
Classification of Multi-Dimensional Streaming Time Series by Weighting each
Classifier’s Track Record

Bing Hu, Yanping Chen, Jesin Zakaria, Liudmila Ulanova, Eamonn Keogh
Department of Computer Science and Engineering

University of California, Riverside
{bhu002, ychen053, jzaka001, lulan001,eamonn}@cs.ucr.edu

Abstract-Extensive research on time series classification in the
last decade has produced fast and accurate algorithms for the
single-dimensional case. However, the increasing prevalence
of inexpensive sensors has reinforced the need for algorithms
to handle multi-dimensional time series. For example, modern
smartphones have at least a dozen sensors capable of
producing streaming time series, and hospital-based (and
increasingly, home-based) medical devices can produce time
series streams from more than twenty sensors. The two most
common ways to generalize from single to multi-dimensional
data are to use all the streams or just the single best stream as
determined at training time. However, as we show here, both
approaches can be very brittle. Moreover, neither approach
exploits the observation that different sensors may be
considered “experts” on different classes. In this work, we
introduce a novel framework for multi-dimensional time
series classification that weights the class prediction from each
time series stream. These weights are based not only on each
stream’s previous track record on the class it is currently
predicting, but also on the distance from the unlabeled object.
As we demonstrate with extensive experiments on real data,
our method is more accurate than current approaches and
particularly robust in the face of concept drift or sensor noise.

 Keywords - multi-dimensional time series; classification

I. INTRODUCTION
Many physiological, medical, and scientific processes

produce copious amounts of Multi-Dimensional Time
series (MDT) data [20][26][36][41]. If we need to classify
patterns manifest on just a single (independent) stream
from an MDT, there is strong evidence that the simple
nearest neighbor algorithm should be the algorithm of
choice [9][15][19]. However, in many cases, the m
individual time series in the MDT may reflect different
views of the same underlying phenomena we want to
classify. For example, we may have two different leads
recording an ECG (Figure 1) or several gyroscopes on a
Body Area Network (BAN) (Figure 2). In such a case, how
should we use information from multiple sensors? The
obvious choices are:
• ALL: Use all m time series [36]. In this category, we

include efforts that transform all m time series into a new
space, using SVD [40] or Markov models [42], etc.

• BEST: Use only the single best time series, which is
either found empirically or suggested by domain
knowledge [17]. In many research efforts the latter is
probably done as a matter of course and reported fait
accompli without discussion.

• SUB: Use the best subset of the time series that is either
found empirically or suggested by domain knowledge
[14][20][31][34][40].

Note that while SUB includes ALL and BEST as
special cases, the latter two choices are usually made
without an effort to evaluate other possible subsets.

There are two reasons why we believe that none of the
above is the ideal solution for the task at hand.

First, consider the two-lead ECG snippets shown in
Figure 1 below. Here, we want to classify myocardial
ischemias in this patient to correlate them with
(independently recorded) sleep states. While the example
shown in Figure 1.left could be classified from either the
V5 or V5R lead, other examples are much more subtle and
benefit from using both leads. However, suppose we use
ALL, pooling evidence from both leads, then later on if
either of them becomes noisy or disconnected (a very
common occurrence [6][17]), we will do very poorly.

Figure 1. left) A snippet from a two-lead polysomnogram. right) At certain
times, V5R becomes noisy while V5 remains almost unaffected. At other
times (not shown), we see these roles reversed.

The second reason why most of the current approaches
are sub-optimal is even more intuitive. The best subset of
time series to use is almost always class-dependent. To see
this, consider the BAN data shown in Figure 2. As we might
expect, rope-jumping activities can be more easily
classified using data from a sensor on the wrist than using
data from a sensor on the shoe. Conversely, to classify
ascending-stairs behavior, using data from a sensor
on the shoe is more accurate than using data from a sensor
on the wrist. This can be easily explained if we imagine
how the body moves during these behaviors.

Figure 2. Two snippets of gyroscope data (110Hz) from a physical activity
dataset [26]. Activities denoted rope-jumping (red/left) and
ascending-stairs (purple/right) are more obvious from the wrist
and shoe sensors, respectively.

In this work, we introduce a novel framework to
address these two observations. At classification time, each
sensor is polled for its vote on the class label. However, the

myocardial ischemia

V5

V5R

1 sec

…

…

shoe

2 sec

rope-jumping
wrist

ascending-stairs

…

…

vote is weighted by the sensor’s self-reported confidence in
its prediction. This self-reported confidence is based on two
factors:
• Confidence-based classification: the sensor’s expertise

on the class in question. This element is independent of
the object to be classified. The expertise simply reflects
that a sensor should not be confident in predicting one
class if it was mostly wrong when it predicted this class
during the training phase.

• Distance-based classification: the similarity of the
object to be classified and the examples seen during the
training phase should be considered. This element
reflects the fact that a sensor should not be confident in
predicting any class if the object to be classified is
significantly different than exemplars encountered
during training.
As we shall demonstrate, by taking into account these

two factors, we can make MDT classification both more
accurate and more robust.

The rest of this paper is organized as follows. We first
introduce the notations and intuition behind our framework
in Section II. We will defer the discussion of related work
in Section III, when the reader’s intuition for the domain
has been developed. Section IV explains how our novel
voting framework works. In Section V, we provide an
extensive evaluation of our ideas with several real-world
datasets from diverse domains. Finally, we offer
conclusions and directions for future work in Section VI.

II. NOTATION AND BACKGROUND
In this section, we describe the definitions and intuition

of our framework. We begin with the basic definitions.

A. Basic Time Series Definitions
We begin with the definition of a time series:

Definition 1: A time series T = {t1,t2,...,tn} is a
continuous sequence of n real-valued numbers.

The recent ubiquity of inexpensive sensors, for
example, in smartphones or medical devices, has led to
greater interest in multi-dimensional time series
[27][36][41]. We define multi-dimensional time series
(MDT) as follows:

Definition 2: A multi-dimensional time series MDT =
{T1; T2;…Tm}consists of m time series Ti, which are
synchronously recorded streams.

For convenience in this work, we refer to each
dimension in MDT as a stream or a sensor, where there is
no ambiguity.

There is near unanimous consensus that the nearest
neighbor (NN) classifier is the best option for time series
data [9][15][19]. Thus, this is our classifier of choice. In
order to use the nearest neighbor classifier in classification
of MDT, we must slightly generalize from ubiquitous single
time version [9][15][19]. We define the nearest neighbor
classifier in the classification of MDT as follows:

Definition 3: The nearest neighbor classifier for an
MDT is an algorithm that for each dimension qi in an
incoming MDT query q = {q1;q2;…qm} finds its
nearest neighbor only in the corresponding dimension Ti
from the MDT training data {T1; T2;…Tm}. The class

label of q is determined by a combination of the nearest
neighbor results for qi.

