


Reconvene
ÅIn the first half, we have seen many wonderful things you 

can do with the Matrix Profile, without explaining how to 
compute it!

ÅIn this half, we will describe algorithms to compute matrix 
profile, optimization techniques for scalability, portability 
to modern hardware, approximation to gain speed, and 
extension to special cases.

ÅWe embed MATLAB scripts in slides that can reproduce 
charts and numbers, and explain algorithms.

ÅSlides are text heavy to facilitate offline readers. In the 
presentation, focus is on figures.

Å+ÌÛɀÚɯÉÌÎÐÕȱ



Outline
ÅOur Fundamental Assumption

ÅWhat is the (MP) Matrix Profile?

ÅProperties of the MP

ÅDeveloping a Visual Intuition for MP

ÅBasic Algorithms
Å MP Motif Discovery

Å MP Time Series Chains

Å MP Anomaly Discovery

Å MP Joins (self and AB)

Å MP Semantic Segmentation

ÅFrom Domain Agnostic to Domain Aware: 
The Annotation Vector (A simple way to use domain 
knowledge to adjust your results)

Å¢ƘŜ άMatrix Profile and ten lines of code is 
all you needέ ǇƘƛƭƻǎƻǇƘȅΦ

ÅBreak

ÅBackground on time series mining
ÅSimilarity Measures

ÅNormalization

ÅDistance Profile
ÅBrute Force Approach

ÅJust-in-time Normalization

ÅThe MASS Algorithm

ÅExtensions of MASS

ÅMatrix Profile
ÅSTAMP

ÅSTOMP

ÅGPU-STOMP

ÅSCRIMP

ÅOpen problems to solve

Act 1 Act 2



What are Time Series?    1 of 2
A time series is a collection of observations made sequentially in time. 

More than most types of data, time series lend themselves to visualƛƴǎǇŜŎǘƛƻƴ ŀƴŘ ƛƴǘǳƛǘƛƻƴǎΧ
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For example, looking at the numbers in this 
bluevector tells us nothing.
But after plotting the data, we can 
recognize a heartbeat, and possibly even 
diagnose this person's disease.

When the observations are uniformly 
sampled, the index of observation can 
replace the time of observation. In the rest 
of the tutorial, we assume time series are 
vectors.

The observations may have a unit.
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Mantled Howler Monkey
Alouatta palliata

What are Time Series?    2 of 2
!ǎ ŀƴ ŀǎƛŘŜΧ όƴƻǘ ǘƘŜ Ƴŀƛƴ Ǉƻƛƴǘ ŦƻǊ ǘƻŘŀȅύ

Many types of data that are not true time series can be fruitfully transformed into time 
series, including DNA, speech, textures, core samples, ASCII text, historical handwriting, 
novels and even shapes.
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Similarity Measures for Time Series

ÅA similarity measure compares two time series and produces a number 
representing their similarity
ÅA distance measure is the opposite of similarity measure

ÅLockstep Measures 
ÅEuclidean Distance

ÅCorrelation Coefficient

ÅCosine Similarity

ÅElastic Measures
ÅDynamic Time Warping

ÅEdit Distance

ÅLongest Common Subsequence



Euclidean Distance Metric

y

x

Given two time series

x = x1Χxn

and 

y = y1Χyn

their z-Normalized Euclidean distance is defined as:
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function y = zNorm(x)

y = (x - mean(x))/ std (x,1);

Ὠὼȟώ ὼ ώ

function d = EuclideanDistance ( x,y )

d = sqrt (sum((x- y).̂2));



tŜŀǊǎƻƴΩǎ /ƻǊǊŜƭŀǘƛƻƴ /ƻŜŦŦƛŎƛŜƴǘ

ÅGiven two time series ●and ◐of lengthά. 

ÅCorrelation Coefficient:

ὧέὶὶ●ȟ◐
Ὁὼ ‘ Ὁώ ‘

„„

В ὼώ ά‘‘

ά„„

ÅWhere ‘
В

and „
В

‘

ÅSufficient Statistics:

В ὼώ В ὼ В ώ В ὼ В ώ

The sufficient statistics can be calculated in one linear scan. Given the sufficient 
statistics, correlation coefficient is a constant operation. Note the use of the dot 
product, which is the key component of many lockstep measures.



