
Matrix Profile VI: Meaningful Multidimensional 
Motif Discovery 

 

Chin-Chia Michael Yeh, †Nickolas Kavantzas, Eamonn Keogh 
University of California, Riverside, †Oracle Corporation 

myeh003@ucr.edu, nickolas.kavantzas@oracle.com, eamonn@cs.ucr.edu 
 
 

Abstract—Time series motifs are approximately repeating 
patterns in real-valued time series data. They are useful for 
exploratory data mining and are often used as inputs for various 
time series clustering, classification, segmentation, rule discovery, 
and visualization algorithms. Since the introduction of the first 
motif discovery algorithm for univariate time series in 2002, 
multiple efforts have been made to generalize motifs to the 
multidimensional case. In this work, we show that these efforts, 
which typically attempt to find motifs on all dimensions, will not 
produce meaningful motifs except in the most contrived situations. 
We explain this finding and introduce mSTAMP, an algorithm 
that allows meaningful discovery of multidimensional motifs. 
Beyond producing objectively and subjectively meaningful results, 
our algorithm has a host of additional advantages, including being 
much faster, requiring fewer parameters and supporting 
streaming data. We demonstrate the utility of our mSTAMP-
based motif discovery framework on domains as diverse as audio 
processing, industry, and sports analytics. 
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I. INTRODUCTION 

Time series motifs are approximately repeating patterns in 
real-value data, Fig. 2 shows some examples highlighted in the 
top two time series. They are useful in exploratory data mining. 
If a time series pattern is conserved, we may assume that there 
is some high-level atomic mechanism/behavior that causes that 
pattern to be conserved. That behavior may be desirable in 
certain cases (e.g., a perfect badminton shot [22]) or undesirable 
in others (e.g., the cough of a sick pig [7]). In either case, the 
discovery of motifs is often the first step in various kinds of 
higher-level time series analytics [26].  

Since the introduction of the first motif discovery algorithm 
for univariate time series in 2002 [12], many researchers have 
generalized motifs to the multidimensional case [1][4][22][24]. 
However, almost all of these efforts attempt to find motifs on all 
dimensions. We believe that using all dimensions will generally 
not produce meaningful motifs, except in the most contrived 
situations. To see this in an intuitive setting, consider Fig. 1. 

 
Fig. 1. Two motion-capture traces [6]. While the right-hand punch is nearly 
identical in both moves, the boxer in the top trace is throwing a cross. In 
contrast, the boxer in the bottom trace is throwing a one-two combo. A video 
of these motions is available in [19]. 

If we focus solely on the boxer’s dominant hand, the two 
behaviors are almost identical. However, if we look that the full 
set of Mo-Cap markers on all of the limbs, the differences in the 
non-dominant hand and in the footwork “swamp” the similarity 
of the punch, making this repeated behavior impossible to find 
with the classic multidimensional motif discovery algorithms, 
that use all the available dimensions [1][4][22][24]. 

To see why this is, consider the multidimensional time series 
shown in Fig. 2 (we will formalize our definitions in Section III). 

 

Fig. 2. A running example of a multidimensional time series. Both of the first 
two dimensions have a motif of length 30 embedded at locations 150 and 350. 
All remaining time series (just two are shown above) are simply random walks. 

If we run the classic single dimensional motif discovery [26] 
on either of the first two dimensions, we correctly find the 
visually obvious motifs at locations 150 and 350. If we 
generalize the motif definition to Multidimensional Time Series 
data (MTS), and consider the best motif in the two dimensions 
{T1,T2}, then unsurprisingly, we still find the same best motif 
location. However, what will happen as we add in some random 
walks to the multidimensional dataset we consider? With just 
one random walk added to create a three-dimensional times 
series, we can still robustly find the correct motif locations; the 
signal of the true subset {T1,T2} is strong enough to resist the 
irrelevant information added by a single random walk. However, 
empirically averaging over 100 trials, we have found that if there 
are eight additional irrelevant dimensions, then we do about as 
well as random chance. Moreover, the above motifs make up 
about 5% of the data. However, motifs are often much rarer, 
which accelerates the rate at which increasing dimensionality 
masks motifs that exist in a subspace of the data. 

This illustrates a problem that is ubiquitous in medicine, 
science, and industry. The analyst suspects that there are motifs 
in some subset of the time series, but does not know which 
dimensions are involved, or even how many dimensions are 
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involved. Doing motif search on all dimensions is almost 
guaranteed to produce meaningless results, even if a subset of 
dimensions has clear and unambiguous motifs.  

Informally, we would like any multidimensional motif 
framework to be able to support all the following types of 
queries. Given a large k-dimensional time series: 

 Guided Search: Find the best motif on k dimensions, 
where the integer k is given by the user, but which k 
dimensions to use is unspecified. 

 Constrained Search: Find the best motif on k 
dimensions, but explicitly include (or exclude) a given 
subset of dimensions. 

 Unconstrained Search: Find the best motif on k 
dimensions, where k is not given by the user but is the 
“natural” subset of the data that has motifs.  

The first two tasks mostly reduce to questions of speed and 
scalability; the last task is subtler, requiring us rank different 
tentative solutions and return the most natural one.   

The need for such tools is based on our collaborations with 
domain experts. For example, in the oil and gas industry, a single 
distillation column typically has well over a hundred time series 
(Tags, in the parlance of the industry) monitoring various 
aspects of the system. However, motifs typically appear in just 
a handful of dimensions. As a concrete example, consider a 
known motif known to appear on distillation columns in Texas. 
Between April and September, Texas often has brief 
thunderstorms with large amounts of rain falling within short 
periods of time. This falling rain cools the distillation column, 
reducing the pressure inside, and invokes a change in flowrate, 
or some other part of the system that attempts to compensate for 
the reduced pressure. Thus the “rainstorm” motif may only show 
up on the {temp, pressure, flowrate} tags.  

Before leaving this example, it is worth noting that the 
important dimensions for the motif depend on the user-specified 
motif length. In such datasets, a motif query of one hour may 
turn up the thunderstorm example, but a motif query of length 
one day may find the motif representing a monthly 
calibration/cleaning run, which affects many more dimensions. 

II. RELATED WORK 

There is a large and growing body of work on single time 
series motif discovery [12][26][27]; however, there is much less 
work on the multidimensional case [1][18][22][24]. 

