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- Reconvene

A In the first half, we have seen many wonderful things you
can do with the Matrix Profile, without explaining how to

compute it!

'l Aln this half, we will describe algorithms to compute matrix
. profile, optimization techniques for scalability, portability

| to modern hardware, approximation to gain speed, and
extension to special cases.

A We embed MATLAB scripts in slides that can reproduce
. charts and numbers, and explain algorithms.

l, A Slides are text heavy to facilitate offline readers. In the
;,? presentation, focus is on figures.
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Act 2

A Background on time series mining
A Similarity Measures
A Normalization

A Distance Profile
A Brute Force Approach
A Justin-time Normalization
A The MASS Algorithm
A Extensions of MASS

A Matrix Profile
A STAMP
A STOMP
A GPUSTOMP
A SCRIMP

A Open problems to solve



What are Time Series? 1 of 2

A time series Is a collection of observations made sequentially in time.
More than most types of data, time series lend themselvest@aA y & LISOU A 2 YV

For example, looking at the numbers in this
bluevector tells us nothing.

But afterplottingthe data, we can

recognize a heartbeat, and possibly even
diagnose this person's disease.

When the observations are uniformly
sampled, the index of observation can
replace the time of observation. In the rest
of the tutorial, we assume time series are
vectors.

The observations may have a unit.
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What are Time Series? 2 of 2
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Many types of data that are ntie time series can be fruitfully transformed into time

series, including DNA, speetdxtures, core samples, ASCII taxtorical handwriting,
novels and eveshapes

Mantled Howler Monkey

Alouatta palliata




Similarity Measures for Time Series

AA similarity measure compares two time series and produces a number
representing their similarity

AA distance measure is the opposite of similarity measure

AEuclidean Distance
A Correlation Coefficient
ACosine Similarity

A Dynamic Time Warping
A Edit Distance
A Longest Common Subsequence



Euclidean Distance Metric

Given two time series

X = % XX, |
y= ylxyn v "
their zNormalized Euclidean distance is defined as:
o o y

W Q)

function y= zNorm(x) i

y=(x -mean(x))/ std (x,1); !

Gf) o O h
\

function d = EuclideanDistance (Xy )
d = sqgrt (sum( (x-y) ~2) ),
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AGiven two time series and « of lengthd .

A Correlation Coefficient:
v, v Ow ‘ Ow B ww af
wWE (ohn) ,

1 1 a 1 7

B

AWhere:
A Sufficient Statistics:

and,

B ww B w B w B w B w

The sufficient statistics can be calculated in one linear scan. Given the sufficient
statistics, correlation coefficient is a constant operation. Note the use of the dot
product, which is the key component of many lockstep measures.



Relationship with Euclidean Distance

Correlation

Qehe) Jcbd p wE iehn 1

A Correlation coefficient does not obey
triangular inequality, while Euclidean i
distance does
A Maximizing correlation coefficient can be ..
achieved by minimizing normalized T
Euclidean distance and vice versa a4 w e o i el
A Correlation coefficient is bounded between \
-1 and 1, while-normalized Euclidean 20 for m = 100

distance Is bounded between zero and a
positive number dependent om

Q (o) JG ap wé ieln

Abdullah Mueen, Suman NathieLiu: Fast approximate correlation for massive tisggies data. SIGMOD Conference 2010192



Working Formula

B ww a
d” 1

Qeht)  [ca p
\

AWe will use the above-Mormalized Euclidean distance as the
similarity measure for the rest of the presentation

AWe claim calculating Matrix Profile for Correlation Coefficient and
Cosine Similarity is trivial given an algorithm fdfa@malized
Euclidean distance




The Importance of-kKlormalization and correlatiars 2

~ BIDMC Congestive Heart
1T Failure Databasehf11

i

BIDMC Congestive Heart
3 9 1000

Failure Databasehf10

Extracted
beats )

0 150 300

Essentially all datasets must hasvery
subsequence-normalized.

There are a handful of occasions where
it does not make sense terormalize,
but in those cases, similarity search
does not make sense either.

In this example, we begin by extracting
heartbeats from two unrelated people.

Even without normalization, it happens
that both sets have almost the same
mean and standard deviation. Given
that, do we need to bother to normalize
them? (next slide)



~ BIDMC Congestive Heart
Failure Databasehfl1

i

BIDMC Congestive Heart
0 1000

Failure Databasehf10

Extracted [
beats m) |

Surprisingly -normalizing can be a
computational bottleneck, but later we will
show you how to fix that.

