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ABSTRACT 
Rock art is an archaeological term for human-made markings on 
stone. It is believed that there are millions of petroglyphs in North 
America alone, and the study of this valued cultural resource has 
implications even beyond anthropology and history. Surprisingly, 
although image processing, information retrieval and data mining 
have had large impacts on many human endeavors, they have had 
essentially zero impact on the study of rock art. In this work we 
identify the reasons for this, and introduce a novel distance 
measure and algorithms which allow efficient and effective data 
mining of large collections of rock art.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
Mining, Image databases 

General Terms 
Algorithms, Experimentation, Measurement 

1. INTRODUCTION 
Rock art is an archaeological term for human-made markings on 
stone, including petroglyphs, carvings into stone surfaces and 
pictographs, paintings on stone. Figure 1 illustrates some 
examples of each, which hint at the extraordinary variability of 
rock art in terms of complexity.  

 
Figure 1: A random selection of petroglyphs and pictographs, hinting 
at their incredible variability, complexity and beauty   

Petroglyphs and pictographs are one of the earliest expressions of 
abstract thinking, and a true hallmark of humanity. They provide 

a rich body of information on several different dimensions, 
beyond their value as an aesthetic expression. Studies of rock art 
have implications beyond anthropology and history. For example, 
a recent study postulates the existence of a now-extinct Australian 
bat species based on extraordinarily detailed pictographs known 
to be at least 17,500 years old [19]; petroglyphs have been used in 
studies of climate change; the changing inventories of species in 
the Dampier Archipelago from the Pleistocene to the early 
Holocene period have been reconstructed partly by petroglyph 
evidence [3]. However, in spite of these successes, progress in 
petroglyph research has been frustratingly slow.    
A decade ago, Walt et al. summed up the state of petroglyph 
research by noting, “Complete-site and cross-site research thus 
remains impossible, incomplete, or impressionistic” [24]. 
Surprisingly, there has been little change in the intervening 
decade, yet in the same time frame we have seen significant 
advances in image processing and data mining. These advances 
have resulted in fielded applications in domains as diverse as 
medicine, entertainment, wildlife management, e-commerce, 
biometrics, zoology [18], etc. Nevertheless, these advances have 
had essentially zero impact on the analysis of petroglyphs and 
pictographs. 
We believe that this is because the extraordinarily diverse and 
complex structure of rock art images defies most existing image 
matching algorithms. Most approaches are simply not suitable to 
capture the similarity of petroglyphs, and those that are, even in 
limited cases, do not scale to large collections we need to 
examine. In this work we introduce a novel distance measure for 
rock art, and show that it can correctly capture the subjective (and 
where available, objective) similarity between petroglyphs. We 
show how we can use this distance measure as a basis of several 
higher-level “data-mining” algorithms, for example finding 
repeated motifs, clustering, or simply enabling query-by-content. 
The rest of the paper is organized as follows. Section 2 contains 
background information and a discussion of related work. In 
Section 3 we review the Generalized Hough Transform, and show 
how we can adapt it to produce a fast and robust distance measure 
for petroglyphs. We test our ideas with a comprehensive set of 
experiments in Section 4, before offering conclusions and 
directions for future work in Section 5.  

2. BACKGROUND AND RELATED WORK 
The earliest petroglyphs have traditionally been associated with 
the appearance of modern humans in Europe such as the famous 
example from the Lascaux Cave, France, and an early one from 
the Chauvet Cave, France which dates back to as early as 30,000 
years ago [22].  Recent work has shown that the idea of 
expressing abstract motif appears much earlier, 77,000 years ago 
in South Africa [10].  Given this long history, it is one of the most 
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valuable sources of humanity that has persisted to the present 
time. 
Beyond their value as an aesthetic expression, petroglyphs 
provide a rich source of information for researchers. Repeated 
motifs can be identified and traced through time and space, which 
in turn may shed light on the dynamic histories of human 
populations, patterns of their migrations and interactions, and 
even continuities to the present indigenous societies. However, 
the nature of petroglyphs poses an extremely difficult challenge. 
As in the case for any other artifacts of history, damages to 
petroglyphs are permanent and irreversible.  However, unlike 
other artifacts that can be preserved and protected within the 
confines of a controlled environment in a museum, petroglyphs 
are mostly left in their natural settings, exposed to elements of 
nature that will erode them inevitably with time. There is an 
urgent need to identify petroglyphs and to archive them for 
humanity. 

2.1 Background on Rock Art 
As we shall show in Section 3, our algorithm assumes the input 
images are (relatively) low-resolution bitmaps with a 1-bit color 
depth, one petroglyph per image. However, as Figure 1 illustrates, 
obtaining such images may be non-trivial. With rare exceptions, 
petroglyphs do not lend themselves to automatic extraction with 
segmentation algorithms. For example, in the two images on the 
left of Figure 1, segmentation algorithms find the “edges” due to 
cracks in the rock to be more significant that the actual edges of 
the petroglyphs. Moreover, these images were chosen for this 
example for their high contrast and clarity; most petroglyphs 
would be even more challenging. In spite of this, in the next two 
sections we show how we easily obtained tens of thousands of 
petroglyphs for this study, and how we plan to have at least one 
million examples in the very near future.  