Hereafter, when we refer to a classifier, we mean a
single nearest neighbor classifier operating on a single
dimension in MDT.

As shown in Figure 3, the query qi from a given
dimension only finds its nearest neighbor in the respective
dimension Ti in training data; the query qi does not find its
nearest neighbor in any other dimension Tj.

Figure 3. The red dot/blue triangle represent sensors mounted in
wrist/shoe, respectively. left) A two dimensional time series (T1 , T2), T1
from a sensor on the wrist and T2 from a sensor on the shoe. right) A query
q with two dimensions (q1 and q2), will find their nearest neighbors in T1
and T2 , respectively.

B. Supporting Confidence-Based Classification
As noted above, rather than using an approach that uses

the ALL, BEST, or SUB streams of an MDT, we propose
to evaluate and exploit the expertise of each data stream. In
other words, for each time series stream in MDT, we have
an individual nearest neighbor classifier, and a
(dynamically determined) combination of classifier’s
predictions is used as the overall class prediction.

At query time, each classifier tells us not only what it
predicts for the class label, but also how confident it is in its
prediction. Our central claim in this work is that by
judiciously considering these confidence-annotated
predictions, we can outperform all the obvious rival
methods. While similar ideas (weighted voting
[7][13][18][45], Bayesian classification [7]) exist in the
literature for general classification (cf. Section III), the
application and adaption to the unique structure of time
series data we present in this work is novel.

Our technique opens several questions, the most
immediate of which is how to learn each classifiers’
expertise?

The expertise of each classifier could be labeled by
domain experts. For example, a clinician may know that an
ECG from electrodes placed on the right of the sternum
(S5) are generally better for recognizing atrial flutter,
whereas data from the patient’s back (V7, V8, V9) tends to
be better for detecting myocardial infraction [6][12].
However, experts are expensive. Thus, we will create a
framework that automatically learns the expertise of each
classifier directly from the training data. As our framework
requires that each classifier must report a score indicating
how confident it is for its predicted class label, we define
confidence score as follows:

Definition 4: A confidence score C with range [0, 1] is a
self-reported confidence of a classifier on its prediction
result. Numbers closer to 1 indicate higher confidence in
prediction.

training data testing data

T1 from wrist

T2 from shoe

q1

q2

Before we demonstrate how we learn and use the
confidence scores in Section IV, we show an intuitive
example to demonstrate that the expertise of classifiers
does vary. In Figure 4, we show the confidence score of
classifiers learned for various human activities (more
details in Section V) in a heavily cited benchmark dataset
for human activity recognition [26].

Figure 4. The performance of four classifiers (a), (b), (c), and (d) on four
activities. In each classifier, the height of the bar is the confidence score
for each activity.

Note that classifier (b) which tracks a sensor on the
wrist has high confidence in the upper body activities
ironing and rope-jumping1, but has relatively low
confidence in ascending-stairs and running,
which are clearly lower body activities. Conversely,
classifiers (c) and (d), which are embedded in the
participant’s shoes, have the opposite expertise.

If there are p concepts to be learned, then we must learn
a confidence score vector C_vector = [C1,C2,…Cp] for each
stream in MDT. Each element Ci represents how confident
the classifier is when predicting the ith class label.

Accordingly, for an MDT comprised of m streams, our
framework learns a confidence score matrix C_matrix =
{C_vector1; C_vector2; …C_vectorm} with row number m
and column number p for the m classifiers. This, in essence,
is what Figure 4 illustrates.

C. Supporting Distance-Based Classification
The confidence scores in Figure 4 are learned offline in

training phase. However, as noted in the introduction, we
have an additional observation we plan to exploit, and this
observation requires adjustment of confidence in the testing
(or deployment) stage. Our observation is that an individual
stream classifier should not be confident predicting any
class if the object being classified is significantly different
than the exemplars encountered during training. This
problem was hinted at in Figure 1 and was observed in
nearly all of the case studies in Section V. A common
trivial reason for this occurring is that a battery dies on one
sensor, and thus the time series to be classified is just a
constant line. This effect is very commonly seen in
medicine when one lead is unplugged or falls off the
patient. Moreover, the sensor failure problem has been
frequently observed in the literature. For example, a recent
paper states: “…part of the sensed data is missed due to
battery failure…” [44].

Furthermore, there are other possible reasons why the
testing data might differ from the training data. If one of the

1 We classify rope-jumping as upper body because the participant

may have variable footwork, skipping on left, right or both legs;
however their wrist action has very low variability.

concepts we learned with high confidence is ascending-
stairs, we may find the new behaviors to be classified
range from near identical time series patterns to more and
more distorted patterns. This is because we may encounter
data from a user that is tired, or wearing new shoes, or
carrying heavy groceries, or encountering fresh snow etc.
In these cases, even if the time series is still closer to
ascending-stairs than any other class, the relevant
classifier should signal a more tentative class prediction.

In Figure 5, we show a concrete example to
demonstrate the importance of integrating the nearest
neighbor distance with the confidence score. This is real-
world data which we have slightly contrived for clarity. For
simplicity, assume that there is an MDT with two
dimensions. Further assume that at query time there is an
incoming query q with two dimensions (q1 and q2). We
want to determine the class membership of q using the
confidence score approach.

Consider a case when we discover that among a dozen
possible classes, q1 and q2 report that their nearest
neighbors are different, say running and rope-
jumping, respectively. (If they had agreed on a class
label, then our prediction would have just been the agreed
upon that label.) Given our observation about the
confidence scores, we can break the tied vote by trusting
the more confident classifier, which in this case was
running with a confidence score 0.82.

However, as shown in Figure 5, this may not be the
optimal decision. While q1 is a little closer to running
than q2 is to rope-jumping, neither is particularly
similar to its class prototypes. We simply do not have
much experience with such objects. Nevertheless, if we
take into account the learned distributions of nearest
neighbor distances for the two classifiers, we find that the
probability of being a true positive for q2 is much higher
than q1. In Section IV.C, we formalize this visual intuition
of how we adjust the prior knowledge –the confidence
score − to a posterior probability by integrating the nearest
neighbor distance as the new evidence. We discover that
the prediction rope-jumping from the second classifier
has a higher confidence score after this adjustment, which
is the correct answer in this example.

Figure 5. The distributions of nearest neighbor distances for true positives
(green/left) and false positives (red/right) in the classification of activity
running using data from wrist (top) and activity rope-jumping using
data from shoe (bottom).

