table II. LEARNING THE CONFIDENCE SCORE 
I
n
p
u
t 

 
  D_matrix, The number of classes in each D is p;   
  Holdout_WT, holdout data in the WT 

O
u
t
p
u
t
 

  C_matrix, confidence score matrix contains m     
confidence vectors for the m classifiers; 
  DN_matrix, the distributions NN distances 

1 
 
2 
3 
 
4 
5 
6 
 
7 
8 
9 

 10 

qs ←  a large number of multi-dimensional queries 
randomly sampled from Holdout_WT 
for i ← 1 to m 
  [NN_labels,NN_dists]← One_NN_search(qs(i),MD(i)); 
// perform classification for the ith classifier 
   for j ← 1 to p 
    NN_true ← NN_dists for true positives in jth class 
  NN_false ← NN_dists for false positives in jth class   
// DN is NN_true and NN_false 
     DN_matrix(i,j) ← [NN_true,NN_false]; 
C_matrix(i,j)← calculate_precision(NN_true,NN_false) 
   endfor 
endfor 

In the next section, we illustrate how we adjust the 
confidence score at query time by combining the nearest 
neighbor distance and the confidence score in a principled 
manner. 

C. Learning the Adjusted Confidence Score  
The adjusted confidence score is the confidence score 

augmented by integrating the nearest neighbor distance at 
query time. 

The Bayes theorem is the optimal model to learn the 
adjusted confidence score [10]. This is because the adjusted 
confidence score is the posterior probability by combining 
the new evidence (nearest neighbor distance at query time) 
and the prior knowledge (the confidence score). We denote 
the following:  
                       pl : predicted nearest neighbor label 
                       tl:   true label 

dist: the nearest neighbor distance calculated at query time 

The adjusted confidence score is calculated as follows: 

( | )P pl tl dist= =  ( | ) ( )
( )

P dist pl tl P pl tl
P dist
= × =  

( | ) ( )
( | ) ( ) ( | ) ( )

P dist pl tl P pl tl
P dist pl tl P pl tl P dist pl tl P pl tl

= × =
=

= × = + ≠ × ≠
   (1) 



In the above equation, ( )P pl tl= is the confidence score 
that we have learned using algorithm in Table II. We can 
easily calculate ( | )P dist pl tl=  given DN and the dist with 
density estimation.   

V. EXPERIMENTS 
We begin by stating our experimental philosophy. To 

ensure that our experiments are easily reproducible, we 
have built a website which contains all the datasets and 
code [46]. In addition, this webpage contains further 
experiments which are omitted here for brevity.  

Before listing the seven straw men that we compare to, 
we note that in addition we have compared our approach 
with many other widely-used rival classification 
frameworks, in particular SVM, boosted decision trees and 
the C4.5 decision tree [26][42][45]. The best result among 
these is achieved by C4.5 decision tree; however it is still 
not competitive with results produced by our algorithm 
ACV. Thus for clarity and brevity we relegate these results 
to our website [46]. We do not claim this as a novel 
finding, the superiority of nearest neighbor methods over 
eager leaning methods for time series has been noted by 
many others [9][37]. 

We test on five datasets (plus another three we 
relegated to [46]), which we believe is the largest set of 
MDT datasets ever considered in a single work. In 
particular, more than 90% of the papers on this problem 
test on exactly one dataset [14][17][26][34] [41][44].   

For the purpose of comparison, we list the seven straw 
men we use. Note that each straw man has been used in at 
least one recent paper. We begin by explaining ALL, 
BEST, and SUB in more detail.  
• For ALL, we calculate the sum of the distance2 between 

query q with m dimensions and the m classifiers and 
then find the one with the minimum distance as the 
nearest neighbor of q.  

• For BEST, at query time, we use only the one classifier 
that has the best performance in the training phase [34].  

• For SUB, in the training phase, we perform a heuristic 
greedy search over all the classifiers until the accuracy 
starts to decrease [14][20][31][40].  
In addition to ALL, BEST, and SUB, there are four 

other obvious rival approaches in the literature that we need 
to compare: 
• Minimum Distance Vote: choose the class label of the 

classifier that reported the minimum distance among the 
nearest distances from all the classifiers [36].  

• Majority Vote: choose the most commonly predicted 
class label [45]. (Technically, this is a “plurality” and 
not a “majority,” but we will use the common term). 

• Random Vote: at classification time, randomly choose a 
classifier and take its class prediction [45]. 