2.1.1 Human Computation to Process Petroglyphs 
The last five years has seen a flurry of research on Human 
Computation, much of it leveraging of the pioneering work of 
Luis von Ahn at CMU [1]. The essence of human computation is 
to have computers do as much work as possible to solve a given 
problem, but to outsource certain critical steps to humans. These 
steps are ones which are difficult for computers, but simple for 
humans. One of the most famous examples is the Google Image 
Labeler, which is a program that allows the user to label random 
images to help improve the quality of Google’s image search 
results. Like many such efforts, human time is donated for free, 
because the task is embedded in a fun game, hence the recently 
coined term, Games with a Purpose, or GWAP [2]. 
In a parallel ongoing research effort, we have created a tool called 
PetroAnnotator which allows human volunteers to “help” 
computer algorithms segment and annotate petroglyphs. While the 
domain of interest does not have the broad appeal of Google 
Image Labeler, and is difficult to frame as a game, this does not 
matter. We tentatively estimate that if every grad student in 
anthropology in the US were to donate just one hour a month to 
the project, all the worlds’ rock art could be processed in just a 
few years. We leave a detailed discuss of PetroAnnotator to a 
future publication; however the interested reader can find more 
details and working code at [27].  

2.1.2 Existing Archives of Petroglyphs 
Beyond the examples captured by our human computation 
system, there are several other rich sources of rock art data to be 
mined. For example, anthropologists have been sketching 
petroglyphs for hundreds of years, and recent efforts to digitize 
historical manuscripts have made at least hundreds of books, each 
with at least a few thousand petroglyph images, freely available 
on the web. In Figure 2 we show an example from the 1888 
edition of a series of government reports [20].  

 
Figure 2: An excerpt from an 1888 government report [20]. The 
original caption is “Petroglyph in Arizona” 

Images of this type can be of particular interest because they may 
refer to petroglyphs which have long since been destroyed. 
Furthermore, although the petroglyphs in Figure 2 predate 
photography, it is important to note that because petroglyphs 
often do not reproduce well in photographs, the practice of hand 
drawing or tracing petroglyphs is still used in modern 
anthropological texts.  

2.2 Background on Image Processing 
An understanding of similarity must be at the heart of any effort 
to analyze petroglyphs and other cultural artifacts. For example, 
an image of a horseman incised on a fossilized ostrich eggshell 
fragment was recently found among eolian deposits in the Gobi 
Desert, Mongolia [14]. An obvious thing to do with such an 
image in order to place it in a cultural context is to ask if a similar 
image exists in the many petroglyphs in the region. Thus, we 
began this project with careful consideration of shape similarity.   
In soliciting  feedback and advice for early previews of this work 
from various researchers in the data mining and image processing 
community, the feedback obtained was almost always of the form 
“Very nice, but have you considered using X”, where X was 
Geometric Hashing, Hausdorff Distance, Chamfer Matching, 
Shape Contexts, Fréchet Distance, Skeleton Graphs, Zernike 
moments, Earth Movers, etc. While we have considered (and in 
some cases experimented with, see [27]) these distance measures, 
space limitations prohibit a detailed review and discussion of the 
pros and cons of each of them. Indeed, the preceding list is only a 
small subset of the hundreds of shape similarity measures in 
existence. See [23][26] and the references therein for an 
overview. However, we argue that some of the unique properties 
of petroglyphs render most of them unsuitable for the task at 
hand. Consider the following difficulties illustrated by Figure 3. 
• A single atomic petroglyph may contain several 

disconnected parts. Thus, boundary based methods [12] and 
graph based methods [4] cannot be applied, at least not 
directly (c.f. Figure 12, which shows an example of a 
problem which would defeat boundary and graph based 
methods). 

• Geometric hashing is a very useful technique for indexing 
large collections of shapes [25]. However, it is only well 



defined for machine parts and architectural drawings with 
many clearly defined right angles/intersections/circle centers, 
etc.  It has not been shown to have utility for more general 
unconstrained shapes.  

• There are many specialized distance measures which have 
been introduced for indexing music notation, Japanese kanji, 
mathematical symbols, pen-based computing, etc. At least 
some subsets of these look like at least some subsets of 
petroglyphs. However, it must be remembered that in these 
domains there are only a finite (and relatively small) number 
of possible classes, and we can at least imagine an idealized 
prototype for each class (i.e. a perfectly drawn square root 
sign). However, this is not the case for petroglyphs which do 
not generally fall into discrete classes, and cannot generally 
be seen as corrupted versions of an idealized template.  

