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Exact indexing of dynamic time warping
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Abstract. The problem of indexing time series has attracted much interest. Most algorithms
used to index time series utilize the Euclidean distance or some variation thereof. However, it
has been forcefully shown that the Euclidean distance is a very brittle distance measure. Dy-
namic time warping (DTW) is a much more robust distance measure for time series, allowing
similar shapes to match even if they are out of phase in the time axis. Because of this flexi-
bility, DTW is widely used in science, medicine, industry and finance. Unfortunately, however,
DTW does not obey the triangular inequality and thus has resisted attempts at exact indexing.
Instead, many researchers have introduced approximate indexing techniques or abandoned the
idea of indexing and concentrated on speeding up sequential searches. In this work, we intro-
duce a novel technique for the exact indexing of DTW. We prove that our method guarantees
no false dismissals and we demonstrate its vast superiority over all competing approaches in
the largest and most comprehensive set of time series indexing experiments ever undertaken.
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1. Introduction

The indexing of very large time series databases has attracted the attention of the
database community in recent years. The vast majority of work in this area has
focused on indexing under the Euclidean distance metric (Agrawal et al. 1995; Chan
et al. 2003; Das et al. 1998; Debregeas and Hebrail 1998; Faloutsos et al. 1994;
Keogh et al. 2000, 2001; Korn et al. 1997; Yi and Faloutsos 2000). However, there is
an increasing awareness that the Euclidean distance is a very brittle distance measure
(Aach and Church 2001; Bar-Joseph et al. 2002; Berndt and Clifford 1994; Chu et
al. 2002; Diez and Gonzalez 2000; Kadous 1999; Keogh and Pazzani 2000; Kollios
et al. 2002; Schmill et al. 1999; Yi et al. 1998). What is needed is a method that
allows an elastic shifting of the time axis, to accommodate sequences that are similar
but out of phase, as shown in Fig. 1. Just such a technique, based on dynamic
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programming, has long been known to the speech-processing community (Itakura
1975; Kruskall and Liberman 1983; Myers et al. 1980; Rabiner and Juang 1993;
Rabiner et al. 1978; Sakoe and Chiba 1978; Tappert and Das 1978). Berndt and
Clifford introduced the technique, dynamic time warping (DTW), to the database
community (Berndt and Clifford 1994). Although they demonstrate the utility of
the approach, they acknowledge that its resistance to indexing is a problem and
that “ . . . performance on very large databases may be a limitation.” Despite this
shortcoming of DTW, it is still widely used in various fields. In bioinformatics,
Aach and Church successfully applied DTW to RNA expression data (Aach and
Church 2001). In chemical engineering, it has been used for the synchronization
and monitoring of batch processes in polymerization (Gollmer and Posten 1995).
DTW has been successfully used to align biometric data, such as gait (Gavrila and
Davis 1995), signatures (Munich and Perona 1999) and even fingerprints (Kovacs-
Vajna 2000). Many researchers, including Caiani et al. (1998), have demonstrated the
utility of DTW for ECG pattern matching. Rath and Manmatha have applied DTW
to the problem of indexing repositories of handwritten historical documents (Rath
and Manmatha 2002) (although handwriting is two-dimensional, it can trivially be
rerepresented as a one-dimensional time series). Finally, in robotics, Schmill et al.
demonstrated a technique that utilizes DTW to cluster an agent’s sensory outputs
(Schmill et al. 1999).

Fig. 1. Note that, while the two time series have an overall similar shape, they are not aligned in the time axis.
Euclidean distance, which assumes the ith point in one sequence is aligned with the ith point in the other, will
produce a pessimistic dissimilarity measure. The nonlinear dynamic time warped alignment allows a more
intuitive distance measure to be calculated

Although applications listed above are quite diverse, one thing they have in com-
mon is that they need to find the best match to a query time series, from a (possibly
very large) pool of candidates. This can trivially be achieved by sequential scanning,
comparing each and every candidate to the query, in an arbitrary order. The problem
with sequential scanning is that it is simply too slow for most applications. What
we really need is a technique to index the data, that is, to find the best match with-
out having to examine every candidate (Roussopoulos et al. 1995; Seidl and Kriegel
1998). Indexing techniques can be exact, guaranteeing to return the same result as
sequential scanning (Faloutsos et al. 1994; Keogh et al. 2000, 2001), or approxi-
mate, returning good matches but not necessarily the best matches (Faloutsos and
Lin 1995; Park et al. 2001; Yi et al. 1998).

More than two-dozen techniques have been introduced to index time series under
the Euclidean distance (Chan et al. 2003; Faloutsos et al. 1994; Keogh et al. 2000;
Yi and Faloutsos 2000) (see Keogh et al. (2001) for a more comprehensive listing).
In addition, several researchers have shown techniques to approximately index DTW
(Park, personal communication) or introduced methods to reduce its demanding CPU
time (Berndt and Clifford 1994; Chu et al. 2002). However, only two researchers have
claimed to introduce an exact indexing technique for DTW (Kim et al. 2001; Park et
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al. 1999). In the case of Park et al. (1999), the claim of no false dismissals was later
retracted (Park et al. 1999, 2001). We have carefully implemented the only technique
to correctly claim the ability to exactly index DTW and the only other lower bound-
ing approximation of DTW for detailed comparison with our proposed approach.

