


Reconvene
• In the first half, we have seen many wonderful things you 

can do with the Matrix Profile, without explaining how to 
compute it!

• In this half, we will describe algorithms to compute matrix 
profile, optimization techniques for scalability, portability 
to modern hardware, approximation to gain speed, and 
extension to special cases.

• We embed MATLAB scripts in slides that can reproduce 
charts and numbers, and explain algorithms.

• Slides are text heavy to facilitate offline readers. In the 
presentation, focus is on figures.

• Let’s begin…



Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware: 
The Annotation Vector (A simple way to use domain 
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is 
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm

• Extensions of MASS

• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2



What are Time Series?    1 of 2
A time series is a collection of observations made sequentially in time. 

More than most types of data, time series lend themselves to visual inspection and intuitions…
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For example, looking at the numbers in this 
blue vector tells us nothing.
But after plotting the data, we can 
recognize a heartbeat, and possibly even 
diagnose this person's disease.

When the observations are uniformly 
sampled, the index of observation can 
replace the time of observation. In the rest 
of the tutorial, we assume time series are 
vectors.

The observations may have a unit.
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Mantled Howler Monkey
Alouatta palliata

What are Time Series?    2 of 2
As an aside… (not the main point for today)

Many types of data that are not true time series can be fruitfully transformed into time 
series, including DNA, speech, textures, core samples, ASCII text, historical handwriting, 
novels and even shapes.
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Similarity Measures for Time Series

• A similarity measure compares two time series and produces a number 
representing their similarity
• A distance measure is the opposite of similarity measure

• Lockstep Measures 
• Euclidean Distance

• Correlation Coefficient

• Cosine Similarity

• Elastic Measures
• Dynamic Time Warping

• Edit Distance

• Longest Common Subsequence



Euclidean Distance Metric

y

x

Given two time series

x = x1…xn

and 

y = y1…yn

their z-Normalized Euclidean distance is defined as:
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ෝ𝑥𝑖 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

ෝ𝑦𝑖 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

function y = zNorm(x)

y = (x-mean(x))/std(x,1);

𝑑 𝑥, 𝑦 = ෍

𝑖=1

𝑛

( ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

function d = EuclideanDistance(x,y)

d = sqrt(sum((x-y).^2));



Pearson’s Correlation Coefficient

• Given two time series 𝒙 and 𝒚 of length 𝑚. 

• Correlation Coefficient:

𝑐𝑜𝑟𝑟 𝒙, 𝒚 =
(𝐸 𝑥 − 𝜇𝑥)(𝐸 𝑦 − 𝜇𝑦)

𝜎𝑥𝜎𝑦
=
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦

• Where 𝜇𝑥 =
σ𝑖=1
𝑚 𝑥𝑖
𝑚

and 𝜎𝑥2 =
σ𝑖=1
𝑚 𝑥𝑖

2

𝑚
− 𝜇𝑥

2

• Sufficient Statistics:

σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 σ𝑖=1

𝑚 𝑥𝑖 σ𝑖=1
𝑚 𝑦𝑖 σ𝑖=1

𝑚 𝑥𝑖
2 σ𝑖=1

𝑚 𝑦𝑖
2

The sufficient statistics can be calculated in one linear scan. Given the sufficient 
statistics, correlation coefficient is a constant operation. Note the use of the dot 
product, which is the key component of many lockstep measures.



Relationship with Euclidean Distance

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1 − 𝑐𝑜𝑟𝑟(𝒙, 𝒚))

𝑑2 ෝ𝒙, ෝ𝒚 = 2𝑚(1 − 𝑐𝑜𝑟𝑟(𝒙, 𝒚))

• Correlation coefficient does not obey 
triangular inequality, while Euclidean 
distance does

• Maximizing correlation coefficient can be 
achieved by minimizing normalized 
Euclidean distance and vice versa

• Correlation coefficient is bounded between 
-1 and 1, while z-normalized Euclidean 
distance is bounded between zero and a 
positive number dependent on m

Abdullah Mueen, Suman Nath, Jie Liu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182

20 for m = 100



Working Formula

• We will use the above z-Normalized Euclidean distance as the 
similarity measure for the rest of the presentation

• We claim calculating Matrix Profile for Correlation Coefficient and 
Cosine Similarity is trivial given an algorithm for z-Normalized 
Euclidean distance

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦
)



0 150 300

chf11 chf10

0 1000
-3

-2

-1

0

1

BIDMC Congestive Heart 

Failure Database: chf10 

BIDMC Congestive Heart 

Failure Database: chf11 

The Importance of z-Normalization and correlation 1 of 2

Essentially all datasets must have every
subsequence z-normalized. 