The work of Minnen et al. [18] is the closest in spirit to our 
work. Their work was the first to note the detrimental impact of 
irrelevant dimensions on multidimensional motif search, and 
they introduced a method that is shown to be somewhat robust 
for a small number of smooth, but irrelevant dimensions, or just 
one noisy irrelevant dimension. However, the algorithm 
introduced is approximate. Even in an ideal case, with just six 
dimensions, they report “with no noise, (our approach) achieves 
roughly 80% accuracy.” We want to consider much higher 
dimensionalities, with a much greater fraction of irrelevant 
dimensions, and we are unwilling to compromise accuracy. The 
work was notable at the time for being much faster than a brute-

force search, but since the advent of the Matrix Profile, that 
advantage has narrowed or disappeared [27][28].  

Tanaka et al. propose to perform multidimensional motif 
discovery by “transforming multi-dimensional time-series data 
into 1-dimensional time-series data” [22]. The idea is attractive 
for its simplicity, but it requires all (or at least most) of the 
dimensions to be relevant, as the algorithm is brittle to even a 
handful of irrelevant dimensions. Moreover, both the speed and 
accuracy of Tanaka’s algorithm depend on careful tuning of five 
parameters. 

In a series of papers, Vahdatpour and colleagues introduce 
an MTS motif discovery tool and apply it to a variety of medical 
monitoring applications [24]. Their approach is based on 
computing time series motifs for each individual dimension and 
using clustering to “stitch” together various dimensions. 
However, even when the motifs are quite obvious, the problems 
are small and simple, and at most three irrelevant dimensions are 
considered, they never achieved greater than 85% accuracy on 
the three domains in which they were tested. To be sure, this is 
much better than the 17% they achieve with the strawman of 
only considering a single dimension. But given that seven 
parameters need to be tuned to achieve this result, accuracy is 
likely to be further compromised in more challenging data sets. 

It is worth restating that the multidimensional motif 
discovery algorithms in which we are aware have the weakness 
of being approximate. For example, [1][18][22] and [24] all 
achieve scalability by searching over a reduced time 
resolution/reduced cardinality symbolic approximation of the 
original data, and [4] achieves scalability by searching over a 
piecewise linear approximation of the data. While it is known 
that such methods can produce high precision results in the 
univariate case, with carefully chosen parameters, on relatively 
smooth data, it is less clear how well they work in the more 
general case. In contrast to these approaches, our mSTAMP 
algorithm is exact; thus, we can ignore such considerations.  

To summarize, all current multidimensional motif discovery 
algorithms in the literature are slow, approximate, and brittle to 
irrelevant dimensions. In contrast, we desire an algorithm that is 
fast, exact, and robust to hundreds of irrelevant dimensions. 

A. Dismissing Apparent Solutions 

Before continuing, we will take the time to dismiss some 
apparent solutions to our problem.  

It may appear that we could use the correlation (or some 
other measure of mutual dependence) between the times series 
to guide our search for subsets of dimensions likely to yield k-
dimensional motifs. However, this is not the case. Recall {T1, 
T2} from Fig. 2. Their correlation is effectively zero (-0.0052). 
However, if we create 10 random walks of the same length, then 
on average, we expect that about 22 of the 45 pairwise 
combinations will have a higher correlation. We are interested 
in repeated local patterns; statistics about global tendencies are 
unlikely to be informative. 

III. DEFINITIONS AND NOTATION 

We begin by defining the data type of interest, time series: 



Definition 1: A time series 𝑇 ∈ ℝ  is a sequence of real-
valued numbers 𝑡 ∈ ℝ ∶ 𝑇 =  [𝑡 , 𝑡 , . . . , 𝑡 ]  where 𝑛  is the 
length of 𝑇. 

For motif discovery, we are not interested in the global 
properties of a time series, but in the local subsequences: 

Definition 2: A subsequence 𝑇 , ∈ ℝ  of a 𝑇  is a 
continuous subset of the values from 𝑇  of length 𝑚  starting 
from position 𝑖. Formally, 𝑇 ,  = [𝑡 , 𝑡 , … , 𝑡 ]. 

The particular local properties that we seek to capture are 
time series motifs: 

Definition 3: A time series motif is the most similar 
subsequence pair of a time series. Formally, 𝑇 ,  and 𝑇 , is the 
motif pair iff 𝑑𝑖𝑠𝑡 𝑇 , , 𝑇 , ≤ 𝑑𝑖𝑠𝑡 𝑇 , , 𝑇 ,  ∀ 𝑖, 𝑗 ∈
[1, 2, … , 𝑛 − 𝑚 + 1] , where 𝑎 ≠ 𝑏  and 𝑖 ≠ 𝑗 , and 𝑑𝑖𝑠𝑡  is a 
function that computes the z-normalized Euclidean distance 
between the input subsequences. 

We store the distance between a subsequence of a time series 
with all the other subsequences from the same time series in an 
ordered array called distance profile. 

Definition 4: A distance profile 𝐷 ∈ ℝ  of a time 
series 𝑇  and a subsequence 𝑇 ,  is a vector that stores 
𝑑𝑖𝑠𝑡(𝑇 , , 𝑇 , )∀ 𝑗 ∈ [1, 2, … , 𝑛 − 𝑚 + 1]. 

The distance profile can be computed efficiently by using a 
convolution-based method such as MASS [17]. 

The most efficient method of locating time series motifs 
exactly, is to compute the matrix profile [27][28]. 

Definition 5: A matrix profile 𝑃 ∈ ℝ  of a time series 
𝑇 is a meta time series that stores the z-normalized Euclidean 
distance between each subsequence and its nearest neighbor, 
where 𝑛  is the length of 𝑇 , and 𝑚  is the given subsequence 
length. The time series motif can be found by locating the two 
lowest values in 𝑃 (they will have tying values). Note that other 
definitions of motifs (range motifs, top-K motifs etc.) can also 
be extracted trivially from the matrix profile [27][28]. 

The time complexity to compute 𝑃 is 𝑂(𝑛 ) [28]. This may 
seem unscalable, but the following facts mitigate this. The time 
complexity does not depend on the length of the motifs1. In 
contrast, [1][18][22][24], all scale poorly for longer motif 
lengths. Moreover, the matrix profile can be computed with a 
variety of algorithms/computational frameworks, including 
STAMP [27], STAMPI [27], STOMP [28], and GPU-STOMP 
[28], which can exploit both the available computational 
resources and domain constraints for optimal performance. Even 
without resorting to high-performance hardware, our algorithm 
is at least two orders of magnitude faster than [1][18][22][24]. 
Fig. 3 shows the matrix profile of 𝑇 .  