 
Figure 3: (left) An Ibex petroglyph taken from [21] has its two rear 
hoofs fused. It is not clear if this is an artifact of scanning or the 
artist’s intent, and it does make a critical difference to graph based 
methods. (center) This bighorn sheep from a classic work [9] has a 
disconnected leg and horn, which will greatly affect its representation 
for graph based methods. (right) Two petroglyphs from Easter Island 
are clearly distinct, yet identical in graph based representations 

Instead of attempting an exhaustive discussion of why we have 
discounted existing shape distance measures, we will briefly 
review the positive reasons for why we choose the GHT measure. 
• As we shall show, on real, but unlabeled anthropological 

datasets, the GHT produced subjectively correct answers (cf. 
Section 4.1). Furthermore, on labeled datasets which are 
very similar to petroglyphs, GHT produces results which are 
competitive with state-of-the-art approaches. 

• As we will demonstrate in this work, we are able to tightly 
lower bound the GHT, allowing for very efficient searches in 
large datasets. Moreover, we show that we can make a slight 
variant of the GHT obey the triangular inequality, thus 
allowing us to use off-the-shelf data mining algorithms, for 
example to find motifs. 

• The GHT makes essentially no assumptions about the data, 
and thus is defined for open/closed boundaries, for 
connected/disconnected shapes, etc. This is important 
because, as hinted at in Figures 1, 2 and 3, petroglyphs are 
extraordinarily diverse. 

We are now in a position to give some intuition as to why we 
intend to do data mining on a relatively low resolution of the 
petroglyph images. Using our PetroAnnotator, we asked two 
individuals to trace a petroglyph of a bighorn sheep petroglyph 
found in Arizona; the resulting two skeletons are shown in Figure 
4.A. The skeletons are on a bitmap of 340 by 250. Although the 
two images are very similar, less than 3.5% of the pixels from 
each image overlap. We can contrast this with the situation after 
converting the images to a down sampled representation as shown 
in shown in Figure 4.B. Here the images are transformed to a 
mere 30 by 23 grid representation. However, of the 130 pixels 
that form each image, 75.6% of the pixels are common to both.  

 
Figure 4: A) Two overlaid skeleton traces of the same image of a 
Bighorn sheep, B) The same two images after downsampling 

In essence, the original image representation has spurious 
precision. This precision is unwarranted because there is some 
uncertainty introduced by the human element of the algorithm1. 
The quantizing produced in the downsampling step also 
introduced some uncertainty, but this is completely dwarfed by 
original uncertainty. Furthermore, as we shall see, the lower 
resolution representation has several unique advantages which we 
can leverage off. In Section 5, we provide forceful empirical 
evidence that appropriate amounts of downsampling significantly 
improve accuracy in objective tests.  

3. GENERALIZED HOUGH TRANSFORM 
We begin by reviewing the classic generalized Hough Transform 
algorithm and then introduce our modifications and extensions.  

3.1 Classic Generalized Hough Transform 
The Hough transform [11][8] is a useful method for two-
dimensional shape detection, but it is limited to analytic curves. It 
was generalized to detect arbitrary shapes in [5][15]; however, 
these works did not explicitly encode a similarity measure.   
We note that there are many variants of the Hough transform, and 
the notation in the literature is inconsistent. The particular variant 
of the algorithm we consider, and the notation we will describe it, 
is most similar to Merlin and Farber’s [15], in which shapes are 
constituted of edge points. Edge points are simply the dark pixels 
in our one-bit representation of shapes. Suppose we have a 
candidate shape C defined as: 
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and we want to find the best fit of a query shape Q defined in the 
same way as C. That is, given a reference point R in Q, to find the 
best point R’ in C, if we put C onto Q (with only translation in the 
plane is allowed) and points R and R’ coincide, then the number 
of matched edge points would be the maximal. 
For clarity, we use a very simple example to illustrate the 
algorithm.  Figure 5 shows a query shape Q and a candidate shape 
C. Note that the shapes can be disconnected, as in Q. 

 
Figure 5: Toy examples of a query Q and a candidate match C. Each 
cell is a pixel, and the dark colors denote edge points of shapes 

                                                                 
1 For those rare petroglyphs that can be processed without human intervention, there 

is uncertainty introduced by camera angle, focal length, etc.  

Q C 

A B 

Key: Black pixels are common to both. Red or blue 
pixels are in one image, but not the other 



As shown in Figure 6, the first step is to mark a reference point R 
in Q (usually the center of mass of all edge points) and rotate edge 
points of Q around R by 180° (left and center of Figure 6). We 
then draw vectors from R to each edge point (as shown in the 
right of Figure 6). These vectors form a “star-like” pattern which 
we will use to determine the best fit of Q in C.  

 
Figure 6: (left and center) The shape Q is rotated 180° around center 
of mass R. (right) four vectors of Q form a “star pattern” 

To find both the best alignment of Q to C, together with a 
numeric evaluation of their similarity, we do the following. The 
“star” vectors are superimposed on each edge point of C (as 
shown in Figure 7.left). An accumulator matrix A of the same 
dimensions as C is used to record the number of vector-ends (i.e. 
the arrowheads) that fall into each cell (Figure 7.right shows the 
final accumulator). 