In contrast with the approaches above, we will prove the no-false-dismissal prop-
erty of our approach and demonstrate its superiority with the most comprehensive
set of time series indexing experiments ever undertaken. In particular, in terms of
number and diversity of datasets, size of datasets, range of query lengths and index-
ing parameters, our experiments are one to two orders of magnitude more than all
previous papers combined.

The rest of the paper is organized as follows. In Sect. 2, we will consider the util-
ity of time series similarity search, review the DTW algorithm, and consider related
work. In Sect. 3, we will introduce a novel lower bounding technique that tightly
approximates the true DTW distance. Section 4 introduces a method that allows the
exact indexing using our lower bounding function. In Sect. 5, we conduct an ex-
haustive empirical comparison of our method with competing techniques. Finally, in
Sect. 6, we offer conclusions and suggestions for extensions.

2. Background

A similarity search in time series is useful in its own right as a tool for interactive
exploration of very large databases; it is also a subroutine in many data mining appli-
cations, including rule discovery (Das et al. 1998), clustering (Debregeas and Hebrail
1998) and classification (Diez and Gonzalez 2000; Kadous 1999). The superiority
of DTW over Euclidean distance for these tasks has been demonstrated by several
authors (Aach and Church 2001; Bar-Joseph et al. 2002; Caiani et al. 1998; Chu et
al. 2002; Keogh and Pazzani 2000; Yi et al. 1998). However, for completeness, we
include a simple experiment to illustrate the point.

The most studied time series classification/clustering problem is the cylinder–bell–
funnel dataset (Diez and Gonzalez 2000; Kadous 1999); it is a deceptively simple-
looking three-class problem. All classes are of length 128. The cylinder class consists
of a short flat section, followed by a sudden jump to an elevated plateau, and a return
to a short flat section. Both the location of the onset of the plateau and the length
of the plateau itself are controlled by random variables. The bell class replaces the
plateau with a ramp and the funnel class is simply the mirror image of the bell class.
Finally, all instances are corrupted by Gaussian noise. More details about the dataset
and a data generator can be downloaded from the UCR Time Series Data Mining
Archive (http://www.cs.ucr.edu/˜eamonn/TSDMA). Figure 2 shows typical examples
of each class.

The problem has been attacked with sophisticated techniques, including rule-base
learners (Diez and Gonzalez 2000; Kadous 1999), boosting, Bayesian techniques, and
decision trees. We performed a simple classification experiment on this dataset, using
the one-nearest neighbor algorithm. Our dataset consists of ten instances of each class
and the classifier was evaluated using the leaving-one-out strategy. Because we had
the luxury of unlimited data, we averaged the results over 1,000 runs. The mean error
rate for the Euclidean distance metric on the problem was 0.2734, but for DTW, it
was only 0.0269, an order of magnitude lower. This off-the-shelf result is competitive
with the highly tuned, sophisticated techniques enumerated above. The lower error
rate came with a cost, however; classification with DTW took approximately 230
times longer than that with Euclidean distance.
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Fig. 2. Typical examples from the cylinder–bell–funnel dataset (cylinder 3 & 4, bell 5 & 6, funnel 1 & 2).
When clustered using Euclidean distance, the variability of the time axis often causes the classes to be con-
fused; in contrast, DTW compensates for the variability in the time axis and does a much better job at correctly
grouping the classes

Table 1. The basic notation used in this work

C A time series of length n C = c1, c2, . . . , ci , . . . , cn

[ci : c j ] A subsequence of C, beginning at ci and ending at c j

C̄ A piecewise aggregate approximation of a time series (Keogh et al. 2000; Yi
and Faloutsos 2000)

DTW The dynamic time warp distance measure

LB_Kim The lower bounding function introduced by Kim et al. (2001)

LB_Yi The lower bounding function introduced by Yi et al. (1998)

LB_Keogh The lower bounding function introduced in this work

This result reiterates the utility of DTW and motivates the necessity of indexing
it.

2.1. Review of DTW

Suppose we have two time series, Q and C, of length n and m, respectively, where

Q = q1, q2, . . ., qi, . . ., qn (1)
C = c1, c2, . . ., c j, . . ., cm . (2)

To align two sequences using DTW, we construct an n-by-m matrix where the
(i th, j th) element of the matrix contains the distance d(qi, c j) between the two points
qi and c j (i.e. d(qi, c j) = (qi − c j)

2). Each matrix element (i, j) corresponds to
the alignment between the points qi and c j . This is illustrated in Fig. 3. A warping
path W is a contiguous (in the sense stated below) set of matrix elements that defines
a mapping between Q and C. The kth element of W is defined as wk = (i, j)k. So
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we have

W = w1, w2, . . ., wk, . . ., wK max(m, n) ≤ K < m + n − 1. (3)

The warping path is typically subject to several constraints.

Fig. 3. A) Two sequences Q and C that are similar but out of phase. B) To align the sequences, we con-
struct a warping matrix and search for the optimal warping path, shown with solid squares. C) The resulting
alignment

• Boundary conditions: w1 = (1, 1) and wK = (m, n). This requires the warping
path to start and finish in diagonally opposite corner cells of the matrix.