 
Fig. 3. Matrix profile of 𝑇 . The two lowest points on 𝑃 correspond to the 
locations of embedded motif pair (red). 

Although the motif pair (red) is visually similar to the 
background random walk (black), the matrix profile still reveals 
the locations of the motif pair by strongly minimizing at the 
appropriate locations. 

In addition to the special case of a single dimensional time 
series, our algorithm generalizes and extends [26][28] to find 
motifs in multidimensional time series. 

Definition 6: A multidimensional time series 𝑻 ∈ ℝ ×  is a 
set of co-evolving time series 𝑇( ) ∈ ℝ : 𝑻 =

𝑇( ), 𝑇( ), … , 𝑇( )  where 𝑑 is the dimensionality of 𝑻 and 𝑛 
is the length of 𝑻. 

Similarly, the definition of a subsequence in 
multidimensional setting becomes the following: 

Definition 7: A multidimensional subsequence 𝑻𝒊,𝒎 ∈
ℝ × of a multidimensional time series 𝑻 is a set of univariant 
subsequences from 𝑻  of length 𝑚  starting from position 𝑖 . 

Formally, 𝑻𝒊,𝒎  = 𝑇 ,
( )

, 𝑇 ,
( )

, … , 𝑇 ,
( ) . 

As demonstrated in Section I, using all dimensions for motif 
discovery is generally guaranteed to fail (A similar observation, 
but for time series classification, is forcefully made in [9]). In 
general, only a subset of all dimensions should be used for 
multidimensional motif discovery. 

We refer to such subsets of subsequences subdimensional 
subsequences. 

Definition 8: A subdimensional subsequence 𝑻𝒊,𝒎(𝑋) ∈
ℝ ×  is a multidimensional subsequence for which only a 
subset of dimension is selected, where 𝑋 is an indicator vector 
that shows which dimension is included, and 𝑘 is the number of 
dimension included (i.e.,  ‖𝑋‖ = 𝑘). 

We want to compute the distance between two 
multidimensional subsequences by using only their 
corresponding subdimensional subsequences. The distance 
function that measures this relation is called k-dimensional 
distance. 

Definition 9: The k-dimensional distance function or 
𝑑𝑖𝑠𝑡( )  computes the distance between two multidimensional 
subsequences by using only the “best” 𝑘 out of 𝑑 dimensions. 

Formally, 𝑑𝑖𝑠𝑡( ) 𝑻𝒊,𝒎, 𝑻𝒋,𝒎 ≔ min 𝑑𝑖𝑠𝑡 𝑻𝒊,𝒎(𝑋), 𝑻𝒋,𝒎(𝑋) , 

where ‖𝑋‖ = 𝑘. 

The definition of a distance profile is changed slightly for the 
multidimensional setting, and it is thus renamed the k-
dimensional distance profile. 

Definition 10: A k-dimensional distance profile 𝐷 ∈
ℝ  of a time series 𝑻 and a subsequence 𝑻𝒊,𝒎 is a vector 
that stores 𝑑𝑖𝑠𝑡( ) 𝑻𝒊,𝒎, 𝑻𝒋,𝒎 ∀ 𝑗 ∈ [1, 2, … , 𝑛 − 𝑚 + 1]. 

Multidimensional motifs must also be redefined slightly to 
allow for representing within subdimensional setting. 

Definition 11: A k-dimensional motif is the most similar 
subdimensional subsequence pair of a multidimensional time 
series when the distance is computed by using the k-dimensional 
distance function. Formally, 𝑻𝒂,𝒎 and 𝑻𝒃,𝒎 is the k-dimensional 
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refer to the number of time series and to the number of data points 
in a subsequence. For clarity, we only use it in the former sense. 



motif pair iff 𝑑𝑖𝑠𝑡( ) 𝑻𝒂,𝒎, 𝑻𝒃,𝒎 ≤ 𝑑𝑖𝑠𝑡( ) 𝑻𝒊,𝒎, 𝑻𝒋,𝒎 ∀ 𝑖, 𝑗 ∈
[1, 2, … , 𝑛 − 𝑚 + 1] , where 𝑎 ≠ 𝑏 and 𝑖 ≠ 𝑗. 

To find the k-dimensional motif, we modify the matrix 
profile for the k-dimensional motif problem. 

Definition 12: A k-dimensional matrix profile 𝑃 ∈ ℝ  
of a multidimensional time series 𝑻 is a meta time series that 
stores the z-normalized Euclidean distance between each 
subsequence and its nearest neighbor (the distance is computed 
using k-dimensional distance function), where 𝑛 is the length of 
𝑻 , 𝑑  is the dimensionality of 𝑻 , 𝑘  is the given number of 
dimension, and 𝑚 is the given subsequence length. Formally, 
the 𝑖 th position in 𝑃  stores 𝑑𝑖𝑠𝑡( ) 𝑻𝒊,𝒎, 𝑻𝒋,𝒎 ∀ 𝑗 ∈
[1, 2, … , 𝑛 − 𝑚 + 1]  , where 𝑖 ≠ 𝑗 . The k-dimensional motif 
can be found by locating the two lowest values in 𝑃 (these two 
lowest values must be a tie [27]). 

Fig. 4 shows the k-dimensional matrix profile of the running 
example for all possible settings of 𝑘.  

 
Fig. 4.  top) The multidimensional time series shown in Fig. 2. Bottom) The 
multidimensional matrix profiles of various subsets of the data. Note that the 
(implanted) semantically meaningful motif can be spotted visually by 
inspecting the lowest points of the 1-dimensional or 2-dimensional matrix 
profile, but the 3-dimensional case has the motifs in an effectively random 
location. 

Note, the correct motif pair only appears in 𝑃  and 𝑃   (as the 
lowest point in the curve), since the inserted motif is 1-
dimensional and 2-dimensional motif by definition. 

A k-dimensional matrix profile only reveals the location of 
motifs in time, but it fails to reveal which 𝑘  out of the 𝑑 
dimension contains the motif pair. To store this information, we 
define another meta time series called the k-dimensional matrix 
profile subspace. 