 
Figure 7: Placement of vectors on each edge point of C (left) and the 
final accumulator A (right) 

The cell in  A with the maximal value is the best point R’ we want 
to find, and its value equals the maximal number of edge points 
can be matched between Q and C. This is 3 in our example. Note 
that while R is the center of mass of Q by definition, point R’ is 
not necessarily the center of mass of C. 
Based on this maximal value, we can further obtain the minimal 
unmatched edge points (MUE) of Q. This is simply the number of 
edge points in Q minus maximal matched points. This MUE can 
be used as a distance measure. In our toy example, with similar 
shapes, its value is 1. If Q were exactly the same as C, the MUE 
would be 0, meaning D(Q,C) = 0. As we shall later see, it can be 
useful to normalize and adjust this number before using it as a 
distance measure.  
For concreteness we show the algorithm to compute the minimal 
unmatched edge points in Table 1.  

Table 1: The minimal unmatched edge points (MUE) from Q to C 
Procedure [MUE] = Classic_GHT (Q, C) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

(Rx,Ry)  center of mass of Q; 
foreach edge points (x,y) in Q 
       x  2×Rx – x; Vx  x – Rx; 
       y  2×Ry – y; Vy  y – Ry; 
       add (Vx,Vy) to the set Vectors; 
endfor 
Initialize a matrix A with the same size of C to 0; 
foreach edge points (x,y) in C 
       foreach vector (Vx,Vy) in Vectors 
              A(x + Vx,y + Vy)++; 
       endfor 
endfor 
MUE  number of edge points of Q – max(A); 

If Q and C have S×S pixels, and we denote the number of edge 
points in Q and C by NQ and NC respectively, then the time 
complexity of this algorithm is O(NQ×NC + S2×logS2).  

3.2 A New Cell Incrementation Strategy 
The classic GHT algorithm can be seen as a cell value 
incrementation process of the accumulator (as reflected line 8-12 
in Table 1), and we need to wait for all of the incrementation to 
finish before we can obtain the value for any particular cell. Here 
we propose a new cell value incrementation strategy which allows 
obtaining the cell values one by one. This will allow us, for the 
first time, to use a lower bounding strategy for the GHT. 
Instead of superimposing vectors on edge points and increasing 
the value of the corresponding cell, we reverse this process by 
checking all positions that are possible to increase the value of 
one particular cell. To achieve this, we need to reverse the 
direction of vectors.  
Figure 8 shows this simple idea (using the same example as in the 
last section): first we draw vectors from R to each edge point of Q, 
but without rotating Q (on the left); if we want to calculate the 
value of a particular cell, say, the one at the third row and second 
column, we superimpose all vectors on that cell (on the right). 
Then we check every cell with a vector falling into it: if this is 
also an edge point, we increase the cell value by 1 (because it is 
guaranteed, when using classic GHT, one vector superimposed on 
this edge point would fall into the target cell). Finally, after 
checking four cells, we obtain the value 2 for this cell. 

 
Figure 8: Four vectors of Q (left) and placement of vectors on one cell 
of C (right) 

It is obvious that our new cell value incrementation strategy is 
equivalent to the classic one. However, this strategy has one 
advantage in that it allows for the implementation of the cell 
incrementation process in parallel, which avoids nesting for-loops 
in the classic GHT (line 8-12 in Table 1). In this paper, we are not 
going to discuss this. We will utilize the nice property “obtaining 
cell value one by one” as a basis to explore a lower bound of 
minimal unmatched edge points in the next two sections. 

3.3 The Intuition behind Lower Bounding  
As noted above, the time complexity of the GHT is quite high, 
and this limits its applicability for larger datasets. The classic data 
mining solution to the problem of time consuming distance 
measures is to find an efficiently computable tight lower bound to 
the distance measure, and to use this bound to cheaply prune off 
unpromising candidates [12]. 
We are now in a position to show the first known lower bound of 
the GHT-based distance. Our idea is based on extracting one-
dimensional “signatures” from the two-dimensional query and 
candidate images. While we extract signatures from both the rows 
and columns, for ease of exposition we begin by showing just the 
column signature, which we denote as SigCx. 
For a candidate shape C with m rows and n columns, we have: 
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In other words, we are simply counting all of the edge points in 
each column of C. For example, the truncated-corner square shape 
shown on the Figure 9.right has SigCx = {0,0,0,3,2,2,2,3,0,0,0} 

 
Figure 9: We can extract “signatures” from shapes by summing up the 
number of edge points in each column 

We can extract these signatures as part of the preprocessing of the 
images, and store them in an index. At query time, we can use an 
identical technique to extract a signature, SigQx, from the query 
image Q. As shown in the Figure 10.left the only difference is that 
we truncate any leading or trailing 0’s from the SigQx signature.  