• Continuity: Given wk = (a, b), then wk−1 = (a′, b′), where a − a′ ≤ 1 and
b − b′ ≤ 1. This restricts the allowable steps in the warping path to adjacent
cells (including diagonally adjacent cells).

• Monotonicity: Given wk = (a, b), then wk−1 = (a′, b′), where a − a′ ≥ 0 and
b − b′ ≥ 0. This forces the points in W to be monotonically spaced in time.

There are exponentially many warping paths that satisfy the above conditions.
However, we are only interested in the path that minimizes the warping cost:

DTW(Q, C) = min

{√∑K

k=1
wk. (4)

This path can be found using dynamic programming to evaluate the following Re-
currence, which defines the cumulative distance γ(i, j) as the distance d(i, j) found
in the current cell and the minimum of the cumulative distances of the adjacent
elements:

γ(i, j) = d(qi, c j) + min {γ(i − 1, j − 1), γ(i − 1, j), γ(i, j − 1)}. (5)

The Euclidean distance between two sequences can be seen as a special case of
DTW where the kth element of W is constrained such that wk = (i, j)k, i = j = k.
Note that it is only defined in the special case where the two sequences have the
same length. The time and space complexity of DTW is O(nm).
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This review of DTW is necessarily brief; we refer the interested reader to Krus-
kall and Liberman (1983) and Rabiner and Juang (1993) for a more detailed treat-
ment.

2.2. Related work

While there has been much work on indexing time series under the Euclidean metric
(Chan et al. 2003; Faloutsos et al. 1994; Keogh et al. 2000, 2001; Yi and Faloutsos
2000), there has been much less progress on indexing under DTW.

Yi et al. (1998) introduced a technique for approximate indexing of DTW that
utilizes their FastMap technique (Faloutsos and Lin 1995). The idea is to embed
the sequences into Euclidean space such that the distances between them are ap-
proximately preserved, then classic multidimensional index structures can be utilized
(Guttman 1984; Seidl and Kriegel 1988). In addition, they introduced a lower bound-
ing function (described in more detail in Sect. 3.2) that can be used to prune some
of the inevitable false hits their method will introduce. The method does produce an
observed (maximum) speedup of 7.8 over sequential scanning. However, this does
have some limitations. First, it does allow false dismissals. Second, while the time
to build the index is linear in M (the size of the database), it is actually O(Mn2),
which quickly becomes intractable for very large databases and/or long sequences.

Kim et al. introduced an exact algorithm for indexing of time series under DTW
(Kim et al. 2001). The method extracts four features from the sequences and orga-
nizes them in a multidimensional index structure. They introduced a lower bounding
function (described in more detail in Sect. 3.2) that is defined on the four features
and thus guarantees no false dismissals. Although the work introduced the first tech-
nique for exact indexing under DTW, it suffers from several limitations. First, the
method only allows the extraction of exactly four features and thus cannot take ad-
vantage of multidimensional index structures. In addition, although four features are
extracted, only one of them (determined at query time) is actually used in the lower
bounding function; thus, the lower bound is very loose and many false alarms are
generated, each of which will require evaluation with the quadratic-time DTW al-
gorithm.

In Park et al. (1999), the authors demonstrate a DTW indexing technique that is
based on a piecewise linear representation of the data. They prove that this method
can guarantee no false dismissals. Unfortunately, the no-false-dismissals claim is in-
correct. A candidate sequence in the database can differ from the query sequence
by an arbitrarily small epsilon and still not be retrieved (Park, personal communica-
tion). A later version of the paper did carry a disclaimer stating, “ . . . it is possible
that a subsequence similar to a query in terms of the original time warping distance
may not be included in the answer set in our approach” (Park et al. 2001). However,
this qualification understates the problem. Having tested the approach with 39,200
experiments on 32 different datasets, we found that the approach only returned the
true best match to a one-nearest neighbor query 613 times. This result does not
significantly differ from random chance. We therefore exclude this approach from
further consideration.

Another attempt at indexing DTW utilizes a suffix tree (Park et al. 2000). While
the method is interesting, we do not include it in our empirical comparisons because
the index size is one to two orders of magnitude larger than the data itself. Such
enormous space overhead is simply untenable for very large databases. In any case,
the claimed speedup is rather modest.
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There has also been some work in which attempts at indexing and/or lower
bounding are abandoned, and instead, efforts are concentrated on fast approximation
of the DTW distance using a lower resolution approximation of the data. The idea
was introduced by Keogh and Pazzani (2000), who use a piecewise linear approxi-
mation of the data. The method shows significant speedup with few false dismissals.
A similar idea was suggested by Chan et al. (2003). Here, the authors obtain the
lower resolution of the data approximation with wavelets and use their approximate
distance measure instead of that of Yi et al., i.e. the lower bounding measure, within
the FastMap framework. The method improves the speedup of the work of Yi et al.
work at the expense of introducing more false dismissals.

Finally, there has been some work on obtaining warping alignments by methods
other than DTW (Bar-Joseph et al. 2002; Kwong et al. 1996). For example, Kwong
et al. consider a genetic algorithm-based approach (Kwong et al. 1996), and recent
work by Bar-Joseph et al. considers a technique based on linear transformations of
spline-based approximations (Bar-Joseph et al. 2002). However, both methods are
stochastic and require multiple runs (possibly with parameter changes) to achieve
an acceptable alignment. In addition, both methods are clearly nonindexable. How-
ever, both works do reiterate the superiority of warping over nonwarping for pattern
matching.