Note that the above observation only makes an overall
difference in accuracy if there is variability in the

rope-
jumping

ascending-
stairs

acceleration data (x axis)
from sensor on wrist

gyroscope data (x axis)
from sensor on wrist

acceleration data (x axis)
from sensor on shoe

gyroscope data (x axis)
from sensor on shoe

(a)

(b)

(c)

(d)

ironing running

Sc
or

e

0
0.5

1

Sc
or

e

0
0.5

1

Sc
or

e

0
0.5

1

Sc
or

e

0
0.5

1

The probability of being a
true positive for q1 is 0.57 running

Confidence Score: 0.82

0

2000

4000

6000

N
um

be
r o

f
Q

ue
rie

s

0 2 4 8 10 12 14 16 18 206

TP FP

The probability of being a
true positive for q2 is 0.94

0

2000

4000

6000

Euclidean Distance
0 2 4 8 10 12 14 16 18 206

rope-jumping
Confidence Score: 0.64

distributions observed in each class. Empirically, we find
that this is almost always the case for real-world problems.
Some classes are intrinsically simple; for example there is
only so much variability possible in say, running.
However, some behaviors such as ironing are much
more amiable to individual idiosyncrasies. Moreover,
variability in equipment or clothing being ironed will also
tend to produce distributions with greater means and larger
standard deviations.

In summary, simply voting with the confidence score
learned in the training phase may be sub-optimal, unless the
testing data is exactly like the training data, an unlikely
eventuality.

To take into account the above observation, we define
the adjusted confidence score as follows:

Definition 5: The adjusted Confidence score (adC) with
range [0, 1] is a score that subsumes the confidence score
(c.f. Definition 4) by incorporating information about the
distance between testing objects and the training objects
as measured at query time.

In Section IV.C, we show how we adjust the confidence
score in a principled way by combining the nearest
neighbor distance at query time using Bayes theorem [7]. If
the query is not similar to any class that the classifier
learned, the adC for predicting the label of this query
should be very low.

We use ACV as the abbreviation for our algorithm
Adjusted Confidence Vote, which incorporates these
observations.

As we have shown in Figure 5, the nearest neighbor
distance distributions of true positives and false positives
for each class play an important role in adjusting the
confidence score at query time. We define distributions of
nearest neighbor distances as:

Definition 6: The distributions of nearest neighbor
distances (DN) are two distributions; one is the
distribution for nearest neighbor distances of the true
positives and another one is for the false positives. For
each concept that a classifier learns during the training
phase has two such distributions.

In Definition 4, we showed that our algorithm learns C
in the training phase by evaluating the classification
performances for each classifier. During this process, we
also store the distributions of nearest neighbor distances.
For each classifier, we have a vector of distributions
DN_vector = [DN1,DN2,…DNp] with length p.

D. Allowing Real World Deployment
Recently, it has been noted that much of the literature

on time series classification implicitly or explicitly makes
unjustified assumptions that limit the applicability of the
proposed algorithms to real-world scenarios [15][16].
These assumptions are:

Large amounts of perfectly aligned atomic patterns can
be obtained [8][15][19]. That is to say, the algorithms
assume they will only be given whole and complete
heartbeats/gait cycles/atomic behaviors, with no extra
spurious leading or trailing data.

The patterns are all of equal length [17][19][32][37].
For example, in the world’s largest collection of time series

datasets, the UCR classification archive, all forty-five time
series datasets contain only equal-length data [19].

All patterns presented to the classifier will belong to
one of two or more well-defined classes, that is to say,
there is no possibility for the classifier to label an object as
unknown [9][19].

These unrealistic assumptions are violated by most real-
world datasets. In particular at least one assumption is
violated by all five datasets we consider in Section V.
Thus, while we know a lot about the ability of various
classification paradigms on the datasets found in the UCR
archive [19], based on the hundred-plus research efforts
that report results on it [37], we know a lot less about how
well these ideas will perform in a real-world deployment.

Thus, while it is not strictly necessary to demonstrate
our novel observations, in this work we will follow the lead
of [15] and introduce our framework in a way that does not
make such unwarranted assumptions about the data. The
next two definitions are required to remove these
assumptions.

We define the weakly-labeled training data as follows:
Definition 7: weakly-labeled training data (WT) is a
collection of the weakly-labeled time series annotated by
behavior/state or some other mapping to the ground
truth.

This is best understood by contrast to strongly-labeled
training data (i.e. all of the UCR datasets [19]). Strongly-
labeled data presents objects with explicitly labeled
sections. For example, in the Kitchen Activity Dataset we
consider in Section V.E, someone has taken the effort to
annotate the precise moment that the various atomic food
preparation activities begin and end. In contrast, in WT
data, we are given data labeled like this: “in these two
minutes of data there are some examples of chopping.”
This is clearly a more realistic and scalable way to annotate
data and our efforts are made with these more assumptions
in mind.

There are two important properties of WT that we must
consider and which are illustrated in Figure 6.a.

First, WT will generally contain extraneous/irrelevant
sections. For example, when recoding ECG data, a section
of recoding is clearly extraneous when the machine was not
plugged in, as shown by the “flatline” in Figure 6.a. Similar
phenomena occur in all the datasets we examined. Second,
WT will almost certainly contain significant redundancies.
Consider Figure 6.a again. Once we have a single normal
heartbeat, say pattern N1 (Normal beat), then there is little
utility in adding additional examples of the same type of
ECG in the training data. Rather, what we should add into
the training data are representative examples of other types
of heartbeats, in this case, one example of the pattern S
(Supraventricular Ectopic Atrial) and one example of the
pattern V1 or V2 (Premature Ventricular Contraction).

Figure 6. A snippet of BIDMC Congestive Heart Failure Database ECG,
Record-03. (a) WT, which exhibits both extraneous and redundant data.

(a)

V1 N1Extraneous data V2 N2
S

0 1000 2000 3000 4000
(b)

SV2
N1

There are two types of anomalous heartbeats (V, S) and normal beat (N) in
WT. (b) A minimally redundant set of representative heartbeats (a data
dictionary) could be used as training data.

Rather than having the redundant data in WT, we desire
a smaller but smarter training subset that does not have the
spurious data, while still covering the target concepts. For
example, Figure 6.b consists of just one example of N, V
and S. We define the minimally redundant training subset
as a data dictionary:

 Definition 8: A data dictionary D is a (potentially very
small) “smart” subset of WT, while covering all the p
concepts in WT.

Note that in our simple example in Figure 6.b, it
happens to be the case that one example from each of {N,
S, V} suffices to cover the concept space. This does not
have to be the case; for example, the class V could be
polymorphic and we may need to have multiple examples
of it in order to represent its variability.

While D could be manually built by domain experts,
again we note that human domain expertise is expensive.
The framework in [15] demonstrates how to build D
automatically using a simple data editing technique, which
removes data redundancy while retaining just enough
examples of the concept to cover the space of its
“variability.”