There are a handful of occasions where 
it does not make sense to z-normalize, 
but in those cases, similarity search 
does not make sense either.

In this example, we begin by extracting 
heartbeats  from two unrelated people.

Even without normalization, it happens 
that  both sets have almost the same 
mean and standard deviation. Given 
that, do we need to bother to normalize 
them?  (next slide)

Extracted 
beats 
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beats 

Without normalization, the results are 
very poor, some blue heartbeats are 
closer to red heartbeats than there are 
to another blue beat . 

With normalization, the results are 
perfect.

Un-normalized Normalized

In this example, we extracted heartbeats from 
two different time series, and clustered them  
with and without normalization.

Surprisingly z-normalizing can be a 
computational bottleneck, but later we will 
show you how to fix that.

The Importance of z-Normalization and correlation 2 of 2
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Distance Profile

d1 d2 … dn-m+1

Compute the z-normalized Euclidean distance between Query and each window (subsequence) in the time series. 
We would obtain a vector like this:

di is the distance between the ith subsequence and the query.

D

Query

Sliding Window

Recall, n is the length of the blue time series 
and m is the length of the query



The Brute Force Algorithm
• Scan the time series with a sliding window
• Z-Normalize the window
• Calculate Euclidean distance between window 

and the query

d(1:n) = 0;

Q = zNorm(query);

for i = 1:n-m+1

d(i) = sqrt(sum((zNorm(T(i:i+m-1))-Q).^2));

end

• How long does this algorithm take?

• The time complexity is 𝑂(𝑛𝑚) in the average and worst cases. More precisely the 
window is scanned two times in each iteration of this algorithm. One scan is for z-
normalization, and the other scan is for distance calculation.

• Note that we cannot use any early abandoning or pruning as we need all the distances.
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Just-in-time Normalization (1 of 3)

• Can we skip the z-normalization scan in each 
iteration?

• Yes, if we have the means, standard deviations 
and the dot product to calculate the distances.

•z-normalized sequence has 
zero mean and one standard 
deviation.

• Let’s assume 𝑦 is the z-normalized query, and 𝑥 is 
the time series (T), therefore, 𝜇𝑦 = 0 and 𝜎𝑦 = 1

𝑑 ෝ𝒙, ෝ𝒚 = 2(𝑚 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖
𝜎𝑥

)

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

𝑑 ෝ𝒙, ෝ𝒚 = 2𝑚(1 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖 −𝑚𝜇𝑥𝜇𝑦

𝑚𝜎𝑥𝜎𝑦
)

Working Formula



Just-in-time Normalization (2 of 3)

• Can we skip the z-normalization scan in each iteration?

• The standard deviations of moving windows of a fixed size 
can be calculated in one linear scan.

• In 2016, MATLAB has introduced a function, movstd, that 
does the above.

𝑑 ෝ𝒙, ෝ𝒚 = 2(𝑚 −
σ𝑖=1
𝑚 𝑥𝑖𝑦𝑖
𝜎𝑥

)

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

• In one pass, calculate cumulative sums of 𝑥 and 𝑥2 and 
store

• Subtract two cumulative sums to obtain the sum over 
any window 

• Use the sums to calculate the standard deviations of all 
windows in linear time 

𝐶 = σ𝑥 𝐶2 = σ𝑥2

𝑆𝑖
2 = 𝐶𝑖+𝑚

2 − 𝐶𝑖
2𝑆𝑖 = 𝐶𝑖+𝑚 − 𝐶𝑖

𝜎𝑖 =
𝑆𝑖
2

𝑚
−

𝑆𝑖
𝑚

2



Just-in-time Normalization (3 of 3)

• Can we skip the z-normalization scan in each 
iteration?

• Still the worst and average cost is 𝑂(𝑛𝑚), 
however, the window is scanned only once 
per iteration for the dot product.

• Speedup is more than 2X, due to removal of 
function calls

d(1:n) = 0;

Q = zNorm(query);

S = movstd(T,[0 m-1]);

for i = 1:n-m+1

d(i) = sqrt(2*(m-sum(T(i:i+m-1).*Q)/S(i)));

end

Thanawin Rakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270
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x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

Mueen’s Algorithm for Similarity Search (MASS) (1 of 9)

• Can we improve the just-in-time Normalization algorithm?