 
Figure 10: (left) A query image Q has its signature SigQx extracted. 
(right) By noting how many edge points it needs C to have at each 
column, and how many edge points the column as C actually has, we 
can derive a lower bound of D(Q,C) 

As it happens, the MUE distance in this case is 4, a number we 
can compute using the algorithm in the previous section. 
However, we can compute a lower bound to this value by looking 
at just the respective signatures.  
We can obtain the intuition behind the lower bound by imagining 
that Q “wants” to match perfectly to C, with no missing edge 
points. As we place “star” vectors to one cell on the center 
column of C, if Q “wants” all vectors to fall into edge points of C, 
a necessary, but not sufficient, condition for this to happen is that 
the number of vectors falling into each column is less than or 
equal to the number of edge points in that column. This is 
equivalent to checking whether each value in a SigQx cell is less 
than or equal to the corresponding cell in SigCx (as shown in 
Figure 10). 
Referring to Figure 10, we can see that in the slot SigQx1 we need 
two edge points, and the corresponding slot in SigCxi actually has 
three. There is no penalty for SigCx having a surfeit of edge 
points. In the next slot SigQx2 we need two edge points, and the 
corresponding slot in SigCxi+1 has the two required edge points. 
However, in the slot SigQx3 we need four pixels, but the 
corresponding slot in SigCxi+1 has only two pixels. Thus, we are 
guaranteed that no matter how the pixels are arranged, this 
column will contribute at least two to the number of missed edge 
points in the accumulator. As we continue, we find that neither of 

the two remaining slots contributes to the lower bound, because in 
each case there are at least enough pixels in SigCx to satisfy 
SigQx. Thus, we can say that in this alignment, the lower bound 
LB(SigQx,SigCx[4:8]) = 2. 
Note that this lower bound is only for the particular alignment 
shown in Figure 10; if we had shifted SigQx one to the left, the 
lower bound would be 12, and if we had shifted SigQx one to the 
right, the lower bound would also be 12. If we test all alignments, 
we must choose the smallest value discovered as the true lower 
bound for the columns, which we denote as LB(SigQx,SigCx) = 2. 
Finally, as hinted at above, we can do the same thing for the rows, 
using SigQy and SigCy. The final global lower bound to D(Q,C) is 
then simply the larger of the two individual lower bounds 

3.4 A Formal Description of the Lower Bound  
We expand the intuition presented in the last section to introduce 
a formal description of the lower bound. We again begin by 
considering the lower bound for just the columns. The algorithm 
is formalized in Table 2, which takes in a query shape Q and the 
column signature of candidate shape C. As described in the 
previous section, to obtain LB(SigQx,SigCx), we need to shift 
SigQx from left to right of SigCx by aligning the center of mass of 
SigQx to each cell of SigCx (lines 5,7 and 8 of Table 2). In each 
alignment, we calculate the lower bound for each column of C. 
Note that when some cells of SigQx shift out of SigCx, the edge 
points in these cells cannot find points in C to match them and 
then all contribute to the number of missed points (line 9-10 of 
Table 2). Finally, LB(SigQx,SigCx) is the minimal value of all 
these lower bounds (reflected in line 21-23 of Table 2).   
One important optimization we use here is early abandoning. 
When calculating the lower bound for a column, if the number of 
missed points exceeds the current best (smallest) lower bound, we 
can stop calculations and shift to the next position (line 17-19 of 
Table 2). For a better pruning, we can align SigQx and SigCx by 
their centers of mass first, and then shift stepwise to two sides 
(omitted in Table 2 for brevity). 

Table 2: Algorithm to calculate the column lower bound of GHT by 
giving the query shape Q and column signature of candidate shape C 

Procedure [LBx] = LB_GHT(Q,SigCx) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

SigQx  column signature of Q;  
LBx  number of edge points in Q; 
Rx  center of mass of SigQx; 
left  Rx – 1; 
for i  1: length(SigCx) 
      missed  0; 
      for j  1: length(SigQx) 
            k  (i – left) + (j – 1); 
            if k < 1 || k > length(SigCx) 
                  missed  missed + SigQx[j]; 
            else 
                  delta  SigQx[j] – SigCx[k]; 
                  if delta > 0 
                        missed  missed + delta; 
                  endif 
            endif 
            if missed > LBx 
                  break; 
            endif 
      endfor 
      if missed < LBx 
             LBx  missed; 
      endfor 
endfor 
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To get the final lower bound, we simply run the algorithm in 
Table 2 again, this time with SigCy instead of SigCx, and with all 
column operators changed to row operations. After then 
calculating LB(SigQy,SigCy), the final lower bound LB(Q,C), is 
simply max[LB(SigQx,SigCx), LB(SigQy,SigCy)]. 
The time complexity of our lower bound algorithm is O(S2). Note 
that it is independent of the number of edge points in images. As 
we shall show in Section 4.3, similarity search using the lower 
bound achieves a one to two order of magnitude speed-up. 