Definition 13: A k-dimensional matrix profile subspace 𝑺 ∈
ℝ ×  is a multidimensional meta time series that stores the 
selected 𝑘 dimension for each subsequence when computing the 
distance with others. 

With these definitions formalized, we are ready to introduce 
our algorithms. Before continuing, we wish to clarify our 
claimed contributions. Our algorithm is orders of magnitude 
faster than existing works [1][18][22][24]; however, this is 
simply a property we inherit from the use of the matrix profile 

[27], which is not a claimed original contribution. Our 
contribution is in producing semantically meaningfully 
multidimensional motifs on a subset of a large MTS, which may 
comprise mostly of irrelevant and spurious data. 

IV. THE MULTIDIMENSIONAL MOTIF DISCOVERY FRAMEWORK 

The mSTAMP-based motif discovery framework is inspired 
by the idea of the multidimensional matrix profile. Similar to the 
original matrix profile [26][28], the multidimensional matrix 
profile can be computed by multiple algorithms and can be 
adopted in various time series data miming tasks with 
appropriate modification and/or postprocessing. The specific 
algorithm, modification, and postprocessing described in this 
section is just one realization for using multidimensional matrix 
profile in motif discovery. 

A. The mSTAMP Algorithm 

Our definitions allow a naïve solution. We could compute 
the matrix profile (the multidimensional variant using all 
dimensions [16]) to all 𝑑 choose 𝑘 combinations of dimensions 
and choose the best one under some ranking function. However, 
this naïve solution is only computable for trivially small datasets 
due to the combinatorial explosion inherent in this approach. 

Fortunately, the combinatorial search space can be searched 
efficiently and admissibly in a greedy fashion. Our algorithm 
can compute the k-dimensional matrix profile for every possible 
setting of 𝑘 (i.e., 1 to 𝑑) simultaneously in 𝑂(𝑑 log 𝑑 𝑛 )  time 
and 𝑂(𝑑𝑛) space. The algorithm is outlined in ALGORITHM I.  
To simplify the presentation, we omit the operations related to 
storing of the k-dimensional matrix profile subspace. Before 
explaining the algorithm, we note that the source code of 
mSTAMP in both MATLAB and Python is publicly available in 
[19] and that the correctness of the algorithm is formally 
demonstrated in Section IV.B. 

ALGORITHM I.  THE MSTAMP ALGORITHM 

Procedure mSTAMP(𝑻, 𝑚) 
Input: Inputted time series 𝑻 ∈ ℝ × , interested subsequence length 
𝑚 ∈ ℤ 
Output: A set of k-dimensional matrix profile 𝑷 ∈ ℝ ×  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

𝑷 ← size 𝑑 × 𝑛 − 𝑚 + 1 inf matrix 
𝑖𝑑𝑥𝑒𝑠 ← integers from 1 to 𝑛 − 𝑚 + 1 
for each 𝑖𝑑𝑥 in 𝑖𝑑𝑥𝑒𝑠    // random order if anytime algorithm used 
    𝑫 ← size 𝑑 × 𝑛 − 𝑚 + 1 zero matrix 
    for 𝑖 from 1 to 𝑑 
        Q ← 𝑻[𝑖, 𝑖𝑑𝑥: 𝑖𝑑𝑥 + 𝑚 − 1] 
        𝑫[𝑖, ∶] ← distanceProfile(𝑄, 𝑻[𝑖, ∶]) 
    end for 
 
    𝑫 ← columnWiseAscendingSort(𝑫) 
    𝐷′ ← length 𝑛 − 𝑚 + 1 zero array 
    for 𝑖 from 1 to 𝑑 
        𝐷′ ← 𝐷 + 𝑫[𝑖, ∶] 
        𝐷′′ ← 𝐷′ ÷ 𝑖  
        𝑷[𝑖, ∶] ← elementWiseMin(𝑷[𝑖, ∶], 𝐷′′) 
    end for 
end for 
return 𝑷 

In line 1, the memory for the k-dimensional matrix profile 
for each setting of 𝑘 is allocated and initialized as an array filled 
with infinity. For each iteration in the main loop (line 3 to line 

0 100 200 300 400 500

T 1

T 2

T 3

2-dimensional
Matrix Profile, P 2

3-dimensional 
Matrix Profile, P 3

1-dimensional
Matrix Profile, P 1



17), we select one subsequence from 𝑻 as the query for further 
processing. The subsequences are selected in a random order if 
the anytime-algorithm property is desired [28]. From line 5 to 
line 8, the dimension-wise distance profile using the query and 
𝑻 is computed and stored in matrix 𝑫. If the query is selected in 
a random order, MASS [17] is used for the distance profile 
computation; otherwise, the method proposed by Zhu et al. [28] 
is used for distance profile computation. This is because that 
method (with time complexity of 𝑂(𝑛)) is faster than MASS 
(with time complexity of 𝑂(𝑛 log 𝑛) ) but requires the 
subsequences to be selected in order (line 3), which nullifies the 
anytime-algorithm property.  Next, in line 10, a column-wise 
sort in ascending order is applied to the matrix 𝑫. Finally, from 
line 12 to line 15, each k-dimensional matrix profile is updated 
with the corresponding k-dimensional distance profile (i.e., 𝐷′′) 
if the corresponding element in 𝐷′′ is smaller. 

B. Demonstration of Correctness 

The basic strategy of mSTAMP is simple. In each iteration 
of the main loop (line 3 to line 17 in ALGORITHM I. ), the 
algorithm computes the k-dimensional distance profile for a 
given subsequence under every possible setting of 𝑘 (from 1 to 
𝑑). Therefore, it is sufficient to justify the algorithm’s overall 
correctness by demonstrating the correctness of the computed k-
dimensional distance profile.  

Given a multidimensional subsequence 𝑻𝒊,𝒎 and its parent 
time series 𝑻, the algorithm first computes the distance profiles 
for each dimension independently and stores them in matrix 𝑫 
(line 4 to line 8 in ALGORITHM I. ). In other words, the (𝑙, 𝑗) 
position of 𝑫 stores the distance between  𝑇 ,

( )  and 𝑇 ,
( ) . Note 

that each row of 𝑫  is the dimension-wise distance profile 
(Definition 4) instead of the k-dimensional distance profile 
(Definition 9). Naïvely, the k-dimensional distance profile can 
be produced by solving min‖𝑫[𝑗, 𝑋]‖𝟎 ∀ 𝑗 ∈ [1, 2, … , 𝑛 − 𝑚 +

1]  for each setting of 𝑘 , where 𝑋  is an indicator vector that 
shows which dimensions are included (‖𝑋‖ = 𝑘.) However, 
computing the k-dimensional distance by enumerating all 
possible combination would be extremely inefficient.  