The Importance of-kKlormalization and correlatiars 2

the results are
verypoor, some blue heartbeats are
closer to red heartbeats than there are
to another blue beat .

the results are

perfect.
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In this example, we extracted heartbeats from
two different time series, and clustered them
with and without normalization.
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A Distance Profile
A Brute Force Approach
A Justin-time Normalization
A The MASS Algorithm
A Extensions of MASS

A Matrix Profile
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A STOMP
A GPUSTOMP
A SCRIMP

A Open problems to solve



Distance Profile

Sliding Window

~ ~

7 7

Compute the mormalized Euclidean distance betwe@uneryand each window (subsequence) in the time series.
We would obtain a vector like this:

d, | d, X d

d. is thedistance between thé&" subsequence and the query.

_— D

n-m+1

Recallnis the length of the blue time series
andmis the length of the query



The Brute Force Algorithm Almost an hour

Ne--,
AScan the time series with a sliding window  ° )
AZ-Normalize the window 2 |
. . . (7))
ACalculate Euclidean distance between wmdog/
and the query S 2
D
d(1:n) = 0; 0 2°
Q = zNorm(query);
for i=1n -m+l 24 7
d(i) = sgrt(sum((zNorm( T@:i+m  -1)) - Q."2);
end -8 .
10° 106 107 108
n

AHow long does this algorithm take?

AThe time complexity i8§ £ & in the average and worst cases. More precisely the
window Is scanned two times in each iteration of this algorithm. One scan is for z
normalization, and the other scan is for distance calculation.

ANote that we cannot use any early abandoning or pruning as we need all the distat



Justin-time Normalizationz of 3)

ACan we skip therzormalization scan in each Working Formula
iteration?
AYes, if we have the means, standard deviationg,, ch ) B 06 4
and the dot product to calculate the distances. a, .
Az-normalized sequence has 3
zero mean and one standard
deviation. o) ch 5 @0

Al SG Q& lisdha amfrealized query, anchis
the time seriesT), therefore, mtand, D

ThanawirRakthanmanonet al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2022: 262



Justin-time Normalizationg of 3)

ACan we skip thezormalization scan in each iteration? 5 B oo
. : : : . Yehu a
AThe standard deviations of moving windows of a fixed size e S
can be calculated in one linear scan.
Alrtl one pass, calculate cumulative sumsvaind s and 5 Bo 6 B
store
Y o6

A Subtract two cumulative sums to obtain the sum over ¥ © 0

any window ~
AUse the sums to calculate the standard deviations of all - Jd— <ul>
windows In linear time

Aln 2016, MATLAB has introduced a functioaystd , that
does the above

ThanawirRakthanmanonet al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2022: 262



Justin-time Normalizations of 3

212

ACan we skip therzormalization scan in each |

iteration? 8

d(1:n) = 0; S 2t

Q = zNorm(query); 8

S= movstd (T,[0m - 1]); ) 20 |

for 1=1.n -m+l

d(i) = sgrt(2*(m -sum(T(:i+m - 1).*Q)/S(1))); o4
end
. TR y -8 ' ' ' ' '

AStill the worst and average cosbis @, ° 105 106 107 10°

however, the window is scanned only once N

per iteration for the dot product.

ASpeedup is more than 2X, due to removal of
function calls

ThanawirRakthanmanonet al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2022: 262



a dzS SAfgQrihm for Similarity Search (1 of 9)

ACan we improve the jusit-time Normalization algorithm?

AMASS uses a convolution based method to calculate sliding dot prodii€tslin €3 in
addition to justin-time znormalization technique

A Convolutionif x andy are vectors of polynomial coefficients, convolving them is equivale
to multiplying the two polynomials

AWe use convolution to compute all of the sliding dot products between the query and
sliding windows.

X, Xy X3 Xg Y1 Y2 Input
Time Series Reversed and Padded Query
Xy Xy X3 X4 Y2¥1 0 0

Convolution \

X X X X
/ L

YoX1 YXotY1Xy YoXgtYiXo YoX4tY X3 Y%, O O Output



a dzS SAfgQrihm for Similarity Search (2 of 9)

MASS <

d(1:n) =0, The loop has been replaced
Q= zNorm(query); by the following three lines.
Stdv = movstd (T,[O0m -1)); ) - 0s
Q=Q(end: -1:1); %Reverse the query — 5 = moverd (1, 10 me11)
Q(m+1:n) = O; %pad Z€Eros o ;dz(i)l:z_rsn;t(2*(m—sum(T(i:i+m-1) L*0)/S(1)));
dots = conv(T,Q); end
dist = 2*(m - (dots(m:n))./Stdv)); G\ /@ C1OrizEAWOrking formula
dist = sgrt (dist );
\ 212
AComputational cost)) (£ | TEQ, y
does not depend on the query 2
length ¢ ), thus, free of curse of g
dimensionality. 8
AThere is no loop. Only known )
mathematical and buiin MATLAB ?
functions are used. 28
10° 106 107 108

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html N



a dzS SAfgQrihm for Similarity Search (3 of 9)

ACan we improve MASS 1.0?