There are two important properties of D. First, the
classification accuracy obtained from using just D is
generally much higher than that obtained from using all WT
[15]. This may be a little surprising, as we generally think
more is better when it comes to data. Recall that D is
designed so that it does not contain spurious data. If we
have voluminous spurious data, then there is a high
probability that some of it will be close to an exemplar
from a different class, reducing classification accuracy.

The second important property of D is its size. In most
real-world settings, D is a very small fraction of WT,
perhaps only one-hundredth its size. This allows real-time
deployment on resource limited devices (embedded
devices, smartphones, etc. [5]).

For an MDT with m dimensions, our framework must
learn m data dictionaries for the respective dimension.

III. RELATED WORK

Since the adjusted confidence score is at the heart of our
contribution, we will take the time to discuss its
relationship with the related work.

A. Relationship to Ensemble Methods
We are finally in a position to clarify the relationship

between our algorithm ACV and the ensemble methods that
it superficially resembles, for example, Boosting or
Bagging [3][13][18][22][28][30][45].

In brief, our approach is different from such ensemble
methods in the sense that we do not generate redundant
classifiers that later combine for prediction [45].

 The common approach in the first step of Boosting and
Bagging is that they both generate multiple base classifiers
in order to produce diverse “views” of the data [45].
However, we do not generate classifiers. Instead, we
perform the classic nearest neighbor classifier on each
single data stream as an individual classifier. For example,
the most famous algorithm in Boosting is AdaBoost [45].

In order to focus more on the training examples that are
“difficult” to classify, AdaBoost iteratively generates
different classifiers to focus on the training examples that
are incorrectly classified. However, our ACV framework
does not generate classifiers to adapt the data.

The last step of ensemble methods performs a
combination of the votes from the base classifiers [45]. Our
contribution of the novel voting scheme using adC was
informed by this combination step. In particular, using just
C is similar to the weight in weight voting. (There is still a
difference between using just C and the weight in weighted
voting, which we clarify in Section III.B). However, we
augment weighted voting by adjusting the weight with the
similarity measure at query time.

In Section V, we show using several large datasets from
diverse domains that ACV framework beat the most popular
voting methods: majority weight and weighted voting [45].

B. The Adjusted Confidence vs. the Weight in Weighted
Voting

In general, our voting framework is similar to weighted
voting [7][13][18][29][45]. Since adC is an augmentation
of C, we first clarify the difference between C (Definition 4)
and the “weight” in weighted voting.

In weighted voting, the key decision is how to choose
the weight [45]. To obtain the best performance, the
general intuition is that the weights should be chosen in
proportion to the performance of individual classifiers [45].
Our confidence score C has a similar intuition in the sense
that both of them are chosen based on the performance of
the classifiers in the training phase. However, unlike the
weights in weighted voting, which are chosen based on the
overall performance of the classifier, C is calculated based
on the performance of the classifier for each individual
class in the classifier.

In other words, for all the classes considered by a
classifier, there is a corresponding C for each class. As
shown in Section II.B, instead of having a single weight for
each classifier as the weighted voting does, we have a
C_vector = [C1,C2,…Cp] for each classifier.

As adC is an augmentation of C, it can also be seen as
an extension of the strategy of the weighted voting
algorithm [7][13][18][45]. The modification lies in the fact
that adC is the posterior probability by combining the new
evidence (nearest neighbor distance at query time) and a
prior knowledge (the confidence score) using Bayes
theorem [10]. In contrast, the weighted voting only uses
prior knowledge, in particular the past performance of the
classifiers [45].

As we will show in Table I, our framework takes the
predicted label with the highest posteriori probability, the
highest sum of adC. The optimality of using the maximum
posteriori estimation together with Naïve Bayes over other
approaches has already been proven [1][10][43]. These
optimality results require that we treat the multiple data
streams as independent of each other. This may be an
unrealistic assumption, but it has been shown that Naïve
Bayes is surprisingly robust to violations of this assumption
[10][43]. The experimental results in Section V will show
that our ACV approach is more accurate and robust than all
the rival methods.

IV. ALGORITHMS
In order to best explain our framework, we first explain

how our classification model works given that the
confidence scores of an MDT C_matrix, the distributions
of nearest neighbor distances DN_matrix, and the data
dictionaries D_matrix for WT have already been created.
Later, in Section IV.B and C, we revisit the task of learning
them.

A. Classification of Multi-Dimensional Time Series using
the Adjusted Confidence Scores

For an incoming m-dimensional unlabeled object q, we
classify each dimension with the corresponding classifier in
D_matrix using the classic one nearest neighbor algorithm
[19]. For each class pj, we sum the adC of each classifier
that assigned class pj to query q. The class with the highest
sum is returned as the class prediction for q.

In Table I, we explain the algorithm in more detail. We
begin in line 1 by initializing all of the m adC from the m
classifiers to zeros. In line 3, we calculate the nearest
neighbor for each dimension of q with the corresponding
classifier in D_matrix. To be clear, each dimension is
considered completely independently of all others.

The function One_NN_search is simply the classic
one nearest neighbor algorithm discussed in Definition 3
[19]. We omit details of the function One_NN_search,
as it is well known [9][36]. Note that while the distance
measure used in line 3 could be any measure [9], we only
consider the Euclidean distance，as it has been shown to
be an extremely competitive measure [15][19][39]. In line
4, the algorithm computes the adjusted confidence score
calculated by equation (1) in Section IV.C.

Note that if we only use the confidence score retrieved
from C_matrix without any adjustment, ACV degenerates to
the weighted voting algorithm scheme [45]. (Although to
our knowledge, this has never been done for time series
before.) However, as we argued in Section II, we need to
augment this confidence score with the observed nearest
neighbor distances.

We take the class label that has the highest sum of
adjusted confidence scores.

Table I. ADJUSTED CONFIDENCE CLASSIFICATION ALGORITHM

I
n
p
u
t

 C_matrix, a confidence score matrix that contains p
columns and m rows(from m classifiers)
DN_matrix, distributions of nearest neighbor distances
D_matrix, a matrix that has m data dictionaries
q, a query with m dimensions O

u
t
p
u
t

The class membership of q
score, the total confidence for the prediction

1
2
3

4
5
6

adC_vector ← zeros(1,m);
for i ← 1 to m
[NN_labels(i),NN_dist] ← One_NN_search(q{i},D_matrix{i});
 // NN_labels is a vector with m elements for the m classifiers
 adC_vector(m) ← calculate_adC(NN_labels(i),NN_dist);
endfor
[class_label,score]←
class_with_highest_sum(adC_vector,NN_labels);

Having demonstrated how the classification model
works in conjunction with C_matrix and DN_matrix, we
are now in a position to illustrate how to learn them.