Because the z-normalized Euclidean distance is non-
negative, every number in 𝑫 is non-negative. By taking this fact 
into account, the 1-dimensional distance profile is the smallest 
value in each column of 𝑫, the 2-dimensional distance profile is 
the two smallest values in each column of 𝑫, and the rest can be 
solved trivially after 𝑫  is sorted column-wise. As a result, 
applying column-wise sort (line 10 in ALGORITHM I. ) and 
column-wise cumulative sum (line 13 in ALGORITHM I. ) to 
𝑫 can produce the k-dimensional distance profile. Therefore, the 
algorithm ultimately computes the correct k-dimensional matrix 
profile. 

C. The Expressiveness of our Model  

With the correctness of the algorithm demonstrated, now we 
are ready to discuss the expressiveness of the discovered 
multidimensional motifs. It may seem counterintuitive, but as 
demonstrated in Fig. 5,  the lower dimensional motif may or may 
not be a subset of the higher dimensional motif, since the lower 

dimensional motif pair could be closer than any subset of 
dimensions in the higher dimensional motif pair. 

For clarity, here the best 3-dimensional motif pair is the 
patterns occurring at times ‘3’ and ‘4’ of all three time series, 
but the best 2-dimensional motif pair is the patterns occurring at 
times ‘1’ and ‘2’ of just B and C. 

 

Fig. 5.  When the 2-dimensional motif and 3-dimensional motif are extracted 
using the multidimensional matrix profile, the 2-dimensional motif may or may 
not be a subset of the 3-dimensional motif. In this example, the motif with lower 
dimensionality is not a subset of the higher dimensional motif. 

This property is unfortunate, since it excludes the possibility 
to use various pruning and dynamic programing techniques to 
speed up the computation. However, as we will see, it is this 
expressiveness that allows the discovery of semantically 
meaningful motifs in high-dimensional data.  

D. Constrained Search 

There are two types of constraints that are useful in 
multidimensional motif searches: exclusion and inclusion. The 
exclusion constraint “blacklists” a predetermined set of 
dimensions from the search; therefore, no motif can span the 
excluded dimensions. Conversely, the inclusion constraint 
“whitelists” a predetermined set of dimensions, and all motifs 
must span the included dimensions. The implementation of 
exclusion is simple; we simply remove the blacklisted 
dimension before calling mSTAMP. The implementation of 
inclusion is slightly more complicated, as we must move the 
distance computed by using whitelisted dimensions up to the 
front after a column wise-ascending sort has been applied (see 
line 10 in ALGORITHM I. ). 

These constraints are similar to the “must-link” and “cannot-
link” operators in constrained clustering [25]. They allow the 
user to give domain specific “hints” to the algorithm. We 
developed this tool in collaboration with Dr. John Criley (UCLA 
School of Medicine), who gave us the following example. The 
reader may not understand the intricacies of the following 
examples, but our main point is that domain experts will 
appreciate the ability to do constrained search.  

Dr. John Criley noted that a cardiologist searching a heavily 
telemetered archive of sleep studies for evidence of predictors 
of Pulsus Paradoxus might need to insist on the inclusion 
RESPIRATION, but be agnostic as to which other time series could 
be a part of a motif [8]. In contrast, a neurosurgeon searching the 
same dataset may wish to exclude explicitly one of the two 
ELECTROOCULOGRAM (EOG) time series (eye movement). 
Because the two eyes typically move in tandem, they are 
redundant, and the pairing of {EOGleft, EOGright} will tend to 
report a strong, but spurious 2-dimenional motif. 
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We envision that domain experts in other areas will be 
interested in experimenting with similar domain-based 
constraints, based on their experience and knowledge. 

E. Unconstrained Search 

It is possible that a user knows, even if only approximately, 
the “expected” dimensionality of patterns in her domain. For 
example, suppose the user wishes to find repeated saxophone 
elements in a musical performance that is represented in twelve-
dimensional Mel-frequency cepstral coefficient (MFCCs) space. 
The user can be sure that the motif will span about three 
dimensions, but which three depends on whether the instrument 
is a soprano, alto, tenor, baritone, or bass saxophone [11].  

However, it is also possible that a user exploring a dataset 
has little idea about the plausible dimensionality of the repeated 
structure in their time series; therefore, it is necessary to support 
an unconstrained search for multidimensional motif search.  

To be clear, by unconstrained search, we mean that 
mSTAMP searches the full  𝑑 dimension space and returns the 
multidimensional motif on 𝑘 dimensions, with 1 ≤ k ≤ d, and 
typically k ≪ d; where k is not a user input, but it is chosen by 
an algorithm as the “natural” dimensionality of a repeated 
structure in the data. Because the mSTAMP algorithm searches 
for motifs in all possible subsets of dimensions of a given 
multidimensional time series, the problem of an unconstrained 
search reduces to selecting the best motif of all possible k-
dimensional motifs.  

Before describing our selection method for choosing the 
“natural” motif dimensionality in a dataset, we note that since 
all k multidimensional motifs are found by the time the selection 
method is invoked by the user. If the user is not satisfied by the 
output of the selection method, finding it to be too conservative, 
or too liberal, the user can “nudge” the solution to examine the 
other possibilities without any significant (re)computational 
effort. 

Our selection method is inspired by the elbow (or knee) 
finding method [23], which is commonly used for model 
selection, for example choosing between alterative clusterings. 
We visually or algorithmically locate the inflection point when 
we plot the “score” for each k-dimensional motif. By adopting 
an elbow-finding framework, we further reduce the problem to 
which statistics about the motifs can be used as the score. We 
claim that the matrix profile value for each k-dimensional motif 
is a convenient and suitable score for this purpose.  

Let us revisit the toy example shown in Fig. 2, with the 
number of random walk time series set to four in addition to the 
two random walks that have an embedded motif. We note in 
passing that even this simple and small example is not trivial for 
humans to process. In [19], we remove the color clue that helps 
in Fig. 2 and shuffled the order of the time series. We invite the 
reader to see how difficult it is to find the correct answer by 
visual inspection. 