ANote that convolution doubles the size of the input vectors in the output.

AMASS uses only half of the output of convolution and throws away the remaining half.
Al Ly ¢S 02YLMziS 2dzad 0KS ySOSaal NE KIFfT
A Convolution in time domain is multiplication in frequency domain.

Aconv(x,y) = ifft ( fit ( double&pad (x)). fft (double&pad (y))

Double and Pa@ Double and Pad
X1X2X3X4OOOO yZYlOOOOOO

X=FFT(w Y=FFT(w
Xy Ko Xg Xy XXy X X Y Yo XYYy, v Yy

‘ >< X X X >< ‘ XY Complex

Conjugates

Y X1 YoXo YaXg YXy4 YeXg VXS YoXs Yr/X,)
Ifft (X.Y)
YoX1 YoXotYiXy YoXatYiXo YoXatYXg YiX, O O



a dzS SAfgQrihm for Similarity Search (4 of 9)

ACan we improve MASS 1.0?
Alf we do not double x and y, we obtain a half convolution

Ahalf conv(  xy )= ifft ( fft(x) . ft (y))
Double and Pad Double and Pad %) U
X1 X X3 X, 0 0 0 O YY1 00 00 0O Xy X2 X3 X4 YY1 0 0
X=FFT(c) Y=FFT(0) X=FFT(w) Y=FFT(
Xy Xy Xa Xy XeXy X X' Yy Yo YaYa Yy, vs Yy X1 Xy X3X, Y1 Y5 Y3Y,
Complex XY
XY Conjugates Y. X Y. X L .
lel Y2X2 Y3X3 Y4X4 Y5X5 Y Xy Y3X5 YX) 1M1 -2 2 Y3 X3 Yy X;
ifft (X.Y) Ifft (X.Y)
YoX1 YoXotYiXy YoXgtYiXo YoXatY X YiX O 0 YoXq1 YoXotY X1 YoX3tY1Xo YoXa1Y X3
conv( x,y )= ifft ( fft ( double&pad (x)). half conv( Xy )= ifft (it (X) . ()

fft (double&pad (y))



a dzS SAfgQrihm for Similarity Search (5 of 9)

ACan we improve MASS 1.0?

AHalf convolution adds a constraiait, —. The constraint is not limiting because the origin
assumptionis | a.

X1 Xz X3 X4 Y1 Yo X1 Xz X3 X4 Y1 Yo
_ _ _ _ Reversed and
Time Series Reversed and Padded Query Time Series Padded Query
Xy Xo X3 %y YY1 00 Xy Xo X3 %y YY1 00
X X X 0 1 oMyl X X
YoXq YoXotY1Xy YoXgtYiXo YoXatYiXs YiXs O O YoX1 YoXotY X1 YoXatY1Xo YoX4tY X3
conv( x,y )= ifft ( fft ( double&pad (x)). half conv(  xy )= ifft ( ft(x). ft(y))

fft (double&pad (y))



a dzS SAfg@r&hm for Similarity Search

-
d(1:n) =0;
Q = zNorm(query);
Stdv = movstd (T,[0m - 1]);

MASS Q=Q(end: -1:1); %Reverse the query
2.0 Q(m+1:n) = 0; %pad zeros
dots = ifft  ( fft(T).* fit (Q)): Theconv(T,Q)

dist = 2*(m - (dots(m:n))./Stdv));

dist = sgrt (dist );
- qrt (dist ) .

AComputational cost is still(¢ | T£Q;,
does not depend on the gquery length %

28

(), thus, free of curse of dimensionality.S 52|
Afast Fourier transfornff) is used as a g 2 |

subroutine

24§

2-8

has been

replaced, no doubling of sizes

(6 of 9)

10°

106

107

108



a dzS SAfgQrihm for Similarity Search (7 of 9)

ACan we improve MASS 2.0?
AThis idea is a rediscovery of a known resDiterlapadd, Overlapsavel[a]

Alnstead of processing allsamples at once, we can (carefully) process tipégcewise,
where sizes of the pieces are powers of two.