• Weighted Vote: choose the class label with the highest 
sum of the weights from the classifiers that agreed on 
that class label. The weight is learned purely based on 

                                                                 
2 We considered other variants, including summing the squared distances, 

etc. Our chosen variant was empirically the best method that used all 
dimensions.    

the past performance of the classifiers on the training 
data [45].  

A. Physical Activity Data 
We consider a physical activity dataset containing 36 

axis synchronous measurements from three Inertial 
Measurement Units (IMUs) located on the wrist, chest and 
ankle. This dataset has eight subjects performing activities 
such as: ironing, rope-jumping, running, 
folding laundry, ascending-stairs, etc [26]. 
Approximately eight hours of data at 110Hz was collected. 

We performed the following experimental procedure. 
We randomly chose 40% of the dataset as training data, and 
treat the rest as testing data. A data dictionary matrix 
D_matrix that contains less than ten percent of all the 
training data is learned using the framework in [15].  

Note that in all of our case studies, our experiment are 
subject independent evaluation, which is considered much 
harder than subject dependent evaluation [23] [26][34]. 

As shown in Table III, our ACV approach achieved a 
classification error rate of 0.05. In contrast, the original 
authors of the data reported an overall classification error 
rate at 0.10 [26][34]. While these two results are not 
exactly commensurate, the evaluation procedure in [26][34] 
would be expected to produce higher accuracy based on 
their split sizes. Their method extracts signal features from 
sliding windows and reports the best result after testing the 
feature vectors with all the popular classification 
algorithms using Weka [34]. 
Table III. Classification Results on the Physical Activity Data for ACV and 

Seven Straw Men 

Algorithms Accuracy:  
Original Data 

Accuracy:  
Occluded Data 

ALL [5][20] 0.19 0.16 
BEST [23][26] 0.72 0.63 

SUB [2][20][31] 0.78 0.64 
Minimum NN dists[36] 0.59 0.58 

Random[45] 0.51 0.47 
Majority Vote  [45] 0.84 0.76 
Weighted Vote [45] 0.89 0.77 

Adjusted Confidence Vote 0.95 0.94 

  Moreover, Table III shows that the ACV method beats all 
seven straw men by a significant margin. 

Recall that the strongest motivation for our ideas is to 
produce a framework that is robust for missing (or 
“occluded”) data. Our claim is that such missing data is 
very common, but researchers often “clean” datasets before 
publicly releasing them. This is a noble idea, but one that 
perhaps shields the community from the realities of real-
world deployments. Indeed, authors have been critiqued for 
releasing less than idealized data; For example, authors in 
[44] criticize the UC-Berkeley WARD Dataset [41] by 
noting“part of the sensed data is missed due to battery 
failure”. 

While we have seen multiple real examples of occluded 
data, to allow systematic testing we must synthetically 
occlude data. Let us revisit this widely studied dataset [26] 
as an example (Later datasets had a similar treatment.) 
There are 36 data streams, arranged in 12 triplets. For 
example, there are x, y, z axes for the acceleration data, and 
roll, pitch, and yaw for gyroscope data. We perform our 
occlusion experiments by simulating sensor failure of one 
triplet at a time. For each of the three streams, in a 
randomly chosen triple, we toss a fair coin to decide if we 



should replace it with either a straight line or a sine wave. 
We report the average performance by testing all the 12 
cases. In Table III, rightmost column, we show the 
classification result for these data occlusion experiments.  

As we can observe, ACV also achieves the highest 
accuracy for occluded data. Among the seven straw men, 
the Majority Vote and Weighted Vote methods return 
competitive results in using original data. However, when 
it comes to data with occlusion, the performance of these 
two algorithms drops precipitously. This is because data in 
the testing phase is different from data used in the training 
phase. While only one tenth of the data is different (by 
definition), this is enough to make a drastic difference in 
their performance.  

In contrast, our ACV approach is relatively robust for 
data with occlusion, since ACV carefully factors in the 
nearest neighbor distances in the testing phase. 

Given the relatively poor performance of the five straw 
men on both the original and occluded data (shown in gray 
in Table III), we omitted the results for these approaches in 
the rest of this work.  Instead, we put the results of a 
complete comparison on the supporting webpage [46]. 

B. Avian Audio Data 
Audio classification typically begins by extracting 

acoustic features such as Mel-Frequency Cepstral 
Coefficients (MFCCs) from audio signals [4][25]. MFCCs 
represent the speech amplitude spectrum in a compact form 
by transforming the audio data into thirteen coefficients3.  