3.5 Variants on the Basic Distance Measure 
While the MUE is in itself a useful distance measure, it is helpful 
to consider slight variations of it to enable higher-level data 
mining algorithms. Note that in every case, we can still use the 
lower bound technique to speed up the high-level data mining 
algorithms. Below we consider three useful variants, and in the 
next section we empirically evaluate them.   
Query-by-Content: In the simple examples we have considered 
thus far, we have implicitly assumed that the number of edge 
points in Q and C was the same. While MUE is surprisingly 
robust to small deviations from this assumption (say, less than a 
factor of two differences) it is clear that it has a bias. In particular, 
images that have relatively numerous edge points simply tend to 
be somewhat similar to everything. Since any large collection of 
images will invariably contain a few of these “rich” images, they 
can distort the results of any nearest neighbor searches. To 
mitigate this problem we define the nearest neighbor distance 
from Q to C as: 

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−

>
−

=
otherwise

CQMUEN

NNifNN
CQMUEN

CQD

Q

QCQC
Qnn

),(
1

/
),(

1

),(  

Note that we do not use MUE directly, but the inverse of “NQ – 
MUE” (i.e. maximal matched edge points). The term QC NN / is 

an explicit penalty for the problem NC >> NQ. Note that we can 
still use the lower bound of MUE to lower bound Dnn (Q,C). 
Clustering: The Dnn measure is perfect for similarity searching, 
which requires one-to-all matching. However, clustering requires 
all-to-all matching. In this case, with all things being equal, the 
Dnn measure would be biased into claiming that two images with 
many edge points are more similar than two images with few edge 
points. We can use Dclustering (Q,C) to compensate for this: 

)],(),([),( QCDCQDNNCQD nnnnCQclustering +××=  

Finding Motifs: Many data mining algorithms explicitly require a 
distance measure that obeys the triangular inequality. As a 
concrete example, we recently introduce an efficient and exact 
algorithm for finding motifs (approximately repeated patterns) 
[16], which makes no assumptions about the data or distance 
measure, other than the triangular inequality. We can modify 
MUE to obtain such a distance with: 

)),((2/)(),( CQMUENNNCQD QCQmotifs −−+=  

The proof of triangular inequality can be found at [27]. 

4. EXPERIMENTAL RESULTS  
We have designed all experiments such that they are not only 
reproducible, but easily reproducible. To this end, we have built a 
webpage [27] which contains all datasets and code used in this 
work, together with spreadsheets which contain the raw numbers 
displayed in all the figures. The webpage also contains many 
additional experiments which we did not include for brevity; 
however, we note that this paper is completely self-contained. All 
of the experiments are performed on a computer with an Intel i7-
920 processor and 6.0GB of DDR3 memory.  

4.1 Evaluation of Utility  
We begin with simple sanity checks. We took a collection of 
petroglyphs from the Southwest USA and extracted fourteen 
images that would reasonably be grouped into seven pairs. Figure 
11 shows the clustering obtained by our distance measure.  

 
Figure 11: (left) A group-average linkage hierarchical clustering of 
typical Southwestern USA petroglyphs, with the Dclustering measure. 
(right) While the dendrogram to the left shows the full resolution 
images for clarity, the images input to the distance measure have 
binarized, thinned and scaled to fit in a 30 by 30 bounding rectangle   

Not only does the measure correctly group the seven pairs, but the 
higher level structure of the dendrogram correctly groups the 
images into Bighorn Sheep/Anthropomorphs/Atlatls2. Note that 
due to the thinning preprocessing step, the measure seems 
invariant to the hollow/solid nature of the Atlatls. 

                                                                 
2 An Atlatl is a spear-throwing device. 
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In the 1920’s Dr. Stephen Chauvet noticed that many of the 
petroglyphs discovered on Easter Island showed humans in poses 
very similar to petroglyphs created by the Harappa culture (in 
what is now modern-day Pakistan). He noted these similarities in 
his 1935 text [7], which inspired a flurry of speculation about the 
origin of the Easter Island peoples3. It is natural to ask if our 
proposed distance measure could have “noticed” this similarity. 
This is a very difficult challenge for a distance measure, because 
the Harappa culture used stick-figures, whereas the Easter Island 
petroglyphs used highly stylized outlines. Nevertheless, as we can 
see in Figure 12, our method can capture the intuitive similarities.  