B. Learning the Confidence Score
We learn the confidence scores by evaluating the

classification performance for each classifier during the
training phase. As a byproduct of this, we also obtain DN

for every class in all the classifiers, which we use to
calculate the probability of being a true positive given the
nearest neighbor distance at query time. To be concrete, for
each class, we use the precision [35] of the classification as
the confidence score.

In Table II, we show how we learn C_matrix and
DN_matrix. Note that we randomly split the weakly-labeled
training data into two parts. We learn the data dictionaries
from one fold using the framework in [15] and treat another
fold as holdout data.

We first randomly sample a large number of queries
from the holdout data in line 1. From lines 2 to 10, we
calculate the C_vector and DN_vector for each classifier. In
line 3, we calculate the classification result for queries in
the ith classifier. Then the algorithm retrieves the DN (i.e.
NN_true and NN_false) from NN_dists in lines 5 to
6. Line 7 shows that the algorithm adds DN to DN_matrix.
In line 8 the algorithm calculates the precision for the
classification result as the confidence score for the jth class
in the ith classifier.

Table II. LEARNING THE CONFIDENCE SCORE
I
n
p
u
t

 D_matrix, The number of classes in each D is p;
 Holdout_WT, holdout data in the WT

O
u
t
p
u
t

 C_matrix, confidence score matrix contains m
confidence vectors for the m classifiers;
 DN_matrix, the distributions NN distances

1

2
3

4
5
6

7
8
9

 10

qs ← a large number of multi-dimensional queries
randomly sampled from Holdout_WT
for i ← 1 to m
 [NN_labels,NN_dists]← One_NN_search(qs(i),MD(i));
// perform classification for the ith classifier
 for j ← 1 to p
 NN_true ← NN_dists for true positives in jth class
 NN_false ← NN_dists for false positives in jth class
// DN is NN_true and NN_false
 DN_matrix(i,j) ← [NN_true,NN_false];
C_matrix(i,j)← calculate_precision(NN_true,NN_false)
 endfor
endfor

In the next section, we illustrate how we adjust the
confidence score at query time by combining the nearest
neighbor distance and the confidence score in a principled
manner.

C. Learning the Adjusted Confidence Score
The adjusted confidence score is the confidence score

augmented by integrating the nearest neighbor distance at
query time.

The Bayes theorem is the optimal model to learn the
adjusted confidence score [10]. This is because the adjusted
confidence score is the posterior probability by combining
the new evidence (nearest neighbor distance at query time)
and the prior knowledge (the confidence score). We denote
the following:
 pl : predicted nearest neighbor label
 tl: true label

dist: the nearest neighbor distance calculated at query time

The adjusted confidence score is calculated as follows:

(|)P pl tl dist= = (|) ()
()

P dist pl tl P pl tl
P dist
= × =

(|) ()
(|) () (|) ()

P dist pl tl P pl tl
P dist pl tl P pl tl P dist pl tl P pl tl

= × =
=

= × = + ≠ × ≠
 (1)

In the above equation, ()P pl tl= is the confidence score
that we have learned using algorithm in Table II. We can
easily calculate (|)P dist pl tl= given DN and the dist with
density estimation.

V. EXPERIMENTS
We begin by stating our experimental philosophy. To

ensure that our experiments are easily reproducible, we
have built a website which contains all the datasets and
code [46]. In addition, this webpage contains further
experiments which are omitted here for brevity.

Before listing the seven straw men that we compare to,
we note that in addition we have compared our approach
with many other widely-used rival classification
frameworks, in particular SVM, boosted decision trees and
the C4.5 decision tree [26][42][45]. The best result among
these is achieved by C4.5 decision tree; however it is still
not competitive with results produced by our algorithm
ACV. Thus for clarity and brevity we relegate these results
to our website [46]. We do not claim this as a novel
finding, the superiority of nearest neighbor methods over
eager leaning methods for time series has been noted by
many others [9][37].

We test on five datasets (plus another three we
relegated to [46]), which we believe is the largest set of
MDT datasets ever considered in a single work. In
particular, more than 90% of the papers on this problem
test on exactly one dataset [14][17][26][34] [41][44].

For the purpose of comparison, we list the seven straw
men we use. Note that each straw man has been used in at
least one recent paper. We begin by explaining ALL,
BEST, and SUB in more detail.
• For ALL, we calculate the sum of the distance2 between

query q with m dimensions and the m classifiers and
then find the one with the minimum distance as the
nearest neighbor of q.

• For BEST, at query time, we use only the one classifier
that has the best performance in the training phase [34].

• For SUB, in the training phase, we perform a heuristic
greedy search over all the classifiers until the accuracy
starts to decrease [14][20][31][40].
In addition to ALL, BEST, and SUB, there are four

other obvious rival approaches in the literature that we need
to compare:
• Minimum Distance Vote: choose the class label of the

classifier that reported the minimum distance among the
nearest distances from all the classifiers [36].

• Majority Vote: choose the most commonly predicted
class label [45]. (Technically, this is a “plurality” and
not a “majority,” but we will use the common term).

• Random Vote: at classification time, randomly choose a
classifier and take its class prediction [45].

• Weighted Vote: choose the class label with the highest
sum of the weights from the classifiers that agreed on
that class label. The weight is learned purely based on

2 We considered other variants, including summing the squared distances,

etc. Our chosen variant was empirically the best method that used all
dimensions.

the past performance of the classifiers on the training
data [45].

A. Physical Activity Data
We consider a physical activity dataset containing 36

axis synchronous measurements from three Inertial
Measurement Units (IMUs) located on the wrist, chest and
ankle. This dataset has eight subjects performing activities
such as: ironing, rope-jumping, running,
folding laundry, ascending-stairs, etc [26].
Approximately eight hours of data at 110Hz was collected.

We performed the following experimental procedure.
We randomly chose 40% of the dataset as training data, and
treat the rest as testing data. A data dictionary matrix
D_matrix that contains less than ten percent of all the
training data is learned using the framework in [15].

Note that in all of our case studies, our experiment are
subject independent evaluation, which is considered much
harder than subject dependent evaluation [23] [26][34].

As shown in Table III, our ACV approach achieved a
classification error rate of 0.05. In contrast, the original
authors of the data reported an overall classification error
rate at 0.10 [26][34]. While these two results are not
exactly commensurate, the evaluation procedure in [26][34]
would be expected to produce higher accuracy based on
their split sizes. Their method extracts signal features from
sliding windows and reports the best result after testing the
feature vectors with all the popular classification
algorithms using Weka [34].
Table III. Classification Results on the Physical Activity Data for ACV and

Seven Straw Men

Algorithms Accuracy:
Original Data

Accuracy:
Occluded Data

ALL [5][20] 0.19 0.16
BEST [23][26] 0.72 0.63

SUB [2][20][31] 0.78 0.64
Minimum NN dists[36] 0.59 0.58

Random[45] 0.51 0.47
Majority Vote [45] 0.84 0.76
Weighted Vote [45] 0.89 0.77

Adjusted Confidence Vote 0.95 0.94

 Moreover, Table III shows that the ACV method beats all
seven straw men by a significant margin.