• MASS uses a convolution based method to calculate sliding dot products in 𝑂 𝑛 log 𝑛 , in 
addition to just-in-time z-normalization technique

• Convolution: If x and y are vectors of polynomial coefficients, convolving them is equivalent 
to multiplying the two polynomials.

• We use convolution to compute all of the sliding dot products between the query and 
sliding windows.

Output0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

Convolution

Inputx1 y1x2 x3 x4 y2

y2x2+y1x1 y2x3+y1x2 y2x4+y1x3



Mueen’s Algorithm for Similarity Search (MASS) (2 of 9)

• Computational cost, 𝑂 𝑛 log 𝑛 , 
does not depend on the query 
length (𝑚), thus, free of curse of 
dimensionality.

• There is no loop. Only known 
mathematical and built-in MATLAB 
functions are used.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1);     %Reverse the query

Q(m+1:n) = 0;        %pad zeros

dots = conv(T,Q);

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

MASS 
1.0

The loop has been replaced 
by the following three lines.

Vectorized working formula 
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Mueen’s Algorithm for Similarity Search (MASS) (3 of 9)

• Can we improve MASS 1.0?

• Note that convolution doubles the size of the input vectors in the output.

• MASS uses only half of the output of convolution and throws away the remaining half.

• Can we compute just the necessary half? Let’s see what happens inside convolution.

• Convolution in time domain is multiplication in frequency domain.

• conv(x,y) = ifft( fft( double&pad(x)) . fft(double&pad(y))

x1 y2

Double and Pad x Double and Pad y

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

Complex 
Conjugates



Mueen’s Algorithm for Similarity Search (MASS) (4 of 9)

• Can we improve MASS 1.0?

• If we do not double x and y, we obtain a half convolution

• half conv(x,y)= ifft ( fft(x) . fft(y))

x1 y2

x y

0 0x2 x3 x4 y1

X1 X2 X3 X2
* Y1 Y2 Y3 Y2

*

Y1X1 Y2X2 Y3
*X3

* Y2
*X2

*

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

conv(x,y) = ifft( fft( double&pad(x)) . 

fft(double&pad(y) )
half conv(x,y)= ifft ( fft(x) . fft(y))

x1 y2

Double and Pad x Double and Pad y

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(𝑥) Y=FFT(𝑦)

X.Y

ifft(X.Y)

Complex 
Conjugates



Mueen’s Algorithm for Similarity Search (MASS) (5 of 9)

• Can we improve MASS 1.0?

• Half convolution adds a constraint, 𝑛 >
𝑚

2
. The constraint is not limiting because the original 

assumption is 𝑛 ≫ 𝑚.

x1 y2

Time Series
Reversed and 

Padded Query
0 0x2 x3 x4 y1

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

conv(x,y) = ifft( fft( double&pad(x)) . 

fft(double&pad(y) )
half conv(x,y)= ifft ( fft(x) . fft(y))



Mueen’s Algorithm for Similarity Search (MASS) (6 of 9)

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1);     %Reverse the query

Q(m+1:n) = 0;        %pad zeros

dots = ifft( fft(T).* fft(Q) );

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);

The conv(T,Q) has been 
replaced, no doubling of sizes

• Computational cost is still 𝑂 𝑛 log 𝑛 , 
does not depend on the query length 
(𝑚), thus, free of curse of dimensionality.

• fast Fourier transform (fft) is used as a 
subroutine

MASS 
2.0
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Mueen’s Algorithm for Similarity Search (MASS) (7 of 9)

• Can we improve MASS 2.0?

• This idea is a rediscovery of a known result, Overlap-add, Overlap-save [a]

• Instead of processing all n samples at once, we can (carefully) process them piecewise,
where sizes of the pieces are powers of two.

• The pieces must overlap exactly m-1 samples to preserve continuity of the distance profile.

• The last piece can be of size that is not a power of two.

[a] https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method
[b] https://users.ece.cmu.edu/~franzf/papers/gttse07.pdf
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Mueen’s Algorithm for Similarity Search (MASS) (8 of 9)
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Mueen’s Algorithm for Similarity Search (MASS) (9 of 9)
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• Design a new application specific processor to do 
FFT efficiently [a][b].