Relationship with Euclidean Distance

Ὠ●ȟ◐ ςάρ ὧέὶὶ●ȟ◐

Ὠ ●ȟ◐ ςάρ ὧέὶὶ●ȟ◐

ÅCorrelation coefficient does not obey 
triangular inequality, while Euclidean 
distance does

ÅMaximizing correlation coefficient can be 
achieved by minimizing normalized 
Euclidean distance and vice versa

ÅCorrelation coefficient is bounded between 
-1 and 1, while z-normalized Euclidean 
distance is bounded between zero and a 
positive number dependent on m

Abdullah Mueen, Suman Nath, JieLiu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182

20 for m = 100



Working Formula

ÅWe will use the above z-Normalized Euclidean distance as the 
similarity measure for the rest of the presentation

ÅWe claim calculating Matrix Profile for Correlation Coefficient and 
Cosine Similarity is trivial given an algorithm for z-Normalized 
Euclidean distance

Ὠ●ȟ◐ ςάρ
В ὼώ ά‘‘

ά„„
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The Importance of z-Normalization and correlation 1 of 2

Essentially all datasets must have every
subsequence z-normalized. 

There are a handful of occasions where 
it does not make sense to z-normalize, 
but in those cases, similarity search 
does not make sense either.

In this example, we begin by extracting 
heartbeats  from two unrelated people.

Even without normalization, it happens 
that  both sets have almost the same 
mean and standard deviation. Given 
that, do we need to bother to normalize 
them?  (next slide)

Extracted 
beats 
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Extracted 
beats 

Without normalization, the results are 
verypoor, some blue heartbeats are 
closer to red heartbeats than there are 
to another blue beat . 

With normalization, the results are 
perfect.

Un-normalized Normalized

In this example, we extracted heartbeats from 
two different time series, and clustered them  
with and without normalization.

Surprisingly z-normalizing can be a 
computational bottleneck, but later we will 
show you how to fix that.

The Importance of z-Normalization and correlation 2 of 2
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Distance Profile

d1 d2 Χ dn-m+1

Compute the z-normalized Euclidean distance between Queryand each window (subsequence) in the time series. 
We would obtain a vector like this:

di is the distance between the ith subsequence and the query.

D

Query

Sliding Window

Recall, n is the length of the blue time series 
and m is the length of the query



The Brute Force Algorithm
ÅScan the time series with a sliding window
ÅZ-Normalize the window
ÅCalculate Euclidean distance between window 

and the query

d(1:n) = 0;

Q = zNorm(query);

for i = 1:n - m+1

d(i) = sqrt(sum((zNorm( T(i:i+m - 1)) - Q).^2));

end

ÅHow long does this algorithm take?

ÅThe time complexity is ὕὲάin the average and worst cases. More precisely the 
window is scanned two times in each iteration of this algorithm. One scan is for z-
normalization, and the other scan is for distance calculation.

ÅNote that we cannot use any early abandoning or pruning as we need all the distances.
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Just-in-time Normalization (1 of 3)

ÅCan we skip the z-normalization scan in each 
iteration?

ÅYes, if we have the means, standard deviations 
and the dot product to calculate the distances.

Åz-normalized sequence has 
zero mean and one standard 
deviation.
Å[ŜǘΩǎ ŀǎǎǳƳŜ ώis the z-normalized query, and ὼis 

the time series (T), therefore, ‘ πand „ ρ

Ὠ●ȟ◐ ςά
В ὼώ

„

ThanawinRakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

Ὠ●ȟ◐ ςάρ
В ὼώ ά‘‘

ά„„

Working Formula



Just-in-time Normalization (2 of 3)

ÅCan we skip the z-normalization scan in each iteration?

ÅThe standard deviations of moving windows of a fixed size 
can be calculated in one linear scan.

ÅIn 2016, MATLAB has introduced a function, movstd , that 
does the above.