Recall that the strongest motivation for our ideas is to
produce a framework that is robust for missing (or
“occluded”) data. Our claim is that such missing data is
very common, but researchers often “clean” datasets before
publicly releasing them. This is a noble idea, but one that
perhaps shields the community from the realities of real-
world deployments. Indeed, authors have been critiqued for
releasing less than idealized data; For example, authors in
[44] criticize the UC-Berkeley WARD Dataset [41] by
noting“part of the sensed data is missed due to battery
failure”.

While we have seen multiple real examples of occluded
data, to allow systematic testing we must synthetically
occlude data. Let us revisit this widely studied dataset [26]
as an example (Later datasets had a similar treatment.)
There are 36 data streams, arranged in 12 triplets. For
example, there are x, y, z axes for the acceleration data, and
roll, pitch, and yaw for gyroscope data. We perform our
occlusion experiments by simulating sensor failure of one
triplet at a time. For each of the three streams, in a
randomly chosen triple, we toss a fair coin to decide if we

should replace it with either a straight line or a sine wave.
We report the average performance by testing all the 12
cases. In Table III, rightmost column, we show the
classification result for these data occlusion experiments.

As we can observe, ACV also achieves the highest
accuracy for occluded data. Among the seven straw men,
the Majority Vote and Weighted Vote methods return
competitive results in using original data. However, when
it comes to data with occlusion, the performance of these
two algorithms drops precipitously. This is because data in
the testing phase is different from data used in the training
phase. While only one tenth of the data is different (by
definition), this is enough to make a drastic difference in
their performance.

In contrast, our ACV approach is relatively robust for
data with occlusion, since ACV carefully factors in the
nearest neighbor distances in the testing phase.

Given the relatively poor performance of the five straw
men on both the original and occluded data (shown in gray
in Table III), we omitted the results for these approaches in
the rest of this work. Instead, we put the results of a
complete comparison on the supporting webpage [46].

B. Avian Audio Data
Audio classification typically begins by extracting

acoustic features such as Mel-Frequency Cepstral
Coefficients (MFCCs) from audio signals [4][25]. MFCCs
represent the speech amplitude spectrum in a compact form
by transforming the audio data into thirteen coefficients3.

In most algorithms that use the MFCCs for speech
recognition, researchers either use one coefficient or use all
the coefficients [4][25][38]. As noted above, it is our claim
that both these choices may result in poor performance. To
see this, we consider two species, East Brazilian Pygmy
Owl (Glaucidium minutissimum) and Common Potoo
(Nyctibius griseus) as examples. As shown in Figure 7, it is
clear that for the Owl, the patterns (green/bold) exhibited in
the third and fourth coefficients (red) are much clearer than
the ones in the second and fifth coefficients. While for
Potoo, the patterns in the third and fourth coefficients seem
random.

Figure 7. left) A snippet of sound spectrum and MFCCs from 2 to 5 for the
East Brazilian Pygmy Owl. right) A snippet of sound spectrum and
MFCCs from 2 to 5 for the Common Potoo.

Clearly, it is not a trivial task to automatically identify
which coefficients are most useful for which species, even
for experienced avian bio-acousticians. Moreover, even
within a single species, the bird calls in the testing phase
may be subtly different from in the training phase, as the

3 Usually the top thirteen coefficients are used for audio analysis. The first

coefficient is a normalized energy parameter, which is not used for
speech recognition [25].

inevitable background noise may affect different
coefficients in different ways.

Thus, we see this domain as an ideal candidate for our
ideas and treat the twelve coefficients as an MDT.

Xeno-canto is a large data pool of bird sound files with
the aim of sharing bird sounds. Avian audio files are
uploaded by volunteers from all over the world [38]. We
randomly chose four hours of audio data from four species
of birds to perform a classification experiment. The four
species are East Brazilian Pygmy Owl, Common Potoo,
Dusky Capped Flycatcher (Myiarchus tuberculifer), and
Acadian Flycatcher (Empidonax virescens). We have
placed the original audio files and the extracted MFCCs
time series on the supporting webpage [46].

In the bird sound datasets, we do not need to explicitly
perform experiment with occlusion because of the natural
variability of the bird sounds, recorded—in some cases—
years and hundreds of miles apart [38].

Our dataset consists of approximately eighteen hundred
bird calls. We randomly chose 40% of the data as training
data and treated the rest as testing data. The classification
accuracy using our ACV approach is 0.87, while for
Majority Vote and Weighted Vote, the classification
accuracy is 0.66 and 0.79, respectively.

C. Recognition of Cricket Umpire Signals
Cricket is a very popular game in British

Commonwealth countries. An umpire signals different
events in the game to a distant scorer/book-keeper. The
signals are communicated with motions of the hands. For
example, No Ball is signaled by touching each shoulder
with the opposite hand. A complete list of signals can be
found in [24].

The dataset in [21] consists of four umpires performing
twelve signals. There are four umpires performing each
signal ten times. The data with frequency 184Hz was
collected by placing two accelerometers on the wrists of the
umpires. Each accelerometer has three synchronous
measures for three axes (x, y and z). Thus, we have a six
dimension MDT from the two accelerometers. Figure 8
shows the data for two example signals, Six and Leg
Bye. To signal Six, the umpire raises both hands above
his head. Leg Bye is signaled with a hand touching the
umpire’s raised knee three times.

Figure 8. x, y, z acceleration data from right hand (brown) and left hand
(blue) for two signals Six and Leg Bye.

We randomly chose 40% of the data as the training data
and treated the rest as testing data. The classification results
are shown in Table IV. As noted in Section V. A, since the
Majority Vote and Weighted Vote methods return the most
competitive results among the seven straw men, we only
list the results using these two straw men due to space

coef : 2

coef : 3

coef : 4

coef : 5

East Brazilian Pygmy Owl Common Potoo

Sixright hand left hand

x
y
z

x
y
z

x
y
z

Leg Bye

0 300 600 900 1200 0 300 600 900 1200

x
y

z

limitations. However, we reiterate that we have put the full
result on the supporting webpage [46].

To produce real-world occluded data, we had two
experienced officials perform the twelve cricket signals
under the same experimental conditions as in [21]. By
contriving a battery failure, we arranged that one subject
had a sensor failure on the left hand and the other subject
had a sensor failure on the right hand. We added this data
to the original data in [21].