• Keep the general processor and optimize DRAM to 
compute FFT efficiently [c].

• Keep a commodity box, add a GPU to do FFT 
efficiently [d].

• Keep a commodity box, add an FPGA to do FFT 
efficiently [e].

• Take a commodity box, and use sparse FFT [f].

[a] The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation, George Slade.

[b] Appendix C: Efficient Hardware Implementations of FFT Engines, Nasserbakht, Mitra (Ed. Bingham, John 

A. C.) ADSL, VDSL, and Multicarrier Modulation, John Wiley & Sons, Inc. 2001

[c] B. Akın, F. Franchetti and J. C. Hoe, "Understanding the design space of DRAM-optimized hardware FFT 

accelerators," 2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and 

Processors, Zurich, 2014, pp. 248-255.

[d] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. 2008. High 

performance discrete Fourier transforms on graphics processors. In Proceedings of the 2008 ACM/IEEE 

conference on Supercomputing (SC '08).

[e] Ren Chen, Shreyas G. Singapura, and Viktor K. Prasanna. 2017. Optimal dynamic data layouts for 2D FFT 

on 3D memory integrated FPGA. J. Supercomput. 73, 2 (February 2017), 652-663. 

[f] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and practical algorithm for 

sparse Fourier transform. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete 

algorithms (SODA '12). 1183-1194.



Numerical Errors in MASS

• Three possible sources of numerical errors in MASS
• Convolution

• Numerical error in Convolution can appear if n is 
very large, MASS 3.0 reduces such error by dividing 
the computation in batches

• Division by the standard deviation
• If a subsequence is constant, the standard deviation 

is zero, causing divide by zero errors. MASS reduces 
such error by checking the standard deviations 
ahead of the division.

• Square root of the distances
• Theoretically it is not possible to have negative 

squared distance. However, for exact matches, the 
squared distance can be a very small negative 
number (-1.09e-15), resulting imaginary numbers in 
the output.

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd(T,[0 m-1]);

Q = Q(end:-1:1);     

Q(m+1:n) = 0; 

dots = ifft( fft(T).* fft(Q) );

dist = 2*(m-(dots(m:n))./Stdv));

dist = sqrt(dist);
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MASS Extensions: Approximate Distance Profile

• Can we trade speed with accuracy in MASS?

• We use piecewise aggregate approximation (PAA) to reduce 
dimensionality of both T and Q

• sqrt(w)* MASS(PAA(T,w),PAA(Q,w),m/w)

𝑤
1 2 3 4 5 6 7

Selina Chu, Eamonn J. Keogh, David M. Hart, Michael J. Pazzani: Iterative Deepening Dynamic Time Warping for Time Series. SDM 2002: 195-212

𝑑 𝑥, 𝑦 = ෍

𝑖=1

𝑚

(𝑥𝑖 − 𝑦𝑖)
2 𝐿𝐵 𝑥, 𝑦 = 𝑤 ෍

𝑖=1

𝑚/𝑤

(𝑥𝑖 − 𝑦𝑖)
2

w = 8 

w = 4 

w = 2 

Approximate distance profile in Red

PAA



𝑑2 𝑥, 𝑦 =෍

𝑖=1

𝑛

𝑤𝑖(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

Given two time series

x = x1…xn

and 

y = y1…yn

their z-Normalized weighted Euclidean distance is defined as:

ෝ𝑥𝑖 =
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

ෝ𝑦𝑖 =
𝑦𝑖 − 𝜇𝑦

𝜎𝑦

𝑑 𝑥, 𝑦 =෍

𝑖=1

𝑛

(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

MASS Extensions: Weighted Query

𝑑2 𝑥, 𝑦 =෍

𝑖=1

𝑛

𝑤𝑖(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2

w

• 𝑤 = 𝑚

• ∀ 𝑤𝑖≥ 0

• σ𝑤𝑖 = 1



MASS Extensions: Weighted Query

• Working formula that we have been using so far, will not work anymore.

• The new working formula is below.

• We need three sliding dot products instead of one in regular MASS

𝑑2 𝑥, 𝑦 =෍

𝑖=1

𝑛

𝑤𝑖(ෝ𝑥𝑖 − ෝ𝑦𝑖)
2 =෍

𝑖=1

𝑛

𝑤𝑖(
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

− ෝ𝑦𝑖)
2

=෍

𝑖=1

𝑛

𝑤𝑖𝑥𝑖
2 − 2𝜇𝑥𝑤𝑖𝑥𝑖 − 2𝑤𝑖𝑥𝑖 ෝ𝑦𝑖 + 𝜇𝑥

2𝑤𝑖 − 2𝜇𝑥𝑤𝑖 ෝ𝑦𝑖 +𝑤𝑖 ෝ𝑦𝑖
2

Terms with x need 
sliding dot products

Terms without x 

are precomputed
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We may wish to consider a more general type of 
query. Queries with gaps, as in the purple example.

I want the first third to slope down, and the last 
third to slope up with the plateau at the end. 
However, I don’t care what goes in the middle.

Either of the two red patterns would be acceptable 
matches. 

Note that the relative offset and scaling of the two 
parts do not matter, and we should be invariant to 
them. In other words, the exact slope does not 
matter in the above query statement.

0 50 100 150 200 250 300

query
MASS Extensions: Query with Gap(s)

0 100 200 300



1. Measure the distance between beginning of the two patterns, call it L

2. Compute…
Dist_profile1 = MASS(T, querysub1);

Dist_profile2 = MSAS(T, querysub2);

3. Pad the end of Dist_profile1 and the beginning of 
Dist_profile2 with a vector of L infinities to add a lag of L

For example, if L = 5, then use {inf, inf, inf, inf, inf}

4. Create Dist_profile3 = Dist_profile1 + Dist_profile2

5. We can now use Dist_profile3 to find the nearest neighbor(s) 
as before.

0 100 200 300

L

querysub1

querysub2

MASS Extensions: Query with Gap(s)
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Dist_profile1 = MASS(tag, querysub1);

Dist_profile2 = MASS(tag, querysub2);

Dist_profile3 = Dist_profile1 + Dist_profile2  

Min value is at 1536

1336

9116

0 100 200 300

querysub1 querysub2

Note that for the best match, each part 
of the query scaled differently. 
For the image to the right, I fixed the 
left side and scaled the right side (to 
give context), but both sides needed 
rescaling somewhat 

Random walk

Padded by L infs or NaNs

Slide by L slots

MASS Extensions: Query with Gap(s)



Outline
• Our Fundamental Assumption

• What is the (MP) Matrix Profile?

• Properties of the MP

• Developing a Visual Intuition for MP

• Basic Algorithms
• MP Motif Discovery

• MP Time Series Chains

• MP Anomaly Discovery

• MP Joins (self and AB)

• MP Semantic Segmentation

• From Domain Agnostic to Domain Aware: 
The Annotation Vector (A simple way to use domain 
knowledge to adjust your results)

• The “Matrix Profile and ten lines of code is 
all you need” philosophy.

• Break

• Background on time series mining
• Similarity Measures

• Normalization

• Distance Profile
• Brute Force Approach

• Just-in-time Normalization

• The MASS Algorithm
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• Matrix Profile
• STAMP

• STOMP

• GPU-STOMP

• SCRIMP

• Open problems to solve

Act 1 Act 2



d1,1(= 0) d2,1 … dn-m+1,1

Query, the 1st subsequence in the time series

Obtain the z-normalized Euclidean distance between Query and each window 
(subsequence) in the time series. We would obtain a vector like this:

di,j is the distance between the ith subsequence and the jth subsequence.

D1

We can obtain D2, D3, … Dn-m+1 similarly.

Matrix Profile from Distance Profiles



The distance matrix is symmetric
The diagonal is zero
Cells close to the diagonal are very small

Matrix Profile: a vector of distance between each 
subsequence and its nearest neighbor

di,j is the distance between the ith window and 
the jth window of the time series 

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

Matrix Profile from Distance Profiles

D1

D2

Di

Dn-m+1



STMP: Scalable Time Series Matrix Profile Algorithm

MP(1:n-m+1) = inf;

for i = 1:n-m+1

d = MASS(T,T(i:i+m-1));

MP = min([MP ; d]);

end

Matrix Profile: a vector of distance between each 
subsequence and its nearest neighbor

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1
Time complexity of STMP is 𝑂(𝑛2log 𝑛 )
Space complexity of STMP is 𝑂 𝑛

D1

D2

Di

Dn-m+1



MP(1:n-m+1) = inf;

MPI(1:n-m+1) = -1;

for i = 1:n-m+1 in a random order

d = MASS(T,T(i:i+m-1));

[MP, ind] = min([MP ; d]);

MPI(ind==2) = i;

end

Matrix Profile Index

• Matrix Profile Index (MPI) can be 
maintained as we compute the 
profile

• Vectorized min functions can be 
used to efficiently maintain MPI

• Overhead is negligible Assumes MP and d as column vectors



Trivial Match I

• We need to understand the idea of a “trivial match”. It shows up for 
definitions of discords, motifs, similarity search etc.