We locate all k-dimensional motifs by using mSTAMP and 
plot their corresponding matrix profile values in Fig. 6. The 
matrix profile value for 3-dimensional motif is noticeably 
greater than the 2-dimensional motif’s matrix profile value; 
therefore, the figure has suggested that the natural 

dimensionality is 2, coinciding with the ground truth 
dimensionality of the embedded motif. 

Beyond the visual inspection used above, there are multiple 
suggestions in the literature on how to automatically locate the 
turning point in an elbow plot [15]. We use the Minimum 
Description Length (MDL) principle [14] to determine the most 
preferable k. In essence, the MDL principle states that the model, 
that allows the observed data to be compressed the most, is likely 
to be the true model. In other words, the MDL principle has cast 
the elbow-finding problem into a maximum compression (or 
minimum model size) finding problem. 

 

Fig. 6. The matrix profile value for each k-dimensional motif. Notice how the 
value dramatically increases when k is greater than 2 (the natural dimensionality 
of the embedded motif). 

The compression (encoding) technique we consider is 
similar to the difference-encoding scheme used in [27]. We 
encode a given time series 𝑇 by storing the difference between 
𝑇  and the reference time series 𝑇 . For example, given two 
discrete time series 𝑇 and 𝑇  (with 4-bit integers): 

𝑇 = 1 2 0 12 4 5 2 1 10 15 

𝑇 = 1 2 0 11 4 5 1 0 10 15 

This would take 80 bits to store, as there are 20 4-bit integers. 
We can compute the difference 𝛥 = 𝑇 − 𝑇 : 

𝛥 = 0 0 0 1 0 0 1 1 0 0 

Since 𝛥 only contains 0s and 1s, we can use 10 1-bit integers to 
store 𝛥, and compression can be achieved by storing the same 
information indirectly with 𝑇  and 𝛥 (which requires 50 bits to 
store) instead of storing 𝑇 and 𝑇  directly. 

The MDL principle can be applied trivially in this problem. 
We compute the number of bits required to store each of the k-
dimensional motifs by compressing the subsequence pair that 
spans the motif subspace suggested by the k-dimensional matrix 
profile. Fig. 7 shows the bit information of the same k-
dimensional motifs (the motifs used to plot Fig. 6), and the 
embedded motif (i.e., 2-dimensional motif) can be identified by 
looking for the minimum point in the bit information curve. 

 

Fig. 7. The required bit value for storing each k-dimensional motif. Notice the 
2-dimensional motif required the minimal bit to store. 

In the case where multiple semantically meaningful k-
dimensional motifs are presented in the multidimensional time 
series (e.g., Fig. 5), we can just interactively apply the MDL-
based method to discover the motif. There are two steps in each 
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iteration: 1) apply the MDL-based method to find the k-
dimensional motif with the minimum bit size and 2) remove the 
found k-dimensional motif by replacing the matrix profile values 
of the found motif (and its trivial match) to infinity. If we apply 
the two steps above to the time series shown in Fig. 5, the 3-
dimensional motif would be discovered in the first iteration, and 
the 2-dimensional motif would be discovered in the second 
iteration. In terms of the terminal condition for the iterative 
method, it can be either be an input for the user or a more 
advanced technique could be applied. Due to space limitations, 
we will have to leave the discussion on termination condition to 
future works. An example of applying such iterative algorithm 
on real-world physical activity monitoring time series is shown 
in Section V.E. 

V. EXPERIMENTAL EVALUATION 

We begin by stating our experimental philosophy. We have 
designed all experiments such that they can be easily 
reproduced. To this end, we have built a webpage [19] that 
contains all datasets and code used in this work with some 
supporting videos. Our experiments are designed to show the 
following: 

 In real-world domains, the naïve approach of using all the 
dimensions to find motifs rarely produces useful information. 
In contrast, our approach allows the user to find an appropriate 
subset of the dimension to reveal latent structure in the data. 

 Our approach is versatile and works with real-world data 
from various domains without modification. 

 Our approach is scalable enough to allow us to tackle real-
world problems. 

The last point requires careful qualification. The scalability 
of our approach is something we inherit from our use of the 
Matrix Profile, which as we noted earlier, can be computed 
efficiently with a variety of computational paradigms, including 
STAMP [27], STOMP [28], and their GPU versions [28]. Thus, 
we do not take credit for the scalability of our algorithm; other 
than to note that we carefully designed it to exploit the Matrix 
Profile’s noted celerity. 

All experiments are performed on a server with Intel(R) 
Xeon(R) CPU E5-2620 v3 @ 2.40GHz, and the algorithm is 
implemented with MATLAB. However, we also have a Python 
version of our algorithm freely available in [19]. 

A. Synthetic Data 

The mSTAMP algorithm can be built on top of either the 
STAMP or STOMP algorithm; therefore, it inherits all the 
positive characteristics from its parent algorithm, including:  

 the runtime does not depend on data’s properties (noise, 
stationarity, periodicity etc.), only it length n. 

 the runtime does not depend on the subsequence length, m. 

 the algorithm is easy to parallelize. 

 the algorithm can be cast as an anytime algorithm [26].  

To empirically confirm the aforementioned characteristics, 
we have performed a scalability test.  

We begin by testing scalability of the mSTAMP algorithm 
with a randomly generated 4-dimensional time series of length 
214 with multiple subsequence lengths. The resulting runtimes 
are shown in Fig. 8. Unsurprisingly, the change of subsequence 
length does not impact the runtime, concurring with the claims 
of both STAMP [26] and STOMP [28]. 

 

Fig. 8. The runtime does not vary significantly as we change the subsequence 
length. 

 Before moving on, it is worth reminding ourselves how 
remarkable and unexpected this property is. We can perform 
motif search with complete freedom from the curse of 
dimensionality (unlike everywhere else in this paper, here the 
term dimensionality is used to denote subsequence length) that 
plagues all other approaches [1][4][12][22][24]. 

Next, we fix the subsequence length to 256 and test the 
mSTAMP on a 4-dimensional time series of increasing lengths. 
As shown in Fig. 9, the runtime grows quadratically with time 
series length, which coincides with the claimed time complexity 
of the parent algorithm, STOMP [28]. 

 

Fig. 9. The runtime increases quadratically with the length of the time series. 