As we can see in the result for occluded data in the
rightmost column of Table IV, our ACV approach is
significantly more robust to sensor failure than Majority
Vote or Weighted Vote. Moreover, for original data [21],
ACV once again achieves the highest accuracy.

Table IV. Classification Results on the Cricket Data

Algorithms Accuracy
Original Data

Accuracy
Occluded Data

Majority Vote [45] 0.88 0.71
Weighted Vote [45] 0.92 0.78

Adjusted Confidence Vote 0.96 0.93

D. Gesture Recognition
Almost all modern smartphones are equipped with

multiple sensors (i.e. acceleration sensors, gyroscopes, etc.).
This has inspired dozens of research efforts on creating
gesture recognizers for mobile devices [23].

The dataset provided in [23] is rapidly becoming a
benchmark in this domain. The data was created by fifteen
subjects wearing iPhones on their wrists to create six hand
gestures as shown in Figure 9. Each participant provided
each gesture fifteen times. There are six dimensions
comprised of 3-axis acceleration data and 3-axis gyroscope
data recorded at a frequency of 80Hz.

Figure 9. Visualization of the six gesture classes. This figure from [23] is
used with permission.

We randomly chose 40% of the data as the training data
and treated the rest as the testing data. Using the same
method discussed in Section V.A, we randomly choose half
of the testing subjects for the occluded data experiment.
The comparison in Table V shows that our ACV approach
obtains the highest accuracy in both cases of using the
original data and data with occlusion.

Table V. Classification Results on the Gesture Data

Algorithms Accuracy
Original Data

Accuracy
Occluded Data

Majority Vote [45] 0.86 0.67
Weighted Vote [45] 0.89 0.74

Adjusted Confidence Vote 0.97 0.93

E. Kitchen Activity Data
A recent European effort in assisting elderly people to

live more independently [33] has investigated technology
to support activities in the kitchen, including automatic
guidance while cooking and cleaning. Sensors embedded
into kitchen utensils provide continuous data streams while

being used. This provides an ideal test bed to demonstrate
our framework. The first major dataset released [11][33]
has four Wii-remote instrumented utensils to collect
acceleration data, as shown in Figure 10. Twenty subjects
performed seven hours of a recipe for a mixed salad
preparation [11]. There are eleven classes, including
peeling, slicing, scraping, chopping, etc. The
data was recorded at a frequency of 40Hz.

Figure 10. a) Modified Wii Remotes embedded in specially designed
utensils. b) A subject is preparing salad. This figure is used with
permission from [33].

Since in this dataset there are only three axes, we
cannot use the same method with occluded data. Instead,
we perform our occlusion experiments by simulating sensor
failure of one axis at a time. By randomly choosing 40%
data as training data and the rest as testing, we obtain the
classification result as shown in Table VI. Once again, our
ACV approach obtains the highest accuracy in both cases.

Table VI. Classification Results on the Kitchen Data

Algorithms Accuracy
Original Data

Accuracy
Occluded Data

Majority Vote [45] 0.74 0.54
Weighted Vote [45] 0.84 0.76

Adjusted Confidence Vote 0.92 0.88

F. Robustness to Irrelevant Features
To demonstrate the robustness of our approach, we

repeated the experiments above with an interesting
modification. We added time series with no relation to the
class into the data.

Let us consider the cricket dataset as an example.
Originally, the dataset is an MDT with six dimensions.
However, we added another six dimensions of random
walk data to the original data. To be clear, none of the
explicit algorithms “know” which, if any, dimensions are
irrelevant.

We repeated the experiment shown in Table IV with the
modified dataset. Both the Majority Vote and Weighted
Vote are quite brittle to the additional irrelevant data, as
their classification accuracies drop steeply to 0.69 and 0.78,
respectively. However, our ACV approach obtains an
accuracy of 0.95, barely affected by the irrelevant features.
This is very important advantage when exploiting new
domains in which we may have poor intuitions as to which
features are useful.

VI. CONCLUSION AND FUTURE WORK
Building on the general techniques of weighted voting

[7][45] and Bayesian classification [7], and extending the
techniques of “realistic assumptions” dictionary-based
classification [15], we have introduced a novel voting
framework for accurate classification of multi-dimensional
time series. We demonstrated on several large, real-world
datasets from diverse domains that our approach is
significantly more accurate and robust than rival

(a) Left-Right (b) Circle c) Left-Right-Arc

(d) Infinity (e) Triangle (f) Hand Rotation

(a) (b)

approaches. In particular, we have shown that our
framework is very robust to missing data and irrelevant, a
problem that frequently occurs in the real world [41]. In
future work, we plan to investigate the theoretical
foundations of our observations and implement the minor
extensions needed to support Dynamic Time Warping [37]
and Uniform Scaling [15]. Finally, we have given away all
code and data to allow others to confirm, extend and use
our work [46].

ACKNOWLEDGMENTS
We would like to acknowledge the financial support for

our research provided by NSF IIS-1161997II. We thank all
the donors of datasets. We especially thank Denisa Duma
for fruitful discussion.

REFERENCES
[1] J. Aldrich, R.A. Fisher and the making of maximum likelihood

1912-1922, Statistical Science, 12(3), 1922.
[2] P. Bartlett, Y. Freund, W. Lee and R. Schapire, Boosting the Margin:

A New Explanation for the Effective of Voting methods, The Annals
of Statistics, vol(26),1998.

[3] E. Bauer and R. Kohavi, An Empirical Comparison of Voting
Classification Algorithms: Bagging, Boosting and Variants, Journal
of Machine Learning, 1998.

[4] F. Briggs, R. Raich and X. Fern, Audio Classification of Bird
Species: a Statistical Manifold Approach, ICDM, 2009.

[5] L. Bao and S.S. Intille, Activity Recognition from User-Annotated
Acceleration Data, 2nd International Conference on Pervasive
Computing, 2004.

[6] E. Braunwald, Heart Disease: A Textbook of Cardiovascular
Medicine, Ninth Edition, 2011.

[7] C.M. Bishop, M. Svensén, Bayesian Hierarchical Mixtures of
Experts, Procs of 19th Conference on Uncertainty in Artificial
Intelligence, 2003.

[8] Y. Chen, B. Hu, E. Keogh and G. E.A.P.A Batista, DTW-D, Time
Series Semi-Supervised Learning from a Single Example, KDD,
2013

[9] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang and E. Keogh,
Querying and Mining of Time Series Data: Experimental
Comparison of Representations and Distance Measures, PVLDB
1(2): 1542-1552 , 2008.

[10] P. Domingos and M. Pazzani, Beyond Independence: Condition for
the Optimality of thhe Simple Bayesian Classifier, Machine
Learning, vol(29),p(103-137), 1997.