 
Figure 12: The GHT distance is able to find the intuitive similarity 
between pairs of anthropomorphic figures, in spite of the different 
styles of representations  

4.2 Evaluation of Accuracy 
Because there currently no large collections of objectively labeled 
petroglyphs, in this section we will test two publicly available 
datasets that are very similar to (some kinds of) petroglyphs. With 
these experiments we intend to show: 
• Competitive or superior accuracy for query-by-content 
compared to some state-of-the-art algorithms. 
• Relative insensitivity to amount of downsampling, which 
would mean our method is essentially parameter-free.  
• As claimed in Figure 4, very high resolution imagery hinders 
rather than helps accuracy.  
The first dataset is the NicIcon dataset [17], which contains 
24,441 images from the 14 categories shown in Figure 13. Thirty-
three participants were asked to sketch these icons in different 
sizes (small, medium and large) and a digital tablet was used to 
record the data (spatial, time and pressure coordinates). Note that 
counter to the original intention for the data and subsequent 
algorithms, our algorithm only considers the shape, and 
completely ignores pen speed and pressure information. 

 
Figure 13: Examples of 14 categories from NicIcon dataset 

We did both writer dependent (WD) and writer independent (WI) 
tests, in both cases, randomly choosing 60% of data as the train 
set and the rest as the test set, the same division as used the 
original paper [17].   
The original data is 234×234 pixels. To explore the sensitivity of 
our algorithm to the amount of downsampling (its only user-
specified parameter), we tested on six resolutions from 5×5 to 
                                                                 
3 DNA analyses now shows that this speculation was wrong; the Easter Island 

people are descended from Polynesians. 

50×50 for both WD and WI tests, using the simple one-nearest-
neighbor classifier. Figure 14 shows the results. 

 
Figure 14: Error rate vs. Resolution. WD and WI tests on NicIcon 
dataset in 6 resolutions. Error rate makes little difference once the 
resolution is larger than 10×10 

This plot suggests the sampling rate is not critical. The error rate 
only increased significantly when resolution was reduced to 5×5, 
which is clearly highly undersampled for any non-trivial dataset. 
We obtained the best error rate 4.78% for WD and 8.46% for WI 
with the size of 20×20 pixels. The dataset creators tested on the 
online data using three classifiers [17]: the multilayered 
perceptron, the linear multi-class SVM classifier and a Dynamic 
Time Warping Based (DTWB) algorithm.  The reported error rate 
for WD is from 1.94% to 15.61% and 5.3% to 20.01% for WI. 
Only the DTWB is better than our method, and recall that the 
DTWB had access to information about the pen speed, pen 
pressure, and the direction in which the lines were drawn, all of 
which is unknown to our algorithm. While the original authors do 
not measure time for classification, each comparison with the 
DTWB measure requires DTW calculations to be performed a 
number of times which are quadratic in the number of line strokes 
(i.e, the number of pen-ups) in each image, which is clearly very 
expensive.   
We also tested without any downsampling, and the error rate 
increased dramatically: 31.75% for WD and 35.75% for WI, even 
worse than the ultra-low resolution 5×5. This verifies our analysis 
in Section 2.2. 
Another petroglyph-like dataset is introduced by Khosravi and 
Kabir [13]. It is a very large dataset of handwritten Farsi digits 
extracted from about 11,942 registration forms. They obtained 
102,352 binary images of Farsi digits, and chose 60,000 for 
training and 20,000 for testing (see samples in Figure 15). 

 
Figure 15:  Sample digits from Farsi dataset. Note: number 2, 3 and 4 
are very similar (3 and 4 in the third row are even impossible for 
human to distinguish); some digits have different styles (4 and 6); 
some digits are in bad quality (7, 8 and 9 in the third row) 

The size of images in the Farsi dataset is smaller than in the 
NicIcon dataset: the minimum bounding rectangle (MBR) of the 
largest digits is 54×64 pixels. We tested on four downsampling 
resolutions from 5×5 to 30×30, using a one-nearest-neighbor 
classification using the same train and test data splits.  The results 
are shown in Figure 16. 
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Figure 16: Error rate vs. Resolution. One-nearest-neighbor 
classification on Farsi dataset with four resolutions. Note that the 
error rate varies little when the resolution is greater than 10×10 

We obtained the best error rate of 4.54% in the resolution of 
20×20 (the same as the best resolution for the NicIcon dataset). 
Borji et al. [6] performed extensive empirical tests on this dataset, 
testing multiple algorithms, 3-NN, ANN, SVMpolynomial, SVMlinear 
and SVMRBF, each with four parameter choices (two choices of 
filters times two numbers of orientations). Of the twenty reported 
error rates, the mean was 8.69% and only four combinations beat 
our approach with a best performance of 2.36%. However, it is 
important to note that in addition to the two explicit parameter 
choices, there are at least four other parameters set “in the 
background” here. 
Having shown that low resolution images can produce high 
accuracy in our domain, we have fixed the resolution to 30×30 
pixels in all remaining experiments in this paper.  