 Before further mitigating this time complexity, it is worth 
noting that it may already be fast enough for most applications. 
For example, an oil distillation column may have four 
dimensions, say {TEMP, PRESS, FLOW-RATE, REFLUX-RATE} and 
be sampled once a minute.  Fig. 9 indicates that it will take about 
two hours of CPU time to find motifs in a full year of historical 
data (525,600 data points). This is almost certainly acceptable in 
this domain; given the potential cost savings an actionable motif 
could lead to.    

   Nevertheless, we can offer the user a further significant speed-
up by processing the data in an anytime fashion. Like one of its 
parent algorithm STAMP [26], mSTAMP can be trivially 
modified to be an effective anytime algorithm. Fig. 10 shows the 
convergence rate of mSTAMP on a 3-dimensional time series 
with 2-dimensional motifs embedded. The Root Mean Squared 
Error (RMSE) decreases quickly in the first few percent of 
iterations. After only 10 percent of the computations have been 
completed, the current “best-so-far” matrix profile is not only 
visually similar to the exact matrix profile (the inset images in 
Fig. 10), but the RMSE is also very low. This property is useful 
for interactive data exploration as the user can terminate the 
algorithm early when satisfied by the discovered motifs using 
the current approximate matrix profile [26]. 
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Fig. 10. Like its parent STAMP, mSTAMP converges quickly. The 
approximated multidimensional matrix profile achieves a low Root Mean 
Square Error (RMSE) when just 10% of the iteration are completed. The inset 
images are the multidimensional matrix profiles. 

    Because the input time is multidimensional, we need to test 
the scalability of mSTAMP when we vary the dimensionality of 
the input time series. Here, we fixed the time series length to 214 
and subsequence length to 256. The runtime shown in Fig. 11 
confirms our claim in Section IV.A as the runtime has a 
linearithmic relationship with the time series dimensionality. 

 

Fig. 11. The runtime increases linearithmically with the dimensionality of time 
series. 

 In addition to the runtime and anytime property, we also 
consider that the accuracy of unconstrained motif search is also 
tested. Note that the mSTAMP algorithm does compute the 
multidimensional matrix profile exactly. However, the 
unconstrained motif search could still fail to find the 
semantically correct motifs. For example, this could happen if 
the motifs are subtle and the large number of irrelevant 
dimensions happens to produce a spuriously similar pair of 
subsequences.  Thus, here we test the MDL-based heuristic’s 
ability to find an embedded 4-dimensional motif among a set of 
multidimensional random walks. Fig. 12 shows the average 
accuracy as we increase the number of irrelevant dimensions for 
both the MDL-based method and the original matrix profile by 
using all dimensions. Note the latter is an upper bound for the 
performance of all known rival methods [22] that use all 
dimensions, since they are using all dimensions, and are 
approximate.  

 The MDL-based algorithm almost always finds the correct 
embedded motif, while the all dimensions algorithm failed in 
most cases. Even if we increase the number of irrelevant 
dimensions to 64 times the number of relevant dimensions, the 
accuracy is still near perfect.  

 
Fig. 12. The accuracy of the MDL-based unconstrained motif search algorithm 
as we vary the number of irrelevant dimensions while keeping the number of 
relevant dimension (i.e., 4) fixed. The results are averaged over forty trials. The 
method is robust against irrelevant dimensions. 

    Becase the multidimensional matrix profile is already 
computed exactly for the MDL-based algorithm, a manual 
inspection of the matrix profile value curve (see Fig. 6) could 
also be performed as a safeguard measure. 

B. Motion Capture Case Study 

The creation of motion graphs is a fundamental problem in 
computer animation/gaming [10]. The task is as follows: Given 
a large corpus of motion capture data, automatically construct a 
directed graph called a motion graph that encapsulates 
connections among the database.  This allows a finite repertoire 
of motions to be synthesized into an infinite set of plausible 
motions, which can be “steerable” to some goal, or adaptive to 
changing inputs [2][10] (This video [3], which accompanies [2], 
offers a more visual and intuitive explanation of motion graphs).  

We demonstrate how mSTAMP can help the user create 
higher quality motion graphs by discovering subdimensional 
motifs, rather than being forced to consider all dimensions. We 
applied the mSTAMP algorithm to subject 13’s motion capture 
recording (where the subject performs various boxing moves for 
40 seconds) from the CMU Motion Capture Database [6]. The 
recording consists of a multidimensional time series with 38 
dimensions, each corresponding to the motion of a given joint. 

First, we visually examined the video snippet corresponding 
to the motif pair discovered by using all 38 dimensions. We 
found that the subject is performing an uppercut punch in one of 
the snippets, but the other snippet consists of blocking/dodging 
motion. In retrospect, the results shown in Fig. 12 make this 
result unsurprising. This finding offers support for our claim that 
sometimes an algorithm needs to ignore a significant fraction of 
the dimensions to discover semantically meaningful motifs in 
multidimensional time series. 

Next, we examine the video snippet corresponding to the 3-
dimensional motif discovered by mSTAMP. Here, the motif pair 
discovered consists of the subject performing a cross and a one-
two combo. Our algorithm matches a simple cross with the cross 
in a one-two combo, and the three matching dimensions are from 
joints in the right humerus (right upper arm), right radius (right 
forearm), and left femur (left upper lag). The motif discovered 
within the subspace is much more meaningful comparing to the 
motif discovering using all dimension, and allows the 
construction of a seamless motion graph after blending all other 
limbs [10]. We have plotted the motions as a sequence of stick 
figures in Fig. 13. Note how the right arm of the subject is in a 
different position in latter frames within different occurrences of 
the motif. We invite the interested reader to refer to the 
supporting website for the motif pairs shown in the form of 
video [19]. 

 
Fig. 13. (see also Fig. 1) top) The subject is throwing a cross. bottom) The 
subject is throwing a one-two combo (jab cross combo). The right arm is 
highlighted with black. Our algorithm is capable of discovering the cross in the 
one-two combo, because it explores the subspace rather than all dimensions.  
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C. Music Processing Case Study 

The original matrix profile has been shown to be useful for 
music information retrieval (MIR) [16]. To demonstrate the 
potential utility of our enhanced multidimensional variant of 
matrix profile for MIR, we have performed a simple motif 
discovery experiment on the Mel-spectrogram of the song Never 
gonna give you up by Rick Astley. The Mel-spectrogram is 
extracted with the following parameters, which are commonly 
used in MIR: 46 milliseconds short time Fourier transform 
(STFT) window, 23 milliseconds STFT hop, and 32 Mel-scale 
triangular filters. When we apply the matrix profile to music by 
using all dimensions with a five-second subsequence length, it 
is unsurprising that the motif we discovered is the chorus of the 
song [16]. The discovered motif is shown in Fig. 14. Note how 
the extracted pairs match each other in all dimensions. 