[11] Digital Interaction at Culture Lab,
di.ncl.ac.uk/publicweb/AmbientKitchen/, accessed on Jan 9, 2013.

[12] Electrocardiography, en.wikipedia.org/wiki/Electrocardiography
[13] Y. Freund and R. Schapire, A Short Introduction to Boosting,

Journal of Japanese Society for Artificial Intelligence, vol(14), 1999.
[14] S. Günnemann, I. Färber, K. Virochsiri, and T. Seidl, Subspace

Correlation Clustering: Finding Locally Correlated Dimensions in
Subspace Projections of the Data, KDD, 2012.

[15] B. Hu, Y. Chen and E. Keogh, Time Series Classification under
More Realistic Assumptions, SDM, 2013.

[16] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, E. Keogh,
Discovering the Intrinsic Cardinality and Dimensionality of Time
Series using MDL, ICDM, 2011

[17] Y. Hu, S. Palreddy and W. Tompkins, A Patient-Adaptable ECG
Beat Classifier using a Mixture of Experts Approach, IEEE
Transactions on Biomedical Engineering, vol(44),2007.

[18] M. Jordan and R. Jacobs, Hierarchical Mixtures of Experts and the
EM Algorithm, A.I.Memo No.1440, C.B.C.L.Memo. No.83, 1993.

[19] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei and C.A.
Ratanamahatana. The UCR Time Series Classification/Clustering
Homepage: www.cs..ucr.edu/~eamonn/time_series_data/, 2006.

[20] H. Kremer, S. Günnemann, A. Held and T. Seidl, Mining of
Temporal Coherent Subspace Clusters in Multivariate Time Series
Databases, PAKDD, 2012.

[21] M.H. Ko, G. West, S.Venkatesh and M. Kumar. Online context
recognition in multisensory system using dynamic time warping. In
Intelligent Sensors, Sensor Networks and Information Processing
Conference, 2005.

[22] J. Kolter and M. Maloof, Dynamic Weighted Majority: A New
Ensemble Method for Tracking Concept Drift, ICDM, 2003.

[23] S. Kratz and M. Rohs, A $3 Gesture Recognizer – Simple Gesture
Recognition for Devices Equipped with 3D Acceleration Sensors,
IUI, 2010.

[24] Lord’s, The Home of Cricket, www.lords.org/laws-and-spirit/laws-
of-cricket/laws/, accessed on Feb 5th, 2013.

[25] P. Mermelstein, Distance measures for speech recognition,
psychological and instrumental, Pattern Recognition and Artificial
Intelligence, 1976.

[26] PAMAP, Physical Activity Monitoring for Aging People,
www.pamap.org/demo.html, retrieved 2012-05-12

[27] J. Pärkkä, M. Ermes, P. Korpipää, J. Mäntyjärvi, J. Peltola, and I. K
Korhonen, Activity classification using realistic data from wearable
sensors, IEEE Trans. Inf. Tech. Biomed., vol. 10, pp. 119-28, 2006.

[28] R.E. Schapire, and Y. Singer, Improved Boosting Algorithms using
Confidence-rated Predictions, Journal of Machine Learning, 1999.

[29] W. Street and Y. Kim, A Streaming Ensemble Algorithm (SEA) for
Large-Scale Classification, KDD, 2001.

[30] D. Optiz and R. Maclin, Popular Ensemble Methods: An Empirical
Study, Journal of Artificial Intelligence Research, vol(11),1999.

[31] D. Optitz, Feature Selection for Ensembles, AAAI, 1999
[32] M. Radovanović,A. Nanopoulos and M. Ivanović, Time Series

Classification in Many Intrinsic Dimensions, SDM, 2010.
[33] C. Pham and P. Olivier, Slice & Dice: Recognizing Food Preparation

Activities using Embedded Accelerometers, Procs of the European
Conference on Ambient Intelligence, 2009.

[34] A. Reiss and D. Stricker, Introducing a Modular Activity Monitoring
System, 33rd IEEE EMBS，2011.

[35] C.J. van Rijsbergen, Information Retrieval, London, GV, 2nd Edition,
1979, ISBN 0-408-70929-4

[36] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos and E. Keogh,
Indexing Multi-Dimensional Time Series with Support for Multiple
Distance Measures, KDD, 2003.

[37] X. Xi, E. Keogh, C. Shelton, L. Wei and C. Ratanamahatana, Fast
Time Series Classification Using Numerosity Reduction, ICML,
2006.

[38] Xeno-canto, Sharing Bird Sounds from around the World,
www.xeno-canto.org/, accessed on Feb 6, 2013.

[39] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E.
Keogh, Experimental comparison of representation methods and
distance measures for time series data. DMKD, vol26(2), 2013.

[40] H. Yoon, K. Yang, C. Shahabi, Feature Subset Selection and Feature
Ranking for Multivariate Time Series, IEEE Trans. Knowl. Data
Eng. 17(9): 1186-1198 , 2005.

[41] A.Yang, A. Giani, R. Giannatonio, K. Gilani, Distributed Human
Action Recognition via Wearable Motion Sensor Networks, Journal
of Ambient Intelligence and Smart Environments, 2009.

[42] J.Yin and Q. Yang, Integrating Hidden Markov Models and Spectral
Analysis for Sensory Time Series Clustering, ICDM, 2005.

[43] H. Zhang, The Optimality of Naïve Bayes, AAAI, FLAIRS
Conference, 2004.

[44] M. Zhang and A.A. Sawchuk, USC-HAD: A Daily Activity Dataset
for Ubiquitous Activity Recognition Using Wearable Sensors,
UbiComp, 2012.

[45] Z. Zhou, Ensemble Methods: Foundations and Algorithm, Chapman
and Hall/CRC, 1st edition, 2012.

[46] Project webpage: sites.google.com/site/mtdtsadc/

http://www.xeno-canto.org/
https://sites.google.com/site/mtdtsadc/

	I. INTRODUCTION
	II. NOTATION AND BACKGROUND
	A. Basic Time Series Definitions
	B. Supporting Confidence-Based Classification
	C. Supporting Distance-Based Classification
	D. Allowing Real World Deployment

	III. RELATED WORK
	A. Relationship to Ensemble Methods
	B. The Adjusted Confidence vs. the Weight in Weighted Voting

	IV. ALGORITHMS
	A. Classification of Multi-Dimensional Time Series using the Adjusted Confidence Scores
	B. Learning the Confidence Score
	C. Learning the Adjusted Confidence Score

	V. EXPERIMENTS
	B. Avian Audio Data
	C. Recognition of Cricket Umpire Signals
	D. Gesture Recognition
	F. Robustness to Irrelevant Features

	VI. CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