3. Lower bounding the DTW distance

In this section, we explain the importance of lower bounding and introduce our new
lower bounding distance measure.

3.1. The utility of lower bounding measures

Time series similarity search under the Euclidean metric is heavily I/O bound; how-
ever, similarity search under DTW is also very demanding in terms of CPU time. One
way to address this problem is to use a fast lower bounding function to help prune
sequences that could not possibly be the best match. Table 2 gives the pseudo-code
for such an algorithm.

Table 2. An algorithm that uses a lower bounding distance measure to speed up the sequential scan search
for the query Q

Algorithm Lower_Bounding_Sequential_Scan(Q)

1. best_so_far = infinity;
2. for all sequences in database
3. LB_dist = lower_bound_distance(Ci,Q);
4. if LB_dist < best_so_far
5. true_dist = DTW(Ci,Q);
6. if true_dist < best_so_far
7. best_so_far = true_dist;
8. index_of_best_match = i;
9. endif

10. endif
11. endfor
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There are only two desirable properties of a lower bounding measure:

• It must be fast to compute. Clearly, a measure that takes as long to compute
as the original measure is of little use. In our case, we would like the time
complexity to be at most linear in the length of the sequences.

• It must be a relatively tight lower bound. A function can achieve a trivial lower
bound by always returning 0 as the lower bound estimate. However, in order for
the algorithm in Table 2 to be effective, we require a method that more tightly
approximates the true DTW distance.

While lower bounding functions for string edit, graph edit, and tree edit distance
have been studied extensively (Kruskall and Liberman 1983), there has been far less
work on DTW, which is very similar in spirit to its discrete cousins. Below, we will
consider the existing DTW lower bounding techniques.

3.2. Existing lower bounding measures

To the best of our knowledge, there are only two existing lower bounding functions
available for DTW (not including Park et al. (1999), which incorrectly claims to be
lower bounding, or Park et al. (2000), which has a time complexity equal to the full
algorithm). While referring the interested reader to the original papers for detailed
explanations, below, we give a visual intuition and brief explanation of each.

The lower bounding function introduced by Kim et al. (2001) (hereafter, referred
to as LB_Kim), works by extracting a four-tuple feature vector from each sequence.
The features are the first and last elements of the sequence, together with the max-
imum and minimum values. The maximum squared differences of corresponding
features are reported as the lower bound. Figure 4 illustrates the idea.

Fig. 4. A visual intuition of the lower bounding measure introduced by Kim et al. The maximum squared
difference between the two sequences first (A), last (D), minimum (B) and maximum points (C) is returned
as the lower bound

The lower bounding function introduced by Yi et al. (1998) (hereafter, referred
to as LB_Yi) takes advantage of the observation that all the points in one sequence
that are larger (smaller) than the maximum (minimum) of the other sequence must
contribute at least the squared difference of their value and the maximum (mini-
mum) value of the other sequence to the final DTW distance. Figure 5 illustrates
the idea.
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Fig. 5. A visual intuition of the lower bounding measure introduced by Yi et al. The sum of the squared
length of gray lines represents the minimum of the corresponding points contribution to the overall DTW
distance, and thus can be returned as the lower bounding measure

3.3. Proposed lower bounding measure

Before introducing our lower bounding technique, we must review additional details
of the DTW algorithm that we deliberately omitted until now.

3.3.1. Global constraints on time warping

In addition to the constraints on the warping path enumerated in Sect. 2.1, virtually
all practitioners using DTW also constrain the warping path in a global sense by
limiting how far it may stray from the diagonal (Berndt and Clifford 1994; Chu et al.
2002; Gollmer and Posten 1995; Itakura 1975; Keogh and Pazzani 2000; Myers et
al. 1980; Sakoe and Chiba 1978; Tappert and Das 1978). The subset of the matrix
that the warping path is allowed to visit is called the warping window. Figure 6
illustrates two of the most frequently used global constraints, the Sakoe-Chiba band
(Sakoe and Chiba 1978) and the Itakura parallelogram (Itakura 1975).

Fig. 6. Global constraints limit the scope of the warping path, restricting them to the gray areas. The two
most common constraints in the literature are the Sakoe-Chiba band and the Itakura parallelogram

There are several reasons for using global constraints, one of which is that they
slightly speed up the DTW distance calculation. However, the most important rea-
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son is to prevent pathological warpings, where a relatively small section of one se-
quence maps onto a relatively large section of another. The importance of global
constraints was documented by the originators of the DTW algorithm, who were
exclusively interested in aligning speech patterns (Sakoe and Chiba 1978). However,
it has been empirically confirmed in other settings, including finance, medicine, bio-
metrics, chemistry, astronomy, robotics, and industry.

3.3.2. Local constraints on time warping

In addition to the global constraints listed above, there has been active research on
local constraints (Itakura 1975; Myers et al. 1980; Rabiner and Juang 1993; Sakoe
and Chiba 1978; Tappert and Das 1978) for several decades. The basic idea is to
limit the permissible warping paths, by providing local restrictions on the set of
alternative steps considered. For example, we can visualize Eq. (5) as a diagram of
admissible step patterns, as in Fig. 7a. The lines illustrate the permissible steps the
warping path may take at each stage. We could replace Eq. (5) with γ(i, j) = d(i, j)+
min {γ(i − 1, j − 1), γ(i − 1, j − 2), γ(i − 2, j − 1)}, which corresponds with the step
pattern shown in Fig. 7c. Using this equation, the warping path is forced to move
one diagonal step for each step parallel to an axis. The effective intensity of the
slope constraint can be measured by P = n/m. Figures 7.a to 7.d illustrate the four
original constraints suggested by Sakoe and Chiba (1978); in addition, many others
have been suggested, including asymmetric ones. The constraint might be designed
based on domain knowledge, or from experience learned through trial and error.
Rabiner and Juang’s classic paper contains an extensive review (Rabiner and Juang
1993). The important implication of local constraints for our work is the fact that
they can be reinterpreted as global constraints. Figure 7.e shows an example.

Fig. 7. a to d Four local constraints on dynamic time warping, as suggested by Sakoe and Chiba. a) cor-
responds to the trivial case of no constraint, and is therefore equivalent to Eq. (5), γ(i, j) = d(i, j) +
min {γ(i−1, j−1), γ(i−1, j), γ(i, j−1)}. In contrast, c) corresponds to γ(i, j) = d(i, j)+min {γ(i−1, j−1),

γ(i − 1, j − 2), γ(i − 2, j − 1)}. Local constraints can be reinterpreted as global constraints, as an example,
d) can be reinterpreted as the global constraint shown in e), which looks superficially like the Itakura paral-
lelogram constraint

To reinterpret a local constraint as a global constraint, we can do the following.
Create a shadow matrix, which is the same size as the DTW matrix. Initialize all
the elements of the shadow matrix as unreachable. Call the DTW function, using the
relevant constraint; every time the recurrence visits a new cell (i, j) in the original
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DTW matrix, the cell (i, j) of the shadow matrix can be labeled as reachable. The
convex hull of all the reachable cells forms a band, which can be interpreted as
a global constraint. Note that we only have to do this once and we can then store
the resulting constraint for future use. While this reinterpretation of local constraints
may be obvious, we state it explicitly because it has not appeared in the literature
to our knowledge. Finally, we note that global and local constraints can be used
together; the interpretation being that, where they conflict, the most restrictive con-
straint (i.e. the one that forces the path closest to the diagonal line) is used (Kruskall
and Liberman 1983).

3.3.3. Proposed lower bounding measure

We can view a global or local constraint as constraining the indices of the warping
path wk = (i, j)k such that j − r ≤ i ≤ j + r, where r is a term defining the
reach, or allowed range of warping, for a given point in a sequence. In the case
of the Sakoe-Chiba band, r is independent of i; for the Itakura parallelogram, r is
a function of i.

We will use the term r to define two new sequences, U and L:

Ui = max(qi−r : qi+r) (6)

Li = min(qi−r : qi+r). (7)

U and L stand for Upper and Lower, respectively; we can see why if we plot them
together with the original sequence Q as in Fig. 8. They form a bounding envelope
that encloses Q from above and below. Note that, although the Sakoe-Chiba band is
of constant width, the corresponding envelope generally is not of uniform thickness.
In particular, the envelope is wider when the underlying query sequence is changing
rapidly, and narrower when the query sequence plateaus.

Fig. 8. An illustration of the sequences U and L created for sequence Q (shown dotted). A was created using
the Sakoe-Chiba band and B using the Itakura parallelogram

An obvious but important property of U and L is the following:

∀i Ui ≥ qi ≥ Li . (8)
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Having defined U and L, we now use them to define a lower bounding measure
for DTW.

LB_Keogh(Q,C) =

√√√√√ n∑
i=1




(ci − Ui)
2 if ci > Ui

(ci − Li)
2 if ci < Li

0 otherwise
. (9)

This function can be readily visualized as the Euclidean distance between any
part of the candidate matching sequence not falling within the envelope and the
nearest (orthogonal) corresponding section of the envelope. Figure 9 illustrates the
idea.

Fig. 9. An illustration of the lower bounding function LB_Keogh(Q,C). The original sequence Q (shown
dotted) is enclosed in the bounding envelope of U and L. The squared sum of the distances from every part
of the candidate sequence C not falling within the bounding envelope, to the nearest orthogonal edge of the
bounding envelope is returned as the lower bound. Bounding envelope A was created using the Sakoe-Chiba
band and bounding envelope B using the Itakura parallelogram

Because the tightness of the bounds is proportional to the number and length of
the gray hatch lines, we can see, in this example at least, that the Itakura parallel-
ogram provides a tighter bound than the Sakoe-Chiba band does, and both appear
tighter than LB_Kim or LB_Yi in Figs. 4 and 5, respectively.

We will now prove the claim of lower bounding.

Proposition 1. For any two sequences Q and C of the same length n, for any global
constraint on the warping path of the form j −r ≤ i ≤ j +r, the following inequality
holds: LB_Keogh(Q,C) ≤ DTW(Q,C)
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Proof. We wish to prove√√√√√ n∑
i=1




(ci − Ui)
2 if ci > Ui

(ci − Li)
2 if ci < Li

0 otherwise
≤

√√√√ K∑
k=1

wk.

Our strategy will be to assume the opposite and show that it leads to a contradiction.
Assume√√√√√ n∑

i=1




(ci − Ui)
2 if ci > Ui

(ci − Li)
2 if ci < Li

0 otherwise
>

√√√√ K∑
k=1

wk.

Because the terms under the radicals are positive, we can square both sides:

n∑
i=1




(ci − Ui)
2 if ci > Ui

(ci − Li)
2 if ci < Li

0 otherwise
>

K∑
k=1

wk.

From Eq. (3), we know that n ≤ K (with 0 ≤ K − n ≤ n − 2). So we can match
every term on the left-hand side (LHS), with a unique term on the right-hand side
(RHS), leaving K − n terms unmatched.

n∑
i=1




(ci − Ui)
2 if ci > Ui

(ci − Li)
2 if ci < Li

0 otherwise
>

∑
k ∈ matched

wk +
∑

k ∈ unmatched

wk.

We will map the i th term on the LHS with one of the i th terms on the RHS (recall
that wk is defined as (i, j)k, cf. Sect. 2.1). There may be several values of j for
a single i; so to enforce the desired one-to-one mapping, we will map to the one with
the lowest value for j . All the other wk’s are placed in the unmatched summation.

For the moment, let us ignore the unmatched terms and see what relationship
exists between just the matched terms and the LHS. There are three cases to consider;
let us consider the case when ci > Ui :

(ci − Ui)
2 <?> wk

(ci − Ui)
2 <?> (ci − q j)

2 By definition (cf. Sect. 2.1).

(ci − Ui) <?> (ci − q j) Because ci > Ui , we can take square roots.

−Ui <?> −q j Add −ci to both sides.

q j <?> Ui Add Ui + q j to both sides.

q j <?> max(qi−r : qi+r) By definition, Eq. (6).

Because we have n = m (recall LB_Keogh is only defined when |Q| = |C|), then
j − r ≤ i ≤ j + r,⇒ i − r ≤ j ≤ i + r, so we can rewrite the RHS as

q j <?> max(qi−r, q(i+1)−r, q j, . . ., qi+r).

If we remove all terms except q j from the RHS, we are left with

q j ≤ max(q j).
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The case when ci < Li yields to a similar argument. The third case yields

0 ≤ (ci − q j)
2 Because (ci − q j)

2 must be nonnegative.

But if all the matched terms in
∑

k ∈ matched
wk are larger than their matching counterparts

on the LHS, then the only hope of our assumption being correct is if
∑

k ∈ unmatched
wk

is a negative number, but the sum of squared terms can never be negative!
Thus, we have shown a contradiction; our assumption was incorrect and

LB_Keogh(Q,C) ≤ DTW(Q,C). ��
In the next section, we will show how LB_Keogh can be indexed.

4. Indexing DTW

Virtually all approaches to indexing time series under the Euclidean distance that
guarantee no false dismissals use the GEMINI framework of Faloutsos et al. (Chan
et al. 2003; Faloutsos et al. 1994; Keogh et al. 2000, 2001; Korn et al. 1997; Yi
and Faloutsos 2000). Using the GEMINI framework, all one has to do is to choose
a high level representation of the data and define a lower bounding measure on it
(Faloutsos et al. 1994). Many such representations have been suggested, including
Fourier transforms (Faloutsos et al. 1994), Wavelets (Chan et al. 2003), singular
value decomposition (Korn et al. 1997), adaptive piecewise aggregate approximation
(Keogh et al. 2001), and a simple technique independently introduced by two authors
called piecewise aggregate approximation (PAA) (Keogh et al. 2000; Yi and Falout-
sos 2000). This technique is attractive because it is simple, intuitive, and competitive
with the other more complex approaches. In this section, we will show that PAA can
be adapted to allow indexing under DTW. We begin with a brief review of PAA.

4.1. Piecewise aggregate approximation

We have previously denoted a time series as C = c1, . . ., cn . We assume each se-
quence in our database is n units long. Let N be the dimensionality of the space
we wish to index (1 ≤ N ≤ n). For convenience, we assume that N is a factor of n.
While this is not a requirement of our approach, it does simplify the notation.

A time series C of length n can be represented in N-dimensional space by a vec-
tor C̄ = c̄1, . . . , c̄N . The i th element of C̄ is calculated by the following equation:

c̄i = N

n

n
N i∑

j= n
N (i−1)+1

c j . (10)

Simply stated, to reduce the time series from n dimensions to N dimensions, the
data is divided into N equal-sized frames. The mean value of the data falling within
a frame is calculated, and a vector of these values becomes the data-reduced rep-
resentation. The complicated subscripting in Eq. (10) just insures that the original
sequence is divided into the correct number and size of frames. The representation
can best be visualized as an attempt to model the original time series with a linear
combination of box basis functions as shown in Fig. 10.
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Fig. 10. The PAA representation can be readily visualized as an attempt to model a sequence with a linear
combination of box basis functions. In this case, a sequence of length 256 is reduced to 16 dimensions

Given two original sequences Q and C, we can transform them into Q̄ and C̄
using Eq. (10), and approximate their Euclidean distance by:

DR(Q̄, C̄) ≡
√

n

N

√∑N

i=1

(
q̄i − c̄i

)2
. (11)

A proof that DR(Q̄, C̄) lower bounds the true Euclidean distance is in Keogh et al.
(2000) (a different proof appears in Yi and Faloutsos (2000)).

4.2. Modifying PAA to index time-warped queries

In Sect. 3, we introduced the lowering bounding function LB_Keogh; However, cal-
culating this function requires n values. Because n may be in the order of hun-
dreds to thousands and multidimensional index structures begin to degrade rapidly
somewhere above 16 dimensions (Hellerstein et al. 1997; Seidl and Kriegel 1988),
we need a way to create a lower, N-dimension version of the function, where N
is a number that can be reasonably handled by a multidimensional index structure
(Guttman 1984). We also need this lower dimension version of the function to lower
bound LB_Keogh (and therefore, by transitivity, DTW).

We begin by creating special piecewise aggregate approximations of U and L,
which we will denote as Û and L̂. Although they are piecewise aggregate approxi-
mations, the definitions of Û and L̂ differ from those we have seen in Eq. (10); in
particular, we have

Ûi = max
(

U n
N (i−1)+1, . . . , U n

N (i)

)
(12)

L̂i = min
(

L n
N (i−1)+1, . . . , L n

N (i)

)
. (13)
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We can visualize Û and L̂ as the piecewise constant functions that bound, without
intersecting, U and L, respectively. Figure 11 illustrates this intuition.

Fig. 11. We can readily visualize Û and L̂ as the piecewise constant functions that bound, without intersecting,
U and L, respectively

We are now able to define the low dimension, lower bounding function, which
we denote as LB_PAA. Given a candidate sequence C, transformed to C̄ by Eq. (10),
and a query sequence Q, with its companion PAA functions Û and L̂ , the following
function lower bounds LB_Keogh:

L B_PAA(Q, C̄) =

√√√√√ N∑
i=1

n

N




(c̄i − Ûi)
2 if c̄i > Ûi

(c̄i − L̂i)
2 if c̄i < L̂i

0 otherwise
. (14)

The proof that LB_PAA(Q,C̄) ≤ LB_Keogh(Q,C) is a straightforward but long ex-
tension of Proposition 1; we omit it for brevity.

The final step necessary to allow indexing is to define a MINDIST(Q,R) function
that returns a lower bounding measure of the distance between a query Q and R,
where R is a minimum bounding rectangle (MBR).

Suppose our index structure contains a leaf node U. Let R = (L,H) be the MBR
associated with U, where L = {l1, l2, . . ., lN } and H = {h1, h2, . . ., hN } are the lower
and higher endpoints of the major diagonal of R. By definition, R is the smallest
rectangle that spatially contains each PAA point C̄ = c̄1, . . . , c̄N stored in U. Given
the above, MINDIST(Q,R) is defined as

MINDIST(Q,R) =

√√√√√ N∑
i=1

n

N




(li − Ûi)
2 if li > Ûi

(hi − L̂i)
2 if hi < L̂i

0 otherwise
. (15)

This function is visualized in Fig. 12.
Having defined LB_PAA and MINDIST(Q,R), we are now ready to introduce

the K-nearest neighbor search (K-NN) algorithm. The basic algorithm is shown in
Table 3. It is an optimization on the GEMINI K-NN algorithm (Faloutsos et al. 1994)
as suggested by Seidl and Kriegel (1988) and is a modification of the algorithm used
for indexing time series under the Euclidean metric in Keogh et al. (2001).
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Fig. 12. A) A representation of a minimum bounding rectangle (MBR). B) A subsection of the query shown
in Fig. 11, with its attendant functions Û and L̂. C) An illustration of the MINDIST function. The lengths of
the arrow lines, squared, scaled by n/N, summed and square rooted, are returned as the minimum distance
between Q and any sequence contained within R

A query KNNSearch(Q,K) with query sequence Q and desired number of neigh-
bors K retrieves a set C of K time series such that, for any two Sequences, C ∈ C,
E /∈ C, and DTW(Q,C) ≤ DTW(Q,E). Like the classic K-NN algorithm (Roussopou-
los et al. 1995), the algorithm in Table 3 uses a priority queue to visit nodes/objects
in the index in the increasing order of their distances from Q in the indexed (i.e.
PAA) space. The distance of an object (i.e. PAA point) C from Q is defined by
LB_PAA(Q,C̄) (cf. Sect. 4.2, Eq. (14)) while the distance of a node U from Q is
defined by the minimum distance MINDIST(Q,R) of the minimum bounding rect-
angle (MBR) R associated with U from Q.

We begin by pushing the root node of the index into the queue (line 1). The
algorithm navigates the index by popping out the item from the top of the queue at
each step (line 8). If the popped item is a PAA point C, we go to disk to retrieve
the original time series C, and we compute its exact distance DWT(Q,C) from the
query and then insert it into a temporary list temp (lines 9–11). If, on the other hand,
the popped item is a node of the index structure, we compute the distance of each
of its children from Q and push them into queue (Lines 12–17).