• Suppose we search for the query, of length 20, in the time series…

• …we find its best match is at location 50…

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Best Match 



Trivial Match II

• Where is the second best match? It is probably going to be at 49 or 51, 
but that is trivial, it is just a minor “variant” of the original match.

• (try togging backwards and forwards between this and the last slide)

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Second Best Match 



Trivial Match III

• To avoid trivial matches, we find the first match, then we set an exclusion 
zone around the best match, then find the second best match, etc.

• The size of the exclusion zone is not critical, ½ m works well.

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Best Match (Non-Trivial) Second Best Match 



Trivial Match IIII   Special Case

• When computing the MP, we will be extracting the subsequences from 
the time series itself.

• Clearly such queries will just find “themselves” as their own nearest 
neighbor!

• The distance from the query to any part of the subsequence that overlaps 
the exclusion zone is kept undefined (NaN).

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Location Query was taken from (Non-Trivial) Best Match 



STMP: Scalable Time Series Matrix Profile Algorithm
MP(1:n-m+1) = inf;

MPI(1:n-m+1) = -1;

for i = 1:n-m+1

d = MASS(T,T(i:i+m-1));

d( max(i-m/4,1) : min(i+m/4-1,n-m+1))= NaN;

[MP, ind] = min([MP ; d]);

MPI(ind==2) = i;

end

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1

Size of Exclusion Zone depends on the smoothness 
of the time series. A default value of m/2 works well.
Data adaptive heuristic could be to set the length of 
the exclusion zone equal to m or the period (1/f) of 
the highest energy frequency, whichever is smaller.



STAMP: Scalable Time Series Anytime Matrix Profile
• Each distance profile is independent of other distance profiles, the order 

in which we compute them can be random

• A random ordering averages the performance over properties of the time 
series, such as smoothness, frequency, stationarity, etc.

• The random ordering provides diminishing return, which allows interrupt-
resume operations anytime.

MP(1:n-m+1) = inf;

MPI(1:n-m+1) = -1;

for i = 1:n-m+1 in a random order

d = MASS(T,T(i:i+m-1));

d( max(i-m/4,1) : min(i+m/4-1,n-m+1))= NaN;

[MP, ind] = min([MP ; d]);

MPI(ind==2) = i;

end



Exploring the Anytime Property (1 of 3)
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approximate matrix profile 

at 1,000 iterations.

exact matrix profile

• The approximate matrix profile at 1,000 iteration is extremely similar
to the exact solution.

• The convergence rate increases, for larger datasets.



Exploring the Anytime Property (2 of 3)



Exploring the Anytime Property (3 of 3)
After doing only 1/500th of the computations, the basic shape of the MP has converged, 
and we have found the final correct motif.
As an aside, note that the dimensionality of the subsequences here is 60,000. 



Can we improve STAMP? 

STAMP computes distance profiles for 
rows in random order. Each distance 
profile is computed independently. 
However, the successive rows are 
profiles of two queries that overlap in 
𝑚 − 1 observations.

We can exploit the overlap between 
successive queries while computing 
their distance profiles to build an 
𝑂(𝑛2) time, 𝑂(𝑛) space algorithm.

STOMP: Scalable Time series Ordered Matrix Profile

d1,1 d1,2 … … … d1,n-m+1

d2,1 d2,2 … … … d2,n-m+1

… … … … … …

di,1 di,2 … di,j … di,n-m+1

… … … … … …

dn-m+1,1 dn-m+1,2 … … … dn-m+1,n-m+1

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 … … ... Pn-m+1



We have an O(n2) time, O(n) space algorithm called STOMP to evaluate it. 

Recall our working formula:

𝑑𝑖,𝑗 = 2𝑚 1 −
𝑇𝑖𝑇𝑗 −𝑚𝜇𝑖𝜇𝑗

𝑚𝜎𝑖𝜎𝑗

Dot product of the ith window and the jth window. 

• We precompute and store the means and standard deviations in O(n) 
space and time using the movmean and movstd functions. 

• Once we know 𝑇𝑖𝑇𝑗, it takes O(1) time to compute 𝑑𝑖,𝑗

STOMP: Scalable Time series Ordered Matrix Profile

𝑇𝑖𝑇𝑗 = ෍

𝑘=0

𝑚−1

𝑡𝑖+𝑘𝑡𝑗+𝑘



The relationship between 𝑇𝑖𝑇𝑗 and 𝑇𝑖+1𝑇𝑗+1

… 𝒕𝒊 𝒕𝒊+𝟏 𝒕𝒊+𝟐 … 𝒕𝒊+𝒎−𝟏 𝒕𝒊+𝒎 …

𝑇𝑖+1𝑇𝑗+1 =

𝑇𝑖𝑇𝑗 = ෍

𝑘=0

𝑚−1

𝑡𝑖+𝑘𝑡𝑗+𝑘

× × × ×+ + + +

× × × ×+ + + +…

𝑇𝑖+1𝑇𝑗+1= 𝑇𝑖𝑇𝑗 − 𝑡𝑖𝑡𝑗 + 𝑡𝑖+𝑚𝑡𝑗+𝑚 𝑶 𝟏 time complexity

… 𝒕𝒋 𝒕𝒋+𝟏 𝒕𝒋+𝟐 … 𝒕𝒋+𝒎−𝟏 𝒕𝒋+𝒎 …

… 𝒕𝒊 𝒕𝒊+𝟏 𝒕𝒊+𝟐 … 𝒕𝒊+𝒎−𝟏 𝒕𝒊+𝒎 …

… 𝒕𝒋 𝒕𝒋+𝟏 𝒕𝒋+𝟐 … 𝒕𝒋+𝒎−𝟏 𝒕𝒋+𝒎 …



STOMP Algorithm: Computing the ith Row

P1 P2 P3 … Pn-m+1

Update if Smaller

I1 I2 I3 … In-m+1

𝜇1 𝜇2 𝜇3 … 𝜇𝑛−𝑚+1

𝜎1 𝜎2 𝜎3 … 𝜎𝑛−𝑚+1

𝑇1𝑇2 𝑇1𝑇3 … 𝑇1𝑇𝑛−𝑚 𝑇1𝑇𝑛−𝑚+1𝑇1𝑇1

𝑇2𝑇1

.

.

.

𝑇𝑖−1𝑇1

𝑇𝑖𝑇1

.

.

.

𝑇𝑛−𝑚𝑇1

𝑇𝑛−𝑚+1𝑇1

𝑇𝑖−1𝑇2 𝑇𝑖−1𝑇3 … 𝑇𝑖−1𝑇𝑛−𝑚𝑇𝑖−1𝑇𝑛−𝑚+1

𝑇𝑖𝑇2 𝑇𝑖𝑇3 … 𝑇𝑖𝑇𝑛−𝑚 𝑇𝑖𝑇𝑛−𝑚+1

Output Arrays

Precomputed Arrays

Rolling Arrays

All means and standard deviations are 
precomputed. This costs linear time and 
space.

The first column and row of the matrix are 
identical and pre-computed by MASS.

We iterate through the rows. The previous 
row is maintained as a local array to feed dot 
products.

The dot products are converted to distance 
values and compared against the current best 
in the profile.



SCRIMP: Scalable Column Independent Matrix Profile

P1 P2 P3 … Pn-m+1

I1 I2 I3 … In-m+1

𝜇1 𝜇2 𝜇3 … 𝜇𝑛−𝑚+1

𝜎1 𝜎2 𝜎3 … 𝜎𝑛−𝑚+1

𝑇1𝑇2 𝑇1𝑇3 … 𝑇1𝑇𝑛−𝑚 𝑇1𝑇𝑛−𝑚+1𝑇1𝑇1

𝑇2𝑇1

.

.

.

𝑇𝑖−1𝑇1

𝑇𝑖𝑇1

.

.

.

𝑇𝑛−𝑚𝑇1

𝑇𝑛−𝑚+1𝑇1

Output Arrays

Precomputed Arrays

𝑇𝑛−𝑚+1𝑇𝑛−𝑚+1

STOMP iterates through rows. Each row depends on the 
previous row. Therefore random ordering is not suitable.

However, the diagonals are independent of each other. 
We exploit this property to randomize the computation 
so we achieve an anytime 𝑂(𝑛2) algorithm.

We avoid computing the upper triangle of the matrix 
because the distance matrix is symmetric.



…

Porting STOMP to GPU

Each thread is assigned to calculate one entry in 
the matrix profile in every iteration.

All the precomputed arrays are in global shared 
memory that is accessible to all threads.

Threads are synced after a row is processed to 
avoid race.

We can further optimize to compute only the 
lower triangle of the matrix, please see the 
paper.



Comparison of STAMP, STOMP and GPU-STOMP

Algorithm n 217 218 219 220

STAMP 15.1 min 1.17 hours 5.4 hours 24.4 hours

STOMP 4.21 min 0.3 hours 1.26 hours 5.22 hours

GPU-STOMP 10 sec 18 sec 46 sec 2.5 min

For a fix subsequence length m=256: time

Algorithm m | n 2000 | 17,279,800 400 | 100,000,000

STAMP (estimated) 36.5 weeks 25.5 years

STOMP (estimated) 8.4 weeks 5.4 years

GPU-STOMP 9.27 hours 12.13 days

For large data, and for the very first time in the literature, 100,000,000



Comparing the speed of STOMP with existing algorithms

Algorithm m 512 1,024 2,048 4,096

STOMP 501s (14MB) 506s (14MB) 490s (14MB) 490s (14MB)

Quick-Motif 27s (65MB) 151s (90MB) 630s (295MB) 695s (101MB)

MK 2040s (1.1GB) N/A (>2GB) N/A (>2GB) N/A (>2GB)

For a time series of length 218: CPU time(memory usage)

Note: the time and space cost of STOMP is completely independent of any properties (noise, 
trends, stationarity etc.) of data.
Quick-Motif and MK are pruning based techniques with non-monotonic space need.
STOMP produces more information (i.e. Matrix Profile) while the others find the motifs only.



1. Given the inputs, the time is completely deterministic. 
2. The time is completely independent of, m the length of the query. So long as m << n.
3. The time is completely independent of the structure/noise-level of data itself.

As it happens, these properties are very rare in data mining algorithms. 

Can we use these properties to estimate time-to-finish?

The Progress Bar Question: How long will it take 
for STOMP, SCRIMP to finish?



The time only depends on the length of the time series, n, and the hardware settings.
To compute the time needed to finish, you just need to do one calibration run on any 
particular hardware configuration. 

The Progress Bar Question: How long will it take 
for STOMP, STAMP or SCRIMP to finish?

𝑇𝑖𝑚𝑒𝑁𝑒𝑒𝑑𝑒𝑑 =
𝑇𝑖𝑚𝑒𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
𝑛𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

2
∗ 𝑛𝑛𝑒𝑤
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Red is predicted
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Note the log axis

How well does this work?  

We measured the time needed for 
T = 512, 1024, 2048,… ,131072 (we 
used an old cheap laptop)

We then used the time measured 
for the 131,072 run, to predict the 
time needed for all the other runs. 
We plotted the two curves below.  
Note that the last point agrees by 
definition. 
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Open Problems

• Find Lower Bounds
• An 𝑂(𝑛) lower bound to distance profile
• An 𝑂(𝑛 log 𝑛) lower bound to matrix profile

• Adapt to L1 distance
• 𝑂(𝑛 log 𝑛) algorithm for distance profile
• 𝑂(𝑛2) algorithm for Matrix Profile

• Adapt to DTW distance
• Can we create a Matrix Profile of 100M time series under warping?

• Variable Length Matrix Profile
• Can we rank or sort neighbors of different lengths based on degree of fidelity?

• Scalability
• Distributed Matrix Profile algorithm for horizontal scalability
• Can we exploit hardware acceleration techniques for scalability?



Open Problems

• Domain Appropriate Matrix Profile
• Recall that both STAMP and SCRIMP converge quickly with 

random ordering. However, could a data-adaptive ordering 
converge even faster? 

• We discussed the Annotation Vector (AV). While we can 
typically specify an AV with a few lines of code, can we learn
a domain appropriate AV from user interaction?

• Visualization
• At some scale, user-interfaces / user-experience become very 

important, we have largely glossed over this. Can we develop 
interactive visualization techniques for active exploration 
over MP?





The End!

Questions?

Visit the Matrix Profile Page
www.cs.ucr.edu/~eamonn/MatrixProfile.html

Visit the MASS Page
www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

Please fill out an evaluation form, 
available in the back of the room.