Ὠ●ȟ◐ ςά
В ὼώ

„

ThanawinRakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270

ÅIn one pass, calculate cumulative sums of ὼand ὼςand 
store

ÅSubtract two cumulative sums to obtain the sum over 
any window 

ÅUse the sums to calculate the standard deviations of all 
windows in linear time 

ὅ Вὼ ὅ Вὼ

Ὓ ὅ ὅὛ ὅ ὅ

„
Ὓ

ά

Ὓ

ά



Just-in-time Normalization (3 of 3)

ÅCan we skip the z-normalization scan in each 
iteration?

ÅStill the worst and average cost is ὕὲά, 
however, the window is scanned only once 
per iteration for the dot product.

ÅSpeedup is more than 2X, due to removal of 
function calls

d(1:n) = 0;

Q = zNorm(query);

S = movstd (T,[0 m - 1]);

for i = 1:n - m+1

d(i) = sqrt(2*(m - sum(T(i:i+m - 1).*Q)/S(i)));

end

ThanawinRakthanmanon, et al. Searching and mining trillions of time series subsequences under dynamic time warping. KDD 2012: 262-270
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x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(1 of 9)

ÅCan we improve the just-in-time Normalization algorithm?

ÅMASS uses a convolution based method to calculate sliding dot products in ὕὲÌÏÇὲ, in 
addition to just-in-time z-normalization technique

ÅConvolution: If x andy are vectors of polynomial coefficients, convolving them is equivalent 
to multiplying the two polynomials.

ÅWe use convolution to compute all of the sliding dot products between the query and 
sliding windows.

Output0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

Convolution

Inputx1 y1x2 x3 x4 y2

y2x2+y1x1 y2x3+y1x2 y2x4+y1x3



aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(2 of 9)

ÅComputational cost, ὕὲÌÏÇὲ, 
does not depend on the query 
length (ά), thus, free of curse of 
dimensionality.

ÅThere is no loop. Only known 
mathematical and built-in MATLAB 
functions are used.

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd (T,[0 m - 1]);

Q = Q(end: - 1:1);     %Reverse the query

Q(m+1:n) = 0;        %pad zeros

dots = conv(T,Q);

dist = 2*(m - (dots(m:n))./Stdv));

dist = sqrt ( dist );

MASS 
1.0

The loop has been replaced 
by the following three lines.

Vectorizedworking formula 
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aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(3 of 9)

ÅCan we improve MASS 1.0?

ÅNote that convolution doubles the size of the input vectors in the output.

ÅMASS uses only half of the output of convolution and throws away the remaining half.

Å/ŀƴ ǿŜ ŎƻƳǇǳǘŜ Ƨǳǎǘ ǘƘŜ ƴŜŎŜǎǎŀǊȅ ƘŀƭŦΚ [ŜǘΩǎ ǎŜŜ ǿƘŀǘ ƘŀǇǇŜƴǎ ƛƴǎƛŘŜ ŎƻƴǾƻƭǳǘƛƻƴΦ

ÅConvolution in time domain is multiplication in frequency domain.

Åconv(x,y) = ifft ( fft ( double&pad (x)) . fft ( double&pad (y))

x1 y2

Double and Pad Ø Double and Pad Ù

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3
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* Y1 Y2 Y3 Y4 Y5Y4
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*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4
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*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(ὼ) Y=FFT(ώ)

X.Y

ifft (X.Y)

Complex 
Conjugates



aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(4 of 9)

ÅCan we improve MASS 1.0?

ÅIf we do not double x and y, we obtain a half convolution

Åhalf conv( x,y )= ifft ( fft(x) . fft (y))

x1 y2

Ø Ù

0 0x2 x3 x4 y1

X1 X2 X3X2
* Y1 Y2 Y3 Y2

*

Y1X1 Y2X2 Y3
*X3

* Y2
*X2

*

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(ὼ) Y=FFT(ώ)

X.Y

ifft (X.Y)

conv( x,y ) = ifft ( fft ( double&pad (x)) . 

fft ( double&pad (y) )
half conv( x,y )= ifft ( fft (x) . fft (y))

x1 y2

Double and Pad Ø Double and Pad Ù

0 0x2 x3 x4 y1 0 0 0 00 0 0 0

X1 X2 X3 X4 X5 X4
* X3

* X2
* Y1 Y2 Y3 Y4 Y5Y4

* Y3
* Y2

*

Y1X1 Y2X2 Y3X3 Y4X4 Y5X5 Y4
*X4

* Y3
*X3

* Y2
*X2

*

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

X=FFT(ὼ) Y=FFT(ώ)

X.Y

ifft (X.Y)

Complex 
Conjugates



aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(5 of 9)

ÅCan we improve MASS 1.0?