In most algorithms that use the MFCCs for speech 
recognition, researchers either use one coefficient or use all 
the coefficients [4][25][38]. As noted above, it is our claim 
that both these choices may result in poor performance. To 
see this, we consider two species, East Brazilian Pygmy 
Owl (Glaucidium minutissimum) and Common Potoo 
(Nyctibius griseus) as examples. As shown in Figure 7, it is 
clear that for the Owl, the patterns (green/bold) exhibited in 
the third and fourth coefficients (red) are much clearer than 
the ones in the second and fifth coefficients. While for 
Potoo, the patterns in the third and fourth coefficients seem 
random.  

 
Figure 7. left) A snippet of sound spectrum and MFCCs from 2 to 5 for the 
East Brazilian Pygmy Owl. right) A snippet of sound spectrum and 
MFCCs from 2 to 5 for the Common Potoo. 

Clearly, it is not a trivial task to automatically identify 
which coefficients are most useful for which species, even 
for experienced avian bio-acousticians. Moreover, even 
within a single species, the bird calls in the testing phase 
may be subtly different from in the training phase, as the 

                                                                 
3 Usually the top thirteen coefficients are used for audio analysis. The first 

coefficient is a normalized energy parameter, which is not used for 
speech recognition [25]. 

inevitable background noise may affect different 
coefficients in different ways. 

Thus, we see this domain as an ideal candidate for our 
ideas and treat the twelve coefficients as an MDT. 

Xeno-canto is a large data pool of bird sound files with 
the aim of sharing bird sounds. Avian audio files are 
uploaded by volunteers from all over the world [38]. We 
randomly chose four hours of audio data from four species 
of birds to perform a classification experiment. The four 
species are East Brazilian Pygmy Owl, Common Potoo, 
Dusky Capped Flycatcher (Myiarchus tuberculifer), and 
Acadian Flycatcher (Empidonax virescens). We have 
placed the original audio files and the extracted MFCCs 
time series on the supporting webpage [46].  

In the bird sound datasets, we do not need to explicitly 
perform experiment with occlusion because of the natural 
variability of the bird sounds, recorded—in some cases—
years and hundreds of miles apart [38].  

Our dataset consists of approximately eighteen hundred 
bird calls. We randomly chose 40% of the data as training 
data and treated the rest as testing data. The classification 
accuracy using our ACV approach is 0.87, while for 
Majority Vote and Weighted Vote, the classification 
accuracy is 0.66 and 0.79, respectively. 

C. Recognition of Cricket Umpire Signals 
Cricket is a very popular game in British 

Commonwealth countries. An umpire signals different 
events in the game to a distant scorer/book-keeper. The 
signals are communicated with motions of the hands. For 
example, No Ball is signaled by touching each shoulder 
with the opposite hand. A complete list of signals can be 
found in [24].  

The dataset in [21] consists of four umpires performing 
twelve signals. There are four umpires performing each 
signal ten times. The data with frequency 184Hz was 
collected by placing two accelerometers on the wrists of the 
umpires. Each accelerometer has three synchronous 
measures for three axes (x, y and z). Thus, we have a six 
dimension MDT from the two accelerometers. Figure 8 
shows the data for two example signals, Six and Leg 
Bye. To signal Six, the umpire raises both hands above 
his head. Leg Bye is signaled with a hand touching the 
umpire’s raised knee three times. 

 
Figure 8. x, y, z acceleration data from right hand (brown) and left hand 
(blue) for two signals Six and Leg Bye.  

We randomly chose 40% of the data as the training data 
and treated the rest as testing data. The classification results 
are shown in Table IV. As noted in Section V. A, since the 
Majority Vote and Weighted Vote methods return the most 
competitive results among the seven straw men, we only 
list the results using these two straw men due to space 
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limitations. However, we reiterate that we have put the full 
result on the supporting webpage [46]. 

To produce real-world occluded data, we had two 
experienced officials perform the twelve cricket signals 
under the same experimental conditions as in [21]. By 
contriving a battery failure, we arranged that one subject 
had a sensor failure on the left hand and the other subject 
had a sensor failure on the right hand. We added this data 
to the original data in [21]. 

As we can see in the result for occluded data in the 
rightmost column of Table IV, our ACV approach is 
significantly more robust to sensor failure than Majority 
Vote or Weighted Vote. Moreover, for original data [21], 
ACV once again achieves the highest accuracy. 