AThe pieces must overlap exactlylrsamples to preserve continuity of the distance profil
AThe last piece can be of size that is not a power of two.

«—K-m+1—
0.2 ——
P K R 0.18 n = 1,000,000
Y " m =100
- . 'g 0.16}
! ',,m_ | l< D 0.14f
7))
0.12 Hardware
__— dependent

v minima

01 i //— \‘
0.08 L
\ 210 211 212 213 214 215 216 217 218

[a] https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method Size (K) \
[b] https://users.ece.cmu.edu/~franzf/papers/gttse07.pdf 65 , 536




a dzS SAfgQrihm for Similarity Search (8 of 9)

212

28 |

24 T

Seconds

20t

24 |

2-8
10° 106 107 108



a dzS SAfgQrihm for Similarity Search (9 of 9)

212

Design a new application specific processor to do
FFT efficiently [a][b].

Keep the general processor and optimize DRAM to 28
compute FFT efficiently [c].

Keep a commodity box, add a GPU to do FFT
efficiently [d].

Keep a commodity box, add an FPGA to do FFT
efficiently [e].

Take a commodity box, and use sparse FFT [f].

24

20

T T o T o
Seconds

[a] The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA ImplemenGeange Slade. 2'4
[b] Appendix C: Efficient Hardware Implementations of FFT EngilNesserbakhMitra (Ed. Bingham, John

A. C.) ADSL, VDSL, and Multicarrier Modulation, John Wiley & Sons, Inc. 2001

[c] B. A k eRaFranchettand J. C. Hoe, "Understanding the design space of Diepfiinized hardware FFT
accelerators,2014 IEEE 25th International Conference on Applicai®pecific Systems, Architectures and 2-8
ProcessorsZurich, 2014, pp. 24855.

[d] Naga K.Govindarajy Brandon Lloyd, YurDotsenko Burton Smith, and Johvanferdelli 2008. High 105 106 107 108
performance discrete Fourier transforms on graphics processBredeedings of the 2008 ACM/IEEE n

conference on Supercomputi{®C '08).

[e] Ren Chenshreyads. Singapura, and Viktor KRrasanna2017. Optimal dynamic data layouts for 2D FFT
on 3D memory integrated FPGA.Supercompu®3, 2 (February 2017), 65363.

[f] HaithamHassaniehPiotrindyk, DinaKatabi and Eric Price. 2012. Simple and practical algorithm for
sparse Fourier transform. Rroceedings of the twentlird annual ACMSIAM symposium on Discrete
algorithms(SODA '12). 11831194.



Numerical Errors in MASS

A Three possible sources of numerical errors in MASS
A Convolution

A Numerical error in Convolution can appear if n is d(l:n) =0;
very large, MASS 3.0 reduces such error by dividing Q = zNorm (query);
the computation in batches Stdv. = movstd (T,[0m - 1]);

A Division by the standard deviation
A If a subsequence is constant, the standard deviation Q = Q(end: B 1:1);
IS zero, causing divide by zero errors. MASS reduces Q(m+1:n) =0;

such error by checking the standard deviations — - * :
ahead of the division. d.OtS_ . it (1I(T). _ it (Q)); _
A Square root of the distances dist = 2 (m B (dOtS(m-n))- /Stdv ))’
A Theoretically it is not possible to have negative dist = sqrt (dist );

squared distance. However, for exact matches, the
squared distance can be a very small negative
number €1.09e15), resulting imaginary numbers in
the output.



Act 2

A Extensions of MASS¢mmm Rest Zone

A Matrix Profile
A STAMP
A STOMP
A GPUSTOMP
A SCRIMP

A Open problems to solve



MASS Extensions: Approximate Distance Profile

ACan we trade speed with accuracy in MASS?

AWe use piecewise aggregate approximation (PAA) to reduce
dimensionality of both T and Q

Asqrt(w)* MASS(PAA(

-

.

(0 ()

T,w),PAA( Q,w),m/w)

PAA

c,{ /I

0 dahy

V

Approximate distance profile in Rel

Selina Chugamonnl. KeoghDavid M. HartMichael J. Pazzani: Iterative Deepening Dynamic Time Warping for Time 82ke2002: 19212



Given two time series
X = X,€ X,
and

y=Yy.€Y,

their zNormalized weighted Euclidean distance is defined as:

(b 4

(&

Q (G l; W W

A0 a
Al 0 1
ABy 1
Q () 0 W



MASS Extensions: Weighted Query

AWorking formula that we have been using so far, will not work anymore.
AThe new working formula is below.
AWe needthree sliding dot productinstead ofonein regular MASS

W

Q () L W 0 (e

Lw ¢ LW QLww ‘U ¢ Lw L

%H%H

Terms withx need Terms withoutx
sliding dot products are precomputed



MASS Extensions: Weighted Query Example

10

5 l

0
2.65 2.7 2.75 2.8 2.85 29 2.95 3 3.05

Hot Water Usage of a House in Minutes "

Regular Matches |
Wash Cycles /:nse CyCI; \\\\ / / / / / \\z\i
5 10 15 20 25 30 35 ' ' 10 15 ' ' '

i i N |
40 45 0 5 20 25 30 35

Washer

\ / Weight Vector

Additional Cycles

| Extended
Wash Cycles




MASS Extensions: Query with Gap(s)

query

We may wish to consider a more general type of \
guery. Queries with gaps, as in tipeirple example.

| want the first third to slope down, and the last

third to slope up with the plateau at the end. /
| 26 SOSNE L R2y Qi OF NB 4Kl 0 (32 é\)\y U K'S

Either of the two red patterns would be acceptable
matches.

parts donot matter, and we should be invariant to
them. In other words, the exact slope does not \
matter in the above query statement.

Note that the relative offset and scaling of the two /

0 100 200 300



MASS Extensions: Query with Gap(s)

/ A \
L
J l/
1. Measure the distance between beginning of the two patterns, call it ql% AUEeub2
2. | 2Y LJdZCI S X 0 | 00 200 300
Dist_profilel = MASS(T, query,py);
Dist_profile2 = MSAS(T, query.yo;
3. Pad theendof Dist_profilel and thebeginningof
Dist_profile2 with a vector ofLinfinities to add a lag df

4. Createbist_profile3 = Dist_profilel + Dist_profile2

5. We can now us®ist_profile3 to find the nearest neighbor(s)
as before.



MASS Extensions: Query with Gap(s)

50 I
0 Random walk N
-50 —
-100—
15 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Padded by infsor NaNs—x
20 L
Dist_profilel = MASS(tag, query.,,y; WW ”
10 —
Sllde by L Sloti 00 2oroo 40E:)o eoroo soroo 9116 10800 ;
ZQ:—‘\ [ [
Dist_profile2 = MASS(tag, query. 1); o I
0 1336 ¢ i [ ! :
0o 2000 4000 6000 8000 10000
40h[ T T
Dist_profile3 = Dist_profilel + Dist_profile2 a i
o <L [ [ [ [ [
0o 2000 4000 6000 8000 10000

Note that for the best match, each part
of the query scaled differently.

For the image to the right, | fixed the
left side and scaled the right side (to
give context), but both sides needed
rescaling somewhat

10000

12000

12000

querysubl

Min value is at 1536

0 100 200 300

| q uJe rysub2

12000



Outline
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A Matrix Profile
A STAMP
A STOMP
A GPUSTOMP
A SCRIMP

A Open problems to solve



Matrix Profile from Distance Profiles

Query,the 15t subsequence in the time series

~
7

~
7

Obtain the znormalized Euclidean distance betwe@neryand each window
(subsequence) in the time series. We would obtain a vector like this:

dys(=0) dy, X dyomez1| —— Dy

d;is thedistance between thé" subsequence and thi subsequence.

We can obtairD,, D,> X, &milarly.



Matrix Profile from Distance Profiles

d, d X X X di nmea D,

d d; X X X s me1 D,

X X X X X X

di di> X d;; | X i neme1 D

X X X X X [TX—
Oymez1 | Onmes,2 X X X Onmesnmed Prme

Min(D) | Min(D,) Min(D) Min(D,.40)
v v v v
P, P, X X Pt

Matrix Profile: a vector of distance between each

subsequence and its nearest neighbor

The distance matrix is symmetric
The diagonal is zero
Cells close to the diagonal are very small

—— dis the distance between thé& window and

the j" window of the time series



STMP: Scalable Time Series Matrix Profile Algor

dll d1,2 X X X d1,n—m+1 Dl
d dy X X X Oz pme D, MP(1:n - m+1) = inf;
X X X X X X fOI’ | =1:n -m+1 N
d = MASS(T, T(i:i+m -1));
ith d , d X di X dnme1 |p MP = min([MP ; d));
! end
X X X X X X
q dn-m+1,1 dn-m+1,2 X X X dn-m+1,nm+]Dn-m+1
Min(D,) Min(D,) Min(D) Min(D, 1)
\ 4 \ 4 \ 4 \ 4
P, P, X X Pt

Time complexity of STMPUsE | 1£C

Matrix Profile: a vector of distance between each Space complexity of STM RI&E)
subsequence and its nearest neighbor



Matrix Profile Index
MP(1:n - m+1) = inf;
AMatrix Profile Index (MPI) can be Mt -m#h) = =4

1:n -m+1 in a random order

maintained as we compute the d = MASS(T,T(ii+m - 1));
profile [MP, ind] = min([MP ; d]);
_ _ _ MPI(ind ==2)= i
AVectorizedmin functions can be end
used to efficiently maintain MPI '\

AOverhead is negligible AssumesviPandd as column vectors



Trivial Match |

A2S YySSR (2 dzy RSNRUGlI YR 0KS ARSI 27
definitions of discords, motifs, similarity search etc.
ASuppose we search for thiziery, of length 20, in théime serieX

AXgS FAYR Ala 06Said YIFIGOK Aa Fa f2¢

Query Q _/\/\/_\J

Ime Series T

L | | L L L | | |
0 20 40 60 80 100 120 140 160

Best Match



Trivial Match |l

AWhere is the second best match? It is probably going to be at 49 or 51,
butthatistrivialz A G0 A& 2dzad I YAY 2N ddI NA

o —/\/\/_\

Time Series T

L | | L L L | | |
0 20 40 60 80 100 120 140 160

Second Best Match



Trivial Match |11

ATo avoid trivial matches, we find the first match, then we setariusion
zonearound the best matchthen find thesecondest match, etc.

AThe size of thexclusion zonis not critical, ¥ works well.

Query Q

Ime Series T

L | L L | | |
0 20 40 60 80 120 140 160

Best Match (NonTrivial) Second Best Match



Trivial Match [l Special Case

AWhen computing the MP, we will be extracting the subsequences from
the time seriestself.

Al f SI NI & &dzOK 1ljdzSNASa gAft 2dzad T
neighbor!

AThe distance from the query to any part of the subsequence that overlaps
the exclusion zones kept undefinedNaN.

Rue S W
Time Series T

L | L L | | |
0 20 40 60 80 120 140 160

Location Query was taken from (NonTrivial) Best Match



STMP: Scalable Time Series Matrix Profile Algori

MP(1:n - m+1) = inf ;
MPI(1:n -m+1)= -1,
for 1=1.n -m+l

d = MASS(T,T(i:i+m - 1));

d(max( 1-m/4,1) : min( I+m/4 - 1,n - m+1))= NaN
[MP, ind] = min([MP ; d));
MPI(ind ==2)= i ;
end
dl,l d1,2 X X X d1,n—m+1
Size of Exclusion Zone depends on the smoothness d; 4 d; , X X X 2 em+1
of the time series. A default value of m/2 works well.
Data adaptive heuristic could be to set the length of X X A X X X
the exclusion zone equal taor the period (1/f) of d, d., X d. X d e
the highest energy frequency, whichever is smaller. ’ | ’ ’
X X X X X X
dn-m+1 1 dn-m+1 2 X X X dn-m+1,nm+]
Min(B) |  Min(Dy) in(D) Min(D,.40)
\ 4 \ 4 \ 4 \ 4
Pl I:)2 X X I:)n-m+1




STAMP: Scalable Time SefiegtimeMatrix Profile

AEach distance profile is independent of other distance profiles, the order
In which we compute them can bandom

AA random ordering averages the performance over properties of the time
series, such as smoothness, frequency, stationarity, etc.

AThe random ordering provides diminishing return, which allowerrupt-
resumeoperationsanytime

MP(1:n - m+1) = inf ;
MPI(1:n -m+1)= -1;
for 1i=1.n -m+1 in arandom order
d = MASS(T, T(i:i+m - 1));
d( max( i1-m/4,1) : min( I+m/4 - 1,n - m+1))= NaN
[MP, ind] = min([MP ; d));
MPI(ind ==2)= i;
end



Exploring the Anytime Property (1 of 3)
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ATheapproximatematrix profile at 1,000 iteration is extremelysimilar
to the exactsolution

ATheconvergenceate increasesfor largerdatasets
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