 

Fig. 14. When the motif is found using all dimensions, the chorus is discovered. 
This visualization of the data is compact and intuitive, but note that our 
algorithm is still operating on the raw time series signals.  

Next, we applied mSTAMP to discover motifs in subspaces, 
ranging from 1 dimension to 32 dimensions. We discovered that 
while most of the high dimensional motifs are parts of the 
chorus, both the 1-dimensional and 2-dimensional motif pair 
only represents the drum pattern. When we examine the exact 
subspace to which these lower dimensional motifs span, the 
motif pairs are in the space spanned by the two lowest frequency 
bands (i.e., typical frequency range for percussion), which 
confirms our intuition. Fig. 15 shows the 2-dimensional motif 
pair. Note how the lowest two frequency bands are matched, 
while the other frequency bands differ significantly. 

 

Fig. 15. When the motif is found by using only the two best dimensions, the 
repeated drum pattern in lowest two frequency bands is dissevered. The lowest 
two frequency bands are enlarged for better visibility. 

This example showcases one of the advantages of our 
method: Once the multidimensional matrix profile is computed, 
users can explore the matrix profile for different 
dimensionalities without additional computational cost. In other 
words, the users can quickly explore the motifs mined from each 
matrix profile and decide the correct number of dimensions for 

the users’ specific task at hand; whether it is audio thumbnailing 
(as in Fig. 14) or generating infinite playlists (Fig. 15) [5]. 

D. Electrical Load Measurement Case Study 

To illustrate the unconstrained search functionality of our 
motif search method, we tested our method on an electrical load 
measurement dataset [21]. The dataset consists of electrical load 
measurements for individual appliances (and an aggregated 
load) from households in United Kingdom. Five appliances are 
considered: fridge-freezer, freezer, tumble dryer, dishwasher, 
and washing machine. The data was collected from April 19, 
2014 to May 15, 2014, where the length is 17,000. The 
subsequence length was set to 4 hours. 

As shown in Section IV.E, we can determine the natural 
dimensionality of a given multidimensional time series’ motif 
by examining the matrix profile values of the k-dimensional 
motifs. Fig. 16 shows the matrix profile values for the motifs 
found in the electrical load measurement time series. According 
to the figure, it is likely that the natural dimensionality of the 
multidimensionality motif is 2. To confirm that this suggested 
dimensionality is semantically meaningful, we have examined 
the dimensions spanned by the 2-dimensional motif. The 
relevant dimensions are the electrical load measurements of 
tumble dryer and washing machine. Since both machines are 
typically used one after another in a short window of time, it is 
not surprising that the discovered 2-dimensional motif spanned 
the use of these related appliances. 

Fig. 16. The natural dimensionality of the multidimensional motif is 2 as 
suggested by this figure. The discovered motifs (inset) correspond to the 
electrical load from using a washer, followed by dryer. 

E. Physical Activity Monitoring Case Study 

Multiple types of human motion (e.g., walking, running, and 
rope jumping) can occur within a single recording session of 
physical activity, and the problem of extracting meaningful 
patterns is often formulated as a motif discovery problem 
[1][18][22]. As noted in Section IV.E, the MDL-based motif 
discovery algorithm can be applied multiple times to the 
precomputed multidimensional matrix profile to iteratively 
discover all top-K motifs (see [20] for definition of top-K motif). 
To showcase the effectiveness of the MDL-based dimension 
selection algorithm on such tasks, we consider the first subject 
(i.e., subject 101) of PAMAP2 dataset [13].  

The dataset consists of multidimensional time series 
capturing both a heart rate monitor and three inertial 
measurement units (IMUs). The three IMUs are placed on the 
subject’s wrist, chest, and ankle; each measures the temperature, 
3-d acceleration data, 3-d gyroscope, and 3-d magnetometer 
while the subject is performing various physical activities. The 
activities performed by subject 101 during the recording are: 
lying, sitting, standing, walking, running, cycling, Nordic 
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walking, ascending stairs, descending stairs, vacuum cleaning, 
ironing, and rope jumping.  

Within the list of activities, the first three activities (i.e., 
lying, sitting, and standing) are more about the subject’s passive 
posture rather than his or her action. As there are little or no 
repeated motion when the subject is not moving, the motif pairs 
that exist within these temporal regions should be less similar 
(and less meaningful) compared to the motif pairs occur during 
more dynamic activities. In other words, if our MDL-based 
method retrieves the motifs based on the similarity (i.e., from 
high similarity to low similarity), then we would expect the 
motifs from more dynamic events to rank higher than the more 
passive events. Fig. 17 shows the extracted motif pairs’ class 
(i.e., dynamic versus passive) ordered based on the order in 
which they were retrieved, and the result largely coincides with 
our speculation.  

  

Fig. 17. The MDL-based algorithm prioritizes more active and meaningful 
motifs. If we stop the retrieving process at the dashed line, the F-measure for 
the retrieval would be 0.88. 

To give a more quantitative evaluation on the motif retrieval 
result, we have computed the F-measure for each iteration (the 
MDL-based algorithm retrieves one item per iteration). The 
optimal stopping iteration is marked with dashed line in Fig. 17, 
and the corresponding F-measure is 0.88. Although the result F-
measure is impressive given such simple MDL-based method, 
we cannot know the optimal stopping iteration without 
consulting the ground truth label. The F-measure provided here 
is for gauging the potential of the mSTAMP-based motif 
discovery framework. 

VI. CONCLUSION 

We have shown that if the time series motif discovery is 
blindly applied to the multidimensional case, the results are 
likely to be unsatisfactory. To address this, we have introduced 
a mSTAMP-based multidimensional motif discovery frame 
work, that solves this problem by returning the motifs that exist 
in natural subspaces of the higher dimensional data. The 
returned motifs are actionable, and they suggest at non-obvious 
latent structures in the data. We built our system on top of the 
recently introduced Matrix Profile and inherit all of its desirable 
properties, including anytime and incremental compatibility, 
low memory footprint, and scalability to large datasets [28]. 
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