Table IV. Classification Results on the Cricket Data 

Algorithms Accuracy  
Original Data 

Accuracy  
Occluded Data 

Majority Vote  [45] 0.88 0.71 
Weighted Vote [45] 0.92 0.78 

Adjusted Confidence Vote 0.96 0.93 

D. Gesture Recognition 
Almost all modern smartphones are equipped with 

multiple sensors (i.e. acceleration sensors, gyroscopes, etc.). 
This has inspired dozens of research efforts on creating 
gesture recognizers for mobile devices [23].  

The dataset provided in [23] is rapidly becoming a 
benchmark in this domain. The data was created by fifteen 
subjects wearing iPhones on their wrists to create six hand 
gestures as shown in Figure 9. Each participant provided 
each gesture fifteen times. There are six dimensions 
comprised of 3-axis acceleration data and 3-axis gyroscope 
data recorded at a frequency of 80Hz.  

 
Figure 9. Visualization of the six gesture classes. This figure from [23] is 
used with permission. 

We randomly chose 40% of the data as the training data 
and treated the rest as the testing data. Using the same 
method discussed in Section V.A, we randomly choose half 
of the testing subjects for the occluded data experiment. 
The comparison in Table V shows that our ACV approach 
obtains the highest accuracy in both cases of using the 
original data and data with occlusion.  

Table V.  Classification Results on the Gesture Data 

Algorithms Accuracy  
Original Data 

Accuracy  
Occluded Data 

Majority Vote  [45] 0.86 0.67 
Weighted Vote [45] 0.89 0.74 

Adjusted Confidence Vote 0.97 0.93 

E. Kitchen Activity Data 
A recent European effort in assisting elderly people to 

live more independently [33] has investigated technology 
to support activities in the kitchen, including automatic 
guidance while cooking and cleaning. Sensors embedded 
into kitchen utensils provide continuous data streams while 

being used. This provides an ideal test bed to demonstrate 
our framework. The first major dataset released [11][33] 
has four Wii-remote instrumented utensils to collect 
acceleration data, as shown in Figure 10. Twenty subjects 
performed seven hours of a recipe for a mixed salad 
preparation [11]. There are eleven classes, including 
peeling, slicing, scraping, chopping, etc. The 
data was recorded at a frequency of 40Hz.  

 
Figure 10. a) Modified Wii Remotes embedded in specially designed 
utensils. b) A subject is preparing salad. This figure is used with 
permission from [33]. 

Since in this dataset there are only three axes, we 
cannot use the same method with occluded data. Instead, 
we perform our occlusion experiments by simulating sensor 
failure of one axis at a time. By randomly choosing 40% 
data as training data and the rest as testing, we obtain the 
classification result as shown in Table VI. Once again, our 
ACV approach obtains the highest accuracy in both cases. 

Table VI. Classification Results on the Kitchen Data 

Algorithms Accuracy  
Original Data 

Accuracy  
Occluded Data 

Majority Vote  [45] 0.74 0.54 
Weighted Vote [45] 0.84 0.76 

Adjusted Confidence Vote 0.92 0.88 

F. Robustness to Irrelevant Features  
To demonstrate the robustness of our approach, we 

repeated the experiments above with an interesting 
modification. We added time series with no relation to the 
class into the data. 

Let us consider the cricket dataset as an example. 
Originally, the dataset is an MDT with six dimensions. 
However, we added another six dimensions of random 
walk data to the original data. To be clear, none of the 
explicit algorithms “know” which, if any, dimensions are 
irrelevant. 

We repeated the experiment shown in Table IV with the 
modified dataset. Both the Majority Vote and Weighted 
Vote are quite brittle to the additional irrelevant data, as 
their classification accuracies drop steeply to 0.69 and 0.78, 
respectively. However, our ACV approach obtains an 
accuracy of 0.95, barely affected by the irrelevant features. 
This is very important advantage when exploiting new 
domains in which we may have poor intuitions as to which 
features are useful. 

VI. CONCLUSION AND FUTURE WORK 
Building on the general techniques of weighted voting 

[7][45] and Bayesian classification [7], and extending the 
techniques of “realistic assumptions” dictionary-based 
classification [15], we have introduced a novel voting 
framework for accurate classification of multi-dimensional 
time series. We demonstrated on several large, real-world 
datasets from diverse domains that our approach is 
significantly more accurate and robust than rival 
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approaches. In particular, we have shown that our 
framework is very robust to missing data and irrelevant, a 
problem that frequently occurs in the real world [41]. In 
future work, we plan to investigate the theoretical 
foundations of our observations and implement the minor 
extensions needed to support Dynamic Time Warping [37] 
and Uniform Scaling [15]. Finally, we have given away all 
code and data to allow others to confirm, extend and use 
our work [46]. 
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