ÅHalf convolution adds a constraint, ὲ . The constraint is not limiting because the original 

assumption is ὲḻά.

x1 y2

Time Series
Reversed and 

Padded Query
0 0x2 x3 x4 y1

y2x1 y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

x1 y2

Time Series Reversed and Padded Query

0 0x2 x3 x4 y1

0 0y2x1 y1x4y2x2+y1x1 y2x3+y1x2 y2x4+y1x3

x1 y1x2 x3 x4 y2

conv( x,y ) = ifft ( fft ( double&pad (x)) . 

fft ( double&pad (y) )
half conv( x,y )= ifft ( fft (x) . fft (y))



aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(6 of 9)

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd (T,[0 m - 1]);

Q = Q(end: - 1:1);     %Reverse the query

Q(m+1:n) = 0;        %pad zeros

dots = ifft ( fft(T).* fft (Q) );

dist = 2*(m - (dots(m:n))./Stdv));

dist = sqrt ( dist );

The conv(T,Q) has been 
replaced, no doubling of sizes

ÅComputational cost is still ὕὲÌÏÇὲ, 
does not depend on the query length 
(ά), thus, free of curse of dimensionality.

Åfast Fourier transform (fft ) is used as a 
subroutine

MASS 
2.0
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aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(7 of 9)

ÅCan we improve MASS 2.0?

ÅThis idea is a rediscovery of a known result, Overlap-add, Overlap-save[a]

ÅInstead of processing all n samples at once, we can (carefully) process them piecewise,
where sizes of the pieces are powers of two.

ÅThe pieces must overlap exactly m-1 samples to preserve continuity of the distance profile.

ÅThe last piece can be of size that is not a power of two.

[a] https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method
[b] https://users.ece.cmu.edu/~franzf/papers/gttse07.pdf
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aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(8 of 9)
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aǳŜŜƴΩǎAlgorithm for Similarity Search (MASS)(9 of 9)
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Å Design a new application specific processor to do 
FFT efficiently [a][b].

Å Keep the general processor and optimize DRAM to 
compute FFT efficiently [c].

Å Keep a commodity box, add a GPU to do FFT 
efficiently [d].

Å Keep a commodity box, add an FPGA to do FFT 
efficiently [e].

Å Take a commodity box, and use sparse FFT [f].

[a] The Fast Fourier Transform in Hardware: A Tutorial Based on an FPGA Implementation, George Slade.

[b] Appendix C: Efficient Hardware Implementations of FFT Engines, Nasserbakht, Mitra (Ed. Bingham, John 

A. C.) ADSL, VDSL, and Multicarrier Modulation, John Wiley & Sons, Inc. 2001

[c] B. Akēn, F. Franchettiand J. C. Hoe, "Understanding the design space of DRAM-optimized hardware FFT 

accelerators,"2014 IEEE 25th International Conference on Application-Specific Systems, Architectures and 

Processors, Zurich, 2014, pp. 248-255.

[d] Naga K. Govindaraju, Brandon Lloyd, Yuri Dotsenko, Burton Smith, and John Manferdelli. 2008. High 

performance discrete Fourier transforms on graphics processors. InProceedings of the 2008 ACM/IEEE 

conference on Supercomputing(SC '08).

[e] Ren Chen, ShreyasG. Singapura, and Viktor K. Prasanna. 2017. Optimal dynamic data layouts for 2D FFT 

on 3D memory integrated FPGA.J. Supercomput. 73, 2 (February 2017), 652-663. 

[f] HaithamHassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and practical algorithm for 

sparse Fourier transform. InProceedings of the twenty-third annual ACM-SIAM symposium on Discrete 

algorithms(SODA '12). 1183-1194.



Numerical Errors in MASS

Å Three possible sources of numerical errors in MASS
Å Convolution

Å Numerical error in Convolution can appear if n is 
very large, MASS 3.0 reduces such error by dividing 
the computation in batches

Å Division by the standard deviation
Å If a subsequence is constant, the standard deviation 

is zero, causing divide by zero errors. MASS reduces 
such error by checking the standard deviations 
ahead of the division.

Å Square root of the distances
Å Theoretically it is not possible to have negative 

squared distance. However, for exact matches, the 
squared distance can be a very small negative 
number (-1.09e-15), resulting imaginary numbers in 
the output.

d(1:n) = 0;

Q = zNorm(query);

Stdv = movstd (T,[0 m - 1]);

Q = Q(end: - 1:1);     

Q(m+1:n) = 0; 

dots = ifft ( fft(T).* fft (Q) );

dist = 2*(m - (dots(m:n)). /Stdv ));

dist = sqrt ( dist );
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MASS Extensions: Approximate Distance Profile

ÅCan we trade speed with accuracy in MASS?

ÅWe use piecewise aggregate approximation (PAA) to reduce 
dimensionality of both T and Q

Åsqrt(w)* MASS(PAA( T,w ),PAA( Q,w),m/w)

ύ
1 2 3 4 5 6 7

Selina Chu, EamonnJ. Keogh,David M. Hart,Michael J. Pazzani: Iterative Deepening Dynamic Time Warping for Time Series.SDM 2002: 195-212
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Approximate distance profile in Red

PAA



Ὠ ὼȟώ ύ ὼ ώ

Given two time series

x = x1éxn

and 

y = y1éyn

their z-Normalized weighted Euclidean distance is defined as:

ὼ
ὼ ‘

„
ώ

ώ ‘

„

Ὠὼȟώ ὼ ώ

MASS Extensions: Weighted Query
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MASS Extensions: Weighted Query

ÅWorking formula that we have been using so far, will not work anymore.

ÅThe new working formula is below.

ÅWe need three sliding dot products instead of onein regular MASS

Ὠ ὼȟώ ύ ὼ ώ ύ
ὼ ‘

„
ώ

ύὼ ς‘ύὼ ςύὼώ ‘ύ ς‘ύώ ύώ

Terms with x need 
sliding dot products

Terms without x 

are precomputed
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We may wish to consider a more general type of 
query. Queries with gaps, as in the purpleexample.

I want the first third to slope down, and the last 
third to slope up with the plateau at the end. 
IƻǿŜǾŜǊΣ L ŘƻƴΩǘ ŎŀǊŜ ǿƘŀǘ ƎƻŜǎ ƛƴ ǘƘŜ ƳƛŘŘƭŜΦ

Either of the two red patterns would be acceptable 
matches. 

Note that the relative offset and scaling of the two 
parts do not matter, and we should be invariant to 
them. In other words, the exact slope does not 
matter in the above query statement.

0 50 100 150 200 250 300

query
MASS Extensions: Query with Gap(s)

0 100 200 300



1. Measure the distance between beginning of the two patterns, call it L

2. /ƻƳǇǳǘŜΧ
Dist_profile1 = MASS(T, querysub1);

Dist_profile2 = MSAS(T, querysub2);

3. Pad the endof Dist_profile1 and the beginningof 
Dist_profile2 with a vector of L infinities to add a lag of L

For example, ifL = 5, then use {inf, inf, inf, inf, inf}

4. Create Dist_profile3 = Dist_profile1 + Dist_profile2

5. We can now use Dist_profile3 to find the nearest neighbor(s) 
as before.

0 100 200 300

L

querysub1

querysub2

MASS Extensions: Query with Gap(s)
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Dist_profile1 = MASS(tag, querysub1);

Dist_profile2 = MASS(tag, querysub2);

Dist_profile3 = Dist_profile1 + Dist_profile2  

Min value is at 1536

1336

9116

0 100 200 300

querysub1 querysub2

Note that for the best match, each part 
of the query scaled differently. 
For the image to the right, I fixed the 
left side and scaled the right side (to 
give context), but both sides needed 
rescaling somewhat 

Random walk

Padded by L infsor NaNs

Slide by L slots

MASS Extensions: Query with Gap(s)
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ÅOur Fundamental Assumption

ÅWhat is the (MP) Matrix Profile?

ÅProperties of the MP

ÅDeveloping a Visual Intuition for MP

ÅBasic Algorithms
Å MP Motif Discovery

Å MP Time Series Chains

Å MP Anomaly Discovery

Å MP Joins (self and AB)

Å MP Semantic Segmentation

ÅFrom Domain Agnostic to Domain Aware: 
The Annotation Vector (A simple way to use domain 
knowledge to adjust your results)

Å¢ƘŜ άMatrix Profile and ten lines of code is 
all you needέ ǇƘƛƭƻǎƻǇƘȅΦ

ÅBreak

ÅBackground on time series mining
ÅSimilarity Measures

ÅNormalization

ÅDistance Profile
ÅBrute Force Approach

ÅJust-in-time Normalization

ÅThe MASS Algorithm

ÅExtensions of MASS

ÅMatrix Profile
ÅSTAMP

ÅSTOMP

ÅGPU-STOMP

ÅSCRIMP

ÅOpen problems to solve

Act 1 Act 2



d1,1(= 0) d2,1 Χ dn-m+1,1

Query, the 1st subsequence in the time series

Obtain the z-normalized Euclidean distance between Queryand each window 
(subsequence) in the time series. We would obtain a vector like this:

di,j is the distance between the ith subsequence and the jth subsequence.

D1

We can obtain D2, D3Σ Χ 5n-m+1similarly.

Matrix Profile from Distance Profiles



The distance matrix is symmetric
The diagonal is zero
Cells close to the diagonal are very small

Matrix Profile: a vector of distance between each 
subsequence and its nearest neighbor

di,j is the distance between the ith window and 
the jth window of the time series 

d1,1 d1,2 Χ Χ Χ d1,n-m+1

d2,1 d2,2 Χ Χ Χ d2,n-m+1

Χ Χ Χ Χ Χ Χ

di,1 di,2 Χ di,j Χ di,n-m+1

Χ Χ Χ Χ Χ Χ

dn-m+1,1 dn-m+1,2 Χ Χ Χ dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 Χ Χ ... Pn-m+1

Matrix Profile from Distance Profiles

D1

D2

Di

Dn-m+1



STMP: Scalable Time Series Matrix Profile Algorithm

MP(1:n - m+1) = inf;

for i = 1:n - m+1

d = MASS(T,T(i:i+m - 1));

MP = min([MP ; d]);

end

Matrix Profile: a vector of distance between each 
subsequence and its nearest neighbor

d1,1 d1,2 Χ Χ Χ d1,n-m+1

d2,1 d2,2 Χ Χ Χ d2,n-m+1

Χ Χ Χ Χ Χ Χ

di,1 di,2 Χ di,j Χ di,n-m+1

Χ Χ Χ Χ Χ Χ

dn-m+1,1 dn-m+1,2 Χ Χ Χ dn-m+1,n-m+1

ith

jth

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 Χ Χ ... Pn-m+1
Time complexity of STMP is ὕὲÌÏÇὲ
Space complexity of STMP is ὕὲ

D1

D2

Di

Dn-m+1



MP(1:n - m+1) = inf;

MPI(1:n - m+1) = - 1;

for i = 1:n - m+1 in a random order

d = MASS(T,T(i:i+m - 1));

[MP, ind] = min([MP ; d]);

MPI( ind ==2) = i ;

end

Matrix Profile Index

ÅMatrix Profile Index (MPI) can be 
maintained as we compute the 
profile

ÅVectorizedmin functions can be 
used to efficiently maintain MPI

ÅOverhead is negligible Assumes MPand d as column vectors



Trivial Match I

Å²Ŝ ƴŜŜŘ ǘƻ ǳƴŘŜǊǎǘŀƴŘ ǘƘŜ ƛŘŜŀ ƻŦ ŀ άǘǊƛǾƛŀƭ ƳŀǘŎƘέΦ Lǘ ǎƘƻǿǎ ǳǇ ŦƻǊ 
definitions of discords, motifs, similarity search etc.

ÅSuppose we search for the query, of length 20, in the time seriesΧ

ÅΧǿŜ ŦƛƴŘ ƛǘǎ ōŜǎǘ ƳŀǘŎƘ ƛǎ ŀǘ ƭƻŎŀǘƛƻƴ рлΧ

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Best Match 



Trivial Match II

ÅWhere is the second best match? It is probably going to be at 49 or 51, 
but that is trivialΣ ƛǘ ƛǎ Ƨǳǎǘ ŀ ƳƛƴƻǊ άǾŀǊƛŀƴǘέ ƻŦ ǘƘŜ ƻǊƛƎƛƴŀƭ ƳŀǘŎƘΦ

Å(try togging backwards and forwards between this and the last slide)

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Second Best Match 



Trivial Match III

ÅTo avoid trivial matches, we find the first match, then we set an exclusion 
zone around the best match, then find the secondbest match, etc.

ÅThe size of the exclusion zone is not critical, ½ m works well.

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Best Match (Non-Trivial) Second Best Match 



Trivial Match IIII   Special Case

ÅWhen computing the MP, we will be extracting the subsequences from 
the time series itself.

Å/ƭŜŀǊƭȅ ǎǳŎƘ ǉǳŜǊƛŜǎ ǿƛƭƭ Ƨǳǎǘ ŦƛƴŘ άǘƘŜƳǎŜƭǾŜǎέ ŀǎ ǘƘŜƛǊ ƻǿƴ ƴŜŀǊŜǎǘ 
neighbor!

ÅThe distance from the query to any part of the subsequence that overlaps 
the exclusion zone is kept undefined (NaN).

0 20 40 60 80 100 120 140 160

Query Q

Time Series T

Location Query was taken from (Non-Trivial) Best Match 



STMP: Scalable Time Series Matrix Profile Algorithm
MP(1:n - m+1) = inf ;

MPI(1:n - m+1) = - 1;

for i = 1:n - m+1

d = MASS(T,T(i:i+m - 1));

d( max( i - m/4,1) : min( i+m /4 - 1,n - m+1))= NaN;

[MP, ind] = min([MP ; d]);

MPI( ind ==2) = i ;

end

d1,1 d1,2 Χ Χ Χ d1,n-m+1

d2,1 d2,2 Χ Χ Χ d2,n-m+1

Χ Χ Χ Χ Χ Χ

di,1 di,2 Χ di,j Χ di,n-m+1

Χ Χ Χ Χ Χ Χ

dn-m+1,1 dn-m+1,2 Χ Χ Χ dn-m+1,n-m+1

Min(D1) Min(D2) Min(Dn-m+1)Min(Di)

P1 P2 Χ Χ ... Pn-m+1

Size of Exclusion Zone depends on the smoothness 
of the time series. A default value of m/2 works well.
Data adaptive heuristic could be to set the length of 
the exclusion zone equal to mor the period (1/f) of 
the highest energy frequency, whichever is smaller.



STAMP: Scalable Time Series AnytimeMatrix Profile
ÅEach distance profile is independent of other distance profiles, the order 

in which we compute them can be random

ÅA random ordering averages the performance over properties of the time 
series, such as smoothness, frequency, stationarity, etc.

ÅThe random ordering provides diminishing return, which allows interrupt-
resumeoperations anytime.

MP(1:n - m+1) = inf ;

MPI(1:n - m+1) = - 1;

for i = 1:n - m+1 in a random order

d = MASS(T,T(i:i+m - 1));

d( max( i - m/4,1) : min( i+m /4 - 1,n - m+1))= NaN;

[MP, ind] = min([MP ; d]);

MPI( ind ==2) = i ;

end



Exploring the Anytime Property (1 of 3)
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iteration1,000

approximate matrix profile 

at 1,000 iterations.

exact matrix profile

ÅTheapproximatematrix profile at 1,000 iteration is extremelysimilar
to the exactsolution.

ÅTheconvergencerate increases,for largerdatasets.



Exploring the Anytime Property (2 of 3)