4.3 Evaluation of Speed and Scalability  
As noted in Section 2, while we currently have only thousands of 
petroglyphs, we expect to shortly have on the order of a million. 
Therefore, we will test our algorithm dataset containing more than 
one million objects.  To make this possible, we made our own 
synthetic petroglyphs dataset. We obtained the twenty-two 
petroglyphs (samples are shown in the top row of Figure 17). 
Then ten volunteers were asked to duplicate the petroglyphs by 
drawing them with an HP pavilion tx2510us tablet PC. A total of 
250 petroglyphs were created in this way as our basic dataset 
(samples are shown in the second row of Figure 17). We then 
applied a random second-order Polynomial Transformation to 
each image in the basic dataset to make [39 79 159 319 639 1,279 
2,559 5,119] distorted copies of each (as shown in the third row of 
Figure 17). With this basic dataset, we finally created eight 
datasets from size 10,000 to 1,280,000. 

 
Figure 17: The Synthetic Petroglyphs Dataset. first row: samples of 
petroglyphs templates; second row: sample petroglyphs of the basic 
“human-copied” dataset; third row: samples of distorted petroglyphs. 
Note for each template, we have copies in different scales, 
translations, orientations and non-linear distortions 

We first did a leave-one-out one-nearest-neighbor test. For each 
dataset, we randomly picked an image as the testing sample, 
removed it from the dataset and found its nearest neighbor using 
our lower bound based algorithm. We repeated this process ten 
times; Figure 18 shows the result. 

 
Figure 18: Time taken for the 1-NN query on eight synthetic 
petroglyphs datasets. For each dataset, maximal, average and minimal 
time of 10 runs are reported. Note log scale is used in x axis 

We can see that the range between the maximal and minimal time 
is relatively small. When viewed on a normal scale plot (see [27]), 
we can see that the average running time is linear to the size of 
the dataset. While this is a test of scalability, we note in passing 
that the accuracy of this 22-class problem is 100% for all 
experiments. 
It is natural to ask how much of the effectiveness of the search 
can be attributed to our lower bound. We measured the pruning 
rate: 

searchforcebrutenscalculatioGHTofnumber
searchboundlowernscalculatioGHTofnumberratepruning ,

,1−=  

for each of the 10 runs; the result is shown in Figure 19. 

 
Figure 19: Pruning rate of our lower bound algorithm on eight 
synthetic petroglyphs datasets. For each dataset, maximal, average 
and minimal rates are reported. Note log scale is used in x axis 

The results show that the pruning is extremely effective, 
particularly for larger datasets. The average prune rate exceeds 
99.0% when examining 80,000 objects, and even the minimal 
prune rate is more than 96.9% at that point.  
We also did a similar experiment with the brute force algorithm. 
Figure 20 compares the percentage of execution time for our 
lower bound algorithm relative to the brute force algorithm. 
Notice that for the largest dataset, our lower bound time is only 
2% of the brute force one. 

 
Figure 20: Percentage of execution time for our lower bound 
algorithm relative to the brute force algorithm. Note log scale is used 
in x axes 

In addition to query-by-content, we also tested our ability to find 
motifs in these datasets. We can use the Dmotifs distance measure 
combined with the algorithm recently published in [16] to 
efficiently find a pair of images whose distance is the smallest in 
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a given dataset. Figure 21 shows the running time of finding 
motifs in our synthetic petroglyphs datasets. 

 
Figure 21: Time of finding motifs in eight synthetic petroglyphs 
datasets. Note log-log scale  

A brute force algorithm to find motifs requires time quadratic in 
the size of dataset. But from a normal scale plot (see [27]), we 
find that our algorithm scales linearly. This is because we only 
need to calculate a tiny fraction of the exact distance between two 
images: even for the smallest dataset with 10,000 objects, we can 
prune 99.84% of the calculations, and by the time we are 
considering 1,280,000 images we are pruning more than 99.99% 
of the calculations. In Figure 22 we show the explicit speed-up 
over the brute force search. Even for the smallest dataset, our 
algorithm is 712 times faster and by the time we see the largest 
dataset, our algorithm is more than 100,000 times faster. 

 
Figure 22: Speed-up of our lower bound algorithm against brute force 
algorithm of finding motifs in increasingly large petroglyphs datasets. 
For the brute force algorithm, we only ran it on the 10,000 datasets 
and extrapolated other values. Note log scale is used in x axis 

While these results show that we can make the otherwise 
intractable task of finding motifs in large datasets tenable, it does 
not consider the effectiveness. Normally motif discovery cannot 
be evaluated directly in terms of accuracy, since we assume 
unlabeled data. However, since we actually know the labels in 
this case, we can measure the accuracy. For example when testing 
the dataset with 80,000 petroglyphs images (from 22 classes) over 
100 runs on random sets of 80,000 objects (taken from a pool of 
1280K) , we found that on 99 occasions the labels agreed.  

5. CONCLUSIONS AND FUTURE WORK  
In this work we consider, for the first time, the problem of mining 
large collections of rock art. We introduced an explicit framing of 
the GHT algorithm as a similarity measure, and showed that by 
lower bounding the measure we can effectively mine large data 
archives. Future work includes achieving rotation invariance and 
supporting partial shape matching.     
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