

Reconvene
• In the first half, we have seen many wonderful things you

can do with the Matrix Profile, without explaining how to
compute it!

• In this half, we will describe algorithms to compute matrix
profile, optimization techniques for scalability, portability
to modern hardware, approximation to gain speed, and
extension to special cases.

• We embed MATLAB scripts in slides that can reproduce
charts and numbers, and explain algorithms.

• Slides are text heavy to facilitate offline readers. In the
presentation, focus is on figures.

• Let’s begin…

Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware:
The Annotation Vector (A simple way to use domain
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm

• Extensions of MASS

• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2

What are Time Series? 1 of 2
A time series is a collection of observations made sequentially in time.

More than most types of data, time series lend themselves to visual inspection and intuitions…

0 100 200 300 400 500
23

24

25

26

27

28

29 25.350
25.350
25.400
25.400
25.325
25.225
25.200
25.175
..
24.625
24.675
24.675
24.675

For example, looking at the numbers in this
blue vector tells us nothing.
But after plotting the data, we can
recognize a heartbeat, and possibly even
diagnose this person's disease.

When the observations are uniformly
sampled, the index of observation can
replace the time of observation. In the rest
of the tutorial, we assume time series are
vectors.

The observations may have a unit.

El
ec

tr
ic

 P
o

te
n

ti
al

Mantled Howler Monkey
Alouatta palliata

What are Time Series? 2 of 2
As an aside… (not the main point for today)

Many types of data that are not true time series can be fruitfully transformed into time
series, including DNA, speech, textures, core samples, ASCII text, historical handwriting,
novels and even shapes.

0 50 100 150 200 250 300 350 400 450

Similarity Measures for Time Series

• A similarity measure compares two time series and produces a number
representing their similarity
• A distance measure is the opposite of similarity measure

• Lockstep Measures
• Euclidean Distance

• Correlation Coefficient

• Cosine Similarity

• Elastic Measures
• Dynamic Time Warping

• Edit Distance

• Longest Common Subsequence

Euclidean Distance Metric

y

x

Given two time series

x = x1…xn

and

y = y1…yn

their z-Normalized Euclidean distance is defined as:

0 100 200 300 400 500 600 700 800 900 1000
-2

-1

0

1

2

3

ෝ𝑥𝑖 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

ෝ𝑦𝑖 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

function y = zNorm(x)

y = (x-mean(x))/std(x,1);

𝑑 𝑥, 𝑦 = ෍

𝑖=1

𝑛

(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

function d = EuclideanDistance(x,y)

d = sqrt(sum((x-y).^2));

Pearson’s Correlation Coefficient

• Given two time series 𝒙 and 𝒚 of length 𝑚.

• Correlation Coefficient:

𝑐𝑜𝑟𝑟 𝒙, 𝒚 =
(𝐸 𝑥 − 𝜇𝑥)(𝐸 𝑦 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
=
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦

• Where 𝜇𝑥 =
σ𝑖=1
𝑚 𝑥𝑖
𝑚

and 𝜎𝑥2 =
σ𝑖=1
𝑚 𝑥𝑖

2

𝑚
− 𝜇𝑥

2

• Sufficient Statistics:

σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 σ𝑖=1

𝑚 𝑥𝑖 σ𝑖=1
𝑚 𝑦𝑖 σ𝑖=1

𝑚 𝑥𝑖
2 σ𝑖=1

𝑚 𝑦𝑖
2

The sufficient statistics can be calculated in one linear scan. Given the sufficient
statistics, correlation coefficient is a constant operation. Note the use of the dot
product, which is the key component of many lockstep measures.

Relationship with Euclidean Distance

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1 − 𝑐𝑜𝑟𝑟(𝒙, 𝒚))

𝑑2 ෝ𝒙, ෝ𝒚 = 2𝑚(1 − 𝑐𝑜𝑟𝑟(𝒙, 𝒚))

• Correlation coefficient does not obey
triangular inequality, while Euclidean
distance does

• Maximizing correlation coefficient can be
achieved by minimizing normalized
Euclidean distance and vice versa

• Correlation coefficient is bounded between
-1 and 1, while z-normalized Euclidean
distance is bounded between zero and a
positive number dependent on m

Abdullah Mueen, Suman Nath, Jie Liu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182

20 for m = 100

Working Formula

• We will use the above z-Normalized Euclidean distance as the
similarity measure for the rest of the presentation

• We claim calculating Matrix Profile for Correlation Coefficient and
Cosine Similarity is trivial given an algorithm for z-Normalized
Euclidean distance

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦
)

0 150 300

chf11 chf10

0 1000
-3

-2

-1

0

1

BIDMC Congestive Heart

Failure Database: chf10

BIDMC Congestive Heart

Failure Database: chf11

The Importance of z-Normalization and correlation 1 of 2

Essentially all datasets must have every
subsequence z-normalized.

There are a handful of occasions where
it does not make sense to z-normalize,
but in those cases, similarity search
does not make sense either.

In this example, we begin by extracting
heartbeats from two unrelated people.

Even without normalization, it happens
that both sets have almost the same
mean and standard deviation. Given
that, do we need to bother to normalize
them? (next slide)

Extracted
beats

0 150 300

chf11 chf10

0 1000
-3

-2

-1

0

1

BIDMC Congestive Heart

Failure Database: chf10

BIDMC Congestive Heart

Failure Database: chf11

Extracted
beats

Without normalization, the results are
very poor, some blue heartbeats are
closer to red heartbeats than there are
to another blue beat .

With normalization, the results are
perfect.

Un-normalized Normalized

In this example, we extracted heartbeats from
two different time series, and clustered them
with and without normalization.

Surprisingly z-normalizing can be a
computational bottleneck, but later we will
show you how to fix that.

The Importance of z-Normalization and correlation 2 of 2

Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware:
The Annotation Vector (A simple way to use domain
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm

• Extensions of MASS

• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2

Distance Profile

d1 d2 … dn-m+1

Compute the z-normalized Euclidean distance between Query and each window (subsequence) in the time series.
We would obtain a vector like this:

di is the distance between the ith subsequence and the query.

D

Query

Sliding Window

Recall, n is the length of the blue time series
and m is the length of the query

The Brute Force Algorithm
• Scan the time series with a sliding window
• Z-Normalize the window
• Calculate Euclidean distance between window

and the query

d(1:n) = 0;

Q = zNorm(query);

for i = 1:n-m+1

d(i) = sqrt(sum((zNorm(T(i:i+m-1))-Q).^2));

end

• How long does this algorithm take?

• The time complexity is 𝑂(𝑛𝑚) in the average and worst cases. More precisely the
window is scanned two times in each iteration of this algorithm. One scan is for z-
normalization, and the other scan is for distance calculation.

• Note that we cannot use any early abandoning or pruning as we need all the distances.

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

Almost an hour

𝑚 = 100

Just-in-time Normalization (1 of 3)

• Can we skip the z-normalization scan in each
iteration?

• Yes, if we have the means, standard deviations
and the dot product to calculate the distances.

•z-normalized sequence has
zero mean and one standard
deviation.

• Let’s assume 𝑦 is the z-normalized query, and 𝑥 is
the time series (T), therefore, 𝜇𝑦 = 0 and 𝜎𝑦 = 1

𝑑 ෝ𝒙, ෝ𝒚 = 2(𝑚 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖
𝜎𝑥

)

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦
)

Working Formula

Just-in-time Normalization (2 of 3)

• Can we skip the z-normalization scan in each iteration?

• The standard deviations of moving windows of a fixed size
can be calculated in one linear scan.

• In 2016, MATLAB has introduced a function, movstd, that
does the above.

𝑑 ෝ𝒙, ෝ𝒚 = 2(𝑚 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖
𝜎𝑥

)

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

• In one pass, calculate cumulative sums of 𝑥 and 𝑥2 and
store

• Subtract two cumulative sums to obtain the sum over
any window

• Use the sums to calculate the standard deviations of all
windows in linear time

𝐶 = σ𝑥 𝐶2 = σ𝑥2

𝑆𝑖
2 = 𝐶𝑖+𝑚

2 − 𝐶𝑖
2𝑆𝑖 = 𝐶𝑖+𝑚 − 𝐶𝑖

𝜎𝑖 =
𝑆𝑖
2

𝑚
−

𝑆𝑖
𝑚

2

Just-in-time Normalization (3 of 3)

• Can we skip the z-normalization scan in each
iteration?

• Still the worst and average cost is 𝑂(𝑛𝑚),
however, the window is scanned only once
per iteration for the dot product.

• Speedup is more than 2X, due to removal of
function calls

d(1:n) = 0;

Q = zNorm(query);

S = movstd(T,[0 m-1]);

for i = 1:n-m+1

d(i) = sqrt(2*(m-sum(T(i:i+m-1).*Q)/S(i)));

end

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

Mueen’s Algorithm for Similarity Search (MASS) (1 of 9)

• Can we improve the just-in-time Normalization algorithm?

• MASS uses a convolution based method to calculate sliding dot products in 𝑂 𝑛 log 𝑛 , in
addition to just-in-time z-normalization technique

• Convolution: If x and y are vectors of polynomial coefficients, convolving them is equivalent
to multiplying the two polynomials.

• We use convolution to compute all of the sliding dot products between the query and
sliding windows.

Output0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

Convolution

Inputx1 y1x2 x3 x4 y2

y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

Mueen’s Algorithm for Similarity Search (MASS) (2 of 9)

• Computational cost, 𝑂 𝑛 log 𝑛 ,
does not depend on the query
length (𝑚), thus, free of curse of
dimensionality.

• There is no loop. Only known
mathematical and built-in MATLAB
functions are used.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1); %Reverse the query

Q(m+1:n) = 0; %pad zeros

dots = conv(T,Q);

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

MASS
1.0

The loop has been replaced
by the following three lines.

Vectorized working formula

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

Mueen’s Algorithm for Similarity Search (MASS) (3 of 9)

• Can we improve MASS 1.0?

• Note that convolution doubles the size of the input vectors in the output.

• MASS uses only half of the output of convolution and throws away the remaining half.

• Can we compute just the necessary half? Let’s see what happens inside convolution.

• Convolution in time domain is multiplication in frequency domain.

• conv(x,y) = ifft(fft(double&pad(x)) . fft(double&pad(y))

x1 y2

Double and Pad x Double and Pad y

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

Complex
Conjugates

Mueen’s Algorithm for Similarity Search (MASS) (4 of 9)

• Can we improve MASS 1.0?

• If we do not double x and y, we obtain a half convolution

• half conv(x,y)= ifft (fft(x) . fft(y))

x1 y2

x y

0 0x2 x3 x4 y1

X1 X2 X3 X2
* Y1 Y2 Y3 Y2

*

Y1X1 Y2X2 Y3
*X3

* Y2
*X2

*

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

conv(x,y) = ifft(fft(double&pad(x)) .

fft(double&pad(y))
half conv(x,y)= ifft (fft(x) . fft(y))

x1 y2

Double and Pad x Double and Pad y

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

Complex
Conjugates

Mueen’s Algorithm for Similarity Search (MASS) (5 of 9)

• Can we improve MASS 1.0?

• Half convolution adds a constraint, 𝑛 >
𝑚

2
. The constraint is not limiting because the original

assumption is 𝑛 ≫ 𝑚.

x1 y2

Time Series
Reversed and

Padded Query
0 0x2 x3 x4 y1

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

conv(x,y) = ifft(fft(double&pad(x)) .

fft(double&pad(y))
half conv(x,y)= ifft (fft(x) . fft(y))

Mueen’s Algorithm for Similarity Search (MASS) (6 of 9)

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1); %Reverse the query

Q(m+1:n) = 0; %pad zeros

dots = ifft(fft(T).* fft(Q));

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

The conv(T,Q) has been
replaced, no doubling of sizes

• Computational cost is still 𝑂 𝑛 log 𝑛 ,
does not depend on the query length
(𝑚), thus, free of curse of dimensionality.

• fast Fourier transform (fft) is used as a
subroutine

MASS
2.0

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

K

K-m+1

m-1
L

Mueen’s Algorithm for Similarity Search (MASS) (7 of 9)

• Can we improve MASS 2.0?

• This idea is a rediscovery of a known result, Overlap-add, Overlap-save [a]

• Instead of processing all n samples at once, we can (carefully) process them piecewise,
where sizes of the pieces are powers of two.

• The pieces must overlap exactly m-1 samples to preserve continuity of the distance profile.

• The last piece can be of size that is not a power of two.

[a] https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method
[b] https://users.ece.cmu.edu/~franzf/papers/gttse07.pdf

210 211 212 213 214 215 216 217 218
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Size (K)
Se

co
n

d
s

n = 1,000,000
m = 100

Hardware
dependent
minima

65,536

Mueen’s Algorithm for Similarity Search (MASS) (8 of 9)

105 106 107 108

n

Se
co

n
d

s

2-8

2-4

20

24

28

212

𝑚 = 100

Mueen’s Algorithm for Similarity Search (MASS) (9 of 9)

105 106 107 108

n
Se

co
n

d
s

2-8

2-4

20

24

28

212

• Design a new application specific processor to do
FFT efficiently [a][b].

• Keep the general processor and optimize DRAM to
compute FFT efficiently [c].

• Keep a commodity box, add a GPU to do FFT
efficiently [d].

• Keep a commodity box, add an FPGA to do FFT
efficiently [e].

• Take a commodity box, and use sparse FFT [f].

[a] The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation, George Slade.

[b] Appendix C: Efficient Hardware Implementations of FFT Engines, Nasserbakht, Mitra (Ed. Bingham, John

A. C.) ADSL, VDSL, and Multicarrier Modulation, John Wiley & Sons, Inc. 2001

[c] B. Akın, F. Franchetti and J. C. Hoe, "Understanding the design space of DRAM-optimized hardware FFT

accelerators," 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and

Processors, Zurich, 2014, pp. 248-255.

[d] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. 2008. High

performance discrete Fourier transforms on graphics processors. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing (SC '08).

[e] Ren Chen, Shreyas G. Singapura, and Viktor K. Prasanna. 2017. Optimal dynamic data layouts for 2D FFT

on 3D memory integrated FPGA. J. Supercomput. 73, 2 (February 2017), 652-663.

[f] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and practical algorithm for

sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete

algorithms (SODA '12). 1183-1194.

Numerical Errors in MASS

• Three possible sources of numerical errors in MASS
• Convolution

• Numerical error in Convolution can appear if n is
very large, MASS 3.0 reduces such error by dividing
the computation in batches

• Division by the standard deviation
• If a subsequence is constant, the standard deviation

is zero, causing divide by zero errors. MASS reduces
such error by checking the standard deviations
ahead of the division.

• Square root of the distances
• Theoretically it is not possible to have negative

squared distance. However, for exact matches, the
squared distance can be a very small negative
number (-1.09e-15), resulting imaginary numbers in
the output.

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1);

Q(m+1:n) = 0;

dots = ifft(fft(T).* fft(Q));

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware:
The Annotation Vector (A simple way to use domain
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm

• Extensions of MASS

• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2

Rest Zone

MASS Extensions: Approximate Distance Profile

• Can we trade speed with accuracy in MASS?

• We use piecewise aggregate approximation (PAA) to reduce
dimensionality of both T and Q

• sqrt(w)* MASS(PAA(T,w),PAA(Q,w),m/w)

𝑤
1 2 3 4 5 6 7

Selina Chu, Eamonn J. Keogh, David M. Hart, Michael J. Pazzani: Iterative Deepening Dynamic Time Warping for Time Series. SDM 2002: 195-212

𝑑 𝑥, 𝑦 = ෍

𝑖=1

𝑚

(𝑥𝑖 − 𝑦𝑖)
2 𝐿𝐵 𝑥, 𝑦 = 𝑤 ෍

𝑖=1

𝑚/𝑤

(𝑥𝑖 − 𝑦𝑖)
2

w = 8

w = 4

w = 2

Approximate distance profile in Red

PAA

𝑑2 𝑥, 𝑦 =෍

𝑖=1

𝑛

𝑤𝑖(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

Given two time series

x = x1…xn

and

y = y1…yn

their z-Normalized weighted Euclidean distance is defined as:

ෝ𝑥𝑖 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

ෝ𝑦𝑖 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

𝑑 𝑥, 𝑦 =෍

𝑖=1

𝑛

(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

MASS Extensions: Weighted Query

𝑑2 𝑥, 𝑦 =෍

𝑖=1

𝑛

𝑤𝑖(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

w

• 𝑤 = 𝑚

• ∀ 𝑤𝑖≥ 0

• σ𝑤𝑖 = 1

MASS Extensions: Weighted Query

• Working formula that we have been using so far, will not work anymore.

• The new working formula is below.

• We need three sliding dot products instead of one in regular MASS

𝑑2 𝑥, 𝑦 =෍

𝑖=1

𝑛

𝑤𝑖(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2 =෍

𝑖=1

𝑛

𝑤𝑖(
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

− ෝ𝑦𝑖)
2

=෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖
2 − 2𝜇𝑥𝑤𝑖𝑥𝑖 − 2𝑤𝑖𝑥𝑖 ෝ𝑦𝑖 + 𝜇𝑥

2𝑤𝑖 − 2𝜇𝑥𝑤𝑖 ෝ𝑦𝑖 +𝑤𝑖 ෝ𝑦𝑖
2

Terms with x need
sliding dot products

Terms without x

are precomputed

2.65 2.7 2.75 2.8 2.85 2.9 2.95 3 3.05

105

0

5

10

15

Hot Water Usage of a House in Minutes

Weight Vector

0 5 10 15 20 25 30 35 40

Regular Matches

Extended
Wash Cycles

Additional Cycles

MASS Extensions: Weighted Query Example

0 5 10 15 20 25 30 35 40 45

Wash Cycles Rinse Cycles

Washer

We may wish to consider a more general type of
query. Queries with gaps, as in the purple example.

I want the first third to slope down, and the last
third to slope up with the plateau at the end.
However, I don’t care what goes in the middle.

Either of the two red patterns would be acceptable
matches.

Note that the relative offset and scaling of the two
parts do not matter, and we should be invariant to
them. In other words, the exact slope does not
matter in the above query statement.

0 50 100 150 200 250 300

query
MASS Extensions: Query with Gap(s)

0 100 200 300

1. Measure the distance between beginning of the two patterns, call it L

2. Compute…
Dist_profile1 = MASS(T, querysub1);

Dist_profile2 = MSAS(T, querysub2);

3. Pad the end of Dist_profile1 and the beginning of
Dist_profile2 with a vector of L infinities to add a lag of L

For example, if L = 5, then use {inf, inf, inf, inf, inf}

4. Create Dist_profile3 = Dist_profile1 + Dist_profile2

5. We can now use Dist_profile3 to find the nearest neighbor(s)
as before.

0 100 200 300

L

querysub1

querysub2

MASS Extensions: Query with Gap(s)

0 2000 4000 6000 8000 10000 12000
0

10

20

0 2000 4000 6000 8000 10000 12000
0

10

20

0 2000 4000 6000 8000 10000 12000
0

20

40

Dist_profile1 = MASS(tag, querysub1);

Dist_profile2 = MASS(tag, querysub2);

Dist_profile3 = Dist_profile1 + Dist_profile2

Min value is at 1536

1336

9116

0 100 200 300

querysub1 querysub2

Note that for the best match, each part
of the query scaled differently.
For the image to the right, I fixed the
left side and scaled the right side (to
give context), but both sides needed
rescaling somewhat

Random walk

Padded by L infs or NaNs

Slide by L slots

MASS Extensions: Query with Gap(s)

Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware:
The Annotation Vector (A simple way to use domain
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm

• Extensions of MASS

• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2

d1,1(= 0) d2,1 … dn-m+1,1

Query, the 1st subsequence in the time series

Obtain the z-normalized Euclidean distance between Query and each window
(subsequence) in the time series. We would obtain a vector like this:

di,j is the distance between the ith subsequence and the jth subsequence.

D1

We can obtain D2, D3, … Dn-m+1 similarly.

Matrix Profile from Distance Profiles

The distance matrix is symmetric
The diagonal is zero
Cells close to the diagonal are very small

Matrix Profile: a vector of distance between each
subsequence and its nearest neighbor

di,j is the distance between the ith window and
the jth window of the time series

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

Matrix Profile from Distance Profiles

D1

D2

Di

Dn-m+1

STMP: Scalable Time Series Matrix Profile Algorithm

MP(1:n-m+1) = inf;

for i = 1:n-m+1

d = MASS(T,T(i:i+m-1));

MP = min([MP ; d]);

end

Matrix Profile: a vector of distance between each
subsequence and its nearest neighbor

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1
Time complexity of STMP is 𝑂(𝑛2log 𝑛)
Space complexity of STMP is 𝑂 𝑛

D1

D2

Di

Dn-m+1

MP(1:n-m+1) = inf;

MPI(1:n-m+1) = -1;

for i = 1:n-m+1 in a random order

d = MASS(T,T(i:i+m-1));

[MP, ind] = min([MP ; d]);

MPI(ind==2) = i;

end

Matrix Profile Index

• Matrix Profile Index (MPI) can be
maintained as we compute the
profile

• Vectorized min functions can be
used to efficiently maintain MPI

• Overhead is negligible Assumes MP and d as column vectors

Trivial Match I

• We need to understand the idea of a “trivial match”. It shows up for
definitions of discords, motifs, similarity search etc.

• Suppose we search for the query, of length 20, in the time series…

• …we find its best match is at location 50…

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Best Match

Trivial Match II

• Where is the second best match? It is probably going to be at 49 or 51,
but that is trivial, it is just a minor “variant” of the original match.

• (try togging backwards and forwards between this and the last slide)

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Second Best Match

Trivial Match III

• To avoid trivial matches, we find the first match, then we set an exclusion
zone around the best match, then find the second best match, etc.

• The size of the exclusion zone is not critical, ½ m works well.

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Best Match (Non-Trivial) Second Best Match

Trivial Match IIII Special Case

• When computing the MP, we will be extracting the subsequences from
the time series itself.

• Clearly such queries will just find “themselves” as their own nearest
neighbor!

• The distance from the query to any part of the subsequence that overlaps
the exclusion zone is kept undefined (NaN).

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Location Query was taken from (Non-Trivial) Best Match

STMP: Scalable Time Series Matrix Profile Algorithm
MP(1:n-m+1) = inf;

MPI(1:n-m+1) = -1;

for i = 1:n-m+1

d = MASS(T,T(i:i+m-1));

d(max(i-m/4,1) : min(i+m/4-1,n-m+1))= NaN;

[MP, ind] = min([MP ; d]);

MPI(ind==2) = i;

end

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

Size of Exclusion Zone depends on the smoothness
of the time series. A default value of m/2 works well.
Data adaptive heuristic could be to set the length of
the exclusion zone equal to m or the period (1/f) of
the highest energy frequency, whichever is smaller.

STAMP: Scalable Time Series Anytime Matrix Profile
• Each distance profile is independent of other distance profiles, the order

in which we compute them can be random

• A random ordering averages the performance over properties of the time
series, such as smoothness, frequency, stationarity, etc.

• The random ordering provides diminishing return, which allows interrupt-
resume operations anytime.

MP(1:n-m+1) = inf;

MPI(1:n-m+1) = -1;

for i = 1:n-m+1 in a random order

d = MASS(T,T(i:i+m-1));

d(max(i-m/4,1) : min(i+m/4-1,n-m+1))= NaN;

[MP, ind] = min([MP ; d]);

MPI(ind==2) = i;

end

Exploring the Anytime Property (1 of 3)

10,0000

R
M

S
E

 b
et

w
ee

n
 t

h
e

M
P

an
d
 t

h
e

ap
p
ro

x
im

at
e

M
P

iteration1,000

approximate matrix profile

at 1,000 iterations.

exact matrix profile

• The approximate matrix profile at 1,000 iteration is extremely similar
to the exact solution.

• The convergence rate increases, for larger datasets.

Exploring the Anytime Property (2 of 3)

Exploring the Anytime Property (3 of 3)
After doing only 1/500th of the computations, the basic shape of the MP has converged,
and we have found the final correct motif.
As an aside, note that the dimensionality of the subsequences here is 60,000.

Can we improve STAMP?

STAMP computes distance profiles for
rows in random order. Each distance
profile is computed independently.
However, the successive rows are
profiles of two queries that overlap in
𝑚 − 1 observations.

We can exploit the overlap between
successive queries while computing
their distance profiles to build an
𝑂(𝑛2) time, 𝑂(𝑛) space algorithm.

STOMP: Scalable Time series Ordered Matrix Profile

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

We have an O(n2) time, O(n) space algorithm called STOMP to evaluate it.

Recall our working formula:

𝑑𝑖,𝑗 = 2𝑚 1 −
𝑇𝑖𝑇𝑗 −𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗

Dot product of the ith window and the jth window.

• We precompute and store the means and standard deviations in O(n)
space and time using the movmean and movstd functions.

• Once we know 𝑇𝑖𝑇𝑗, it takes O(1) time to compute 𝑑𝑖,𝑗

STOMP: Scalable Time series Ordered Matrix Profile

𝑇𝑖𝑇𝑗 = ෍

𝑘=0

𝑚−1

𝑡𝑖+𝑘𝑡𝑗+𝑘

The relationship between 𝑇𝑖𝑇𝑗 and 𝑇𝑖+1𝑇𝑗+1

… 𝒕𝒊 𝒕𝒊+𝟏 𝒕𝒊+𝟐 … 𝒕𝒊+𝒎−𝟏 𝒕𝒊+𝒎 …

𝑇𝑖+1𝑇𝑗+1 =

𝑇𝑖𝑇𝑗 = ෍

𝑘=0

𝑚−1

𝑡𝑖+𝑘𝑡𝑗+𝑘

× × × ×+ + + +

× × × ×+ + + +…

𝑇𝑖+1𝑇𝑗+1= 𝑇𝑖𝑇𝑗 − 𝑡𝑖𝑡𝑗 + 𝑡𝑖+𝑚𝑡𝑗+𝑚 𝑶 𝟏 time complexity

… 𝒕𝒋 𝒕𝒋+𝟏 𝒕𝒋+𝟐 … 𝒕𝒋+𝒎−𝟏 𝒕𝒋+𝒎 …

… 𝒕𝒊 𝒕𝒊+𝟏 𝒕𝒊+𝟐 … 𝒕𝒊+𝒎−𝟏 𝒕𝒊+𝒎 …

… 𝒕𝒋 𝒕𝒋+𝟏 𝒕𝒋+𝟐 … 𝒕𝒋+𝒎−𝟏 𝒕𝒋+𝒎 …

STOMP Algorithm: Computing the ith Row

P1 P2 P3 … Pn-m+1

Update if Smaller

I1 I2 I3 … In-m+1

𝜇1 𝜇2 𝜇3 … 𝜇𝑛−𝑚+1

𝜎1 𝜎2 𝜎3 … 𝜎𝑛−𝑚+1

𝑇1𝑇2 𝑇1𝑇3 … 𝑇1𝑇𝑛−𝑚 𝑇1𝑇𝑛−𝑚+1𝑇1𝑇1

𝑇2𝑇1

.

.

.

𝑇𝑖−1𝑇1

𝑇𝑖𝑇1

.

.

.

𝑇𝑛−𝑚𝑇1

𝑇𝑛−𝑚+1𝑇1

𝑇𝑖−1𝑇2 𝑇𝑖−1𝑇3 … 𝑇𝑖−1𝑇𝑛−𝑚𝑇𝑖−1𝑇𝑛−𝑚+1

𝑇𝑖𝑇2 𝑇𝑖𝑇3 … 𝑇𝑖𝑇𝑛−𝑚 𝑇𝑖𝑇𝑛−𝑚+1

Output Arrays

Precomputed Arrays

Rolling Arrays

All means and standard deviations are
precomputed. This costs linear time and
space.

The first column and row of the matrix are
identical and pre-computed by MASS.

We iterate through the rows. The previous
row is maintained as a local array to feed dot
products.

The dot products are converted to distance
values and compared against the current best
in the profile.

SCRIMP: Scalable Column Independent Matrix Profile

P1 P2 P3 … Pn-m+1

I1 I2 I3 … In-m+1

𝜇1 𝜇2 𝜇3 … 𝜇𝑛−𝑚+1

𝜎1 𝜎2 𝜎3 … 𝜎𝑛−𝑚+1

𝑇1𝑇2 𝑇1𝑇3 … 𝑇1𝑇𝑛−𝑚 𝑇1𝑇𝑛−𝑚+1𝑇1𝑇1

𝑇2𝑇1

.

.

.

𝑇𝑖−1𝑇1

𝑇𝑖𝑇1

.

.

.

𝑇𝑛−𝑚𝑇1

𝑇𝑛−𝑚+1𝑇1

Output Arrays

Precomputed Arrays

𝑇𝑛−𝑚+1𝑇𝑛−𝑚+1

STOMP iterates through rows. Each row depends on the
previous row. Therefore random ordering is not suitable.

However, the diagonals are independent of each other.
We exploit this property to randomize the computation
so we achieve an anytime 𝑂(𝑛2) algorithm.

We avoid computing the upper triangle of the matrix
because the distance matrix is symmetric.

…

Porting STOMP to GPU

Each thread is assigned to calculate one entry in
the matrix profile in every iteration.

All the precomputed arrays are in global shared
memory that is accessible to all threads.

Threads are synced after a row is processed to
avoid race.

We can further optimize to compute only the
lower triangle of the matrix, please see the
paper.

Comparison of STAMP, STOMP and GPU-STOMP

Algorithm n 217 218 219 220

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min

For a fix subsequence length m=256: time

Algorithm m | n 2000 | 17,279,800 400 | 100,000,000

STAMP (estimated) 36.5 weeks 25.5 years

STOMP (estimated) 8.4 weeks 5.4 years

GPU-STOMP 9.27 hours 12.13 days

For large data, and for the very first time in the literature, 100,000,000

Comparing the speed of STOMP with existing algorithms

Algorithm m 512 1,024 2,048 4,096

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB)

Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB)

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB)

For a time series of length 218: CPU time(memory usage)

Note: the time and space cost of STOMP is completely independent of any properties (noise,
trends, stationarity etc.) of data.
Quick-Motif and MK are pruning based techniques with non-monotonic space need.
STOMP produces more information (i.e. Matrix Profile) while the others find the motifs only.

1. Given the inputs, the time is completely deterministic.
2. The time is completely independent of, m the length of the query. So long as m << n.
3. The time is completely independent of the structure/noise-level of data itself.

As it happens, these properties are very rare in data mining algorithms.

Can we use these properties to estimate time-to-finish?

The Progress Bar Question: How long will it take
for STOMP, SCRIMP to finish?

The time only depends on the length of the time series, n, and the hardware settings.
To compute the time needed to finish, you just need to do one calibration run on any
particular hardware configuration.

The Progress Bar Question: How long will it take
for STOMP, STAMP or SCRIMP to finish?

𝑇𝑖𝑚𝑒𝑁𝑒𝑒𝑑𝑒𝑑 =
𝑇𝑖𝑚𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
𝑛𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

2
∗ 𝑛𝑛𝑒𝑤

2

512 131072
0

500

1000

1500

2000

2500

3000

3500

512 131072
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

Blue is measured
Blue is measured
Red is predicted

Red is predicted

Note the log axis

How well does this work?

We measured the time needed for
T = 512, 1024, 2048,… ,131072 (we
used an old cheap laptop)

We then used the time measured
for the 131,072 run, to predict the
time needed for all the other runs.
We plotted the two curves below.
Note that the last point agrees by
definition.

Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware:
The Annotation Vector (A simple way to use domain
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm

• Extensions of MASS

• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2

Open Problems

• Find Lower Bounds
• An 𝑂(𝑛) lower bound to distance profile
• An 𝑂(𝑛 log 𝑛) lower bound to matrix profile

• Adapt to L1 distance
• 𝑂(𝑛 log 𝑛) algorithm for distance profile
• 𝑂(𝑛2) algorithm for Matrix Profile

• Adapt to DTW distance
• Can we create a Matrix Profile of 100M time series under warping?

• Variable Length Matrix Profile
• Can we rank or sort neighbors of different lengths based on degree of fidelity?

• Scalability
• Distributed Matrix Profile algorithm for horizontal scalability
• Can we exploit hardware acceleration techniques for scalability?

Open Problems

• Domain Appropriate Matrix Profile
• Recall that both STAMP and SCRIMP converge quickly with

random ordering. However, could a data-adaptive ordering
converge even faster?

• We discussed the Annotation Vector (AV). While we can
typically specify an AV with a few lines of code, can we learn
a domain appropriate AV from user interaction?

• Visualization
• At some scale, user-interfaces / user-experience become very

important, we have largely glossed over this. Can we develop
interactive visualization techniques for active exploration
over MP?

The End!

Questions?

Visit the Matrix Profile Page
www.cs.ucr.edu/~eamonn/MatrixProfile.html

Visit the MASS Page
www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

Please fill out an evaluation form,
available in the back of the room.