We only move a sequence C from temp to result when we are sure that it is
one of the K-NN of Q. That is to say, there exists no object E /∈ result such that
DTW(Q,E) < DTW(Q,C) and |result| < K. This second condition is guaranteed
by the exit condition in line 7. The first condition can be guaranteed as follows.
Let I be the set of PAA points retrieved thus far using the index (i.e. I = temp ∪
result). If we can guarantee that ∀ C ∈ I, ∀ E /∈ I, LB_PAA(Q,C̄) ≤ DTW(Q,E),
then the condition “DTW(Q,C) ≤ top.dist” in line 4 will ensure that there exists no
unexplored sequence E such that DTW(Q,E) < DTW(Q,C).
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Table 3. K-NN algorithm to compute the exact K nearest neighbors of a query time series Q using a multi-
dimensional index structure

Algorithm KNNSearch(Q,K)

Variable queue: MinPriorityQueue;
Variable list: temp;

1. queue.push(root_node_of_index, 0);
2. while not queue.IsEmpty() do
3. top = queue.Top();
4. for each time series C in temp such that DTW(Q,C) ≤ top.dist
5. Remove C from temp;
6. Add C to result;
7. if |result| = K return result;
8. queue.Pop();
9. if top is a PAA point C
10. Retrieve full sequence C from database;
11. temp.insert(C, DTW(Q,C));
12. else if top is a leaf node
13. for each data item C in top
14. queue.push(C, LB_PAA(Q,C̄));
15. else // top is a non-leaf node
16. for each child node U in top
17. queue.push(U, MINDIST(Q,R)) // R is MBR associated with U.

By inserting the time series in temp (i.e. previously seen objects) into result in in-
creasing order of their distances DTW(Q,C) (by keeping temp sorted by DTW(Q,C)),
we ensure that there exists no explored object E such that DTW(Q,E) <
DTW(Q,C).

The definitions of LB_Keogh, LB_PAA, and MINDIST proposed in this work
are also needed for answering range queries using a multidimensional index struc-
ture. We can use a classic R-tree-style recursive search algorithm. Because both
MINDIST(Q,R) and LB_PAA(Q,C̄) lower bound DTW(Q,C), the algorithm shown
in Table 4 is correct (Faloutsos and Lin 1995).

Table 4. Range search algorithm to retrieve all the time series within a range of ε from query time series Q.
The function is invoked as RangeSearch(Q, ε, root_node_of_index)

Algorithm RangeSearch(Q,ε,T)

1. if T is a non-leaf node
2. for each child U of T
3. if MINDIST(Q,R) ≤ ε RangeSearch(Q,ε,U); // R is MBR of U

4. else // T is a leaf node

5. for each PAA point C in T
6. if LB_PAA(Q,C̄) ≤ ε

7. Retrieve full sequence C from database;
8. if DTW(Q,C) ≤ ε Add C to result;
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5. Experimental evaluation

In this section, we test our proposed approach with a comprehensive set of experi-
ments.

5.1. Experimental philosophy

Previous experience in reimplementing and testing more than a dozen different Eu-
clidean time series indexing techniques (Keogh et al. 2000, 2001), suggests that
many published results do not generalize to real-world datasets and conditions. We
therefore conducted the experiments in this paper with the explicit goal of conduct-
ing the most comprehensive and detailed set of time series indexing experiments
ever attempted. In particular, we have taken the following steps to insure the most
meaningful and generalizable results.

• Instead of testing on just one or two datasets, as is typical (Agrawal et al. 1995;
Berndt and Clifford 1994; Chan et al. 2003; Faloutsos et al. 1994; Kim et al.
2001; Park et al. 1999, 2000, 2001), we tested all algorithms on 32 datasets.
These datasets cover the complete spectrum of stationary/nonstationary, noisy/
smooth, cyclical/noncyclical, symmetric/asymmetric, etc. The data also represents
the many areas in which DTW is used, including finance, medicine, biometrics,
chemistry, astronomy, robotics, networking, and industry.

• We designed our experiments to be completely reproducible. We saved every
random number, every setting and all data, and have made them available on
a free CD-ROM.

• To ensure true randomness where required, we used random numbers created by
a quantum mechanical process (Walker 2001).

• Although we also present results of an implemented system, we present com-
prehensive results that are completely independent of implementation details (i.e.
page size, cache size, etc). This is to guard against implementation bias (Heller-
stein et al. 1997; Keogh et al. 2001) and to allow and encourage independent
replication of our results.

For simplicity and brevity, we only show results for nearest neighbor queries;
however, we obtained very similar results for range queries. Because of the large
volume of experiments conducted, in this section, we will present graphics to sum-
marize our findings and we will reproduce the actual numbers in Appendix A.

Unless otherwise stated, we used the Sakoe-Chiba band with a width of 10%
of n, because this appears to be the most commonly used constraint in the literature
(Rabiner et al. 1978; Sakoe and Chiba 1978). We note that, had we used the Itakura
parallelogram instead, our results would be even better (depending on the dataset,
by an approximate factor of 4–12).

5.2. Comparison of lower bounding functions

We begin our experiments with a comparison of the tightness of the lower bounds
for the three functions LB_Yi, LB_Kim, and LB_Keogh. We define T as the ratio
of the estimated distance between two sequences over the true distance between the
same two sequences.

T = Lower Bound Estimate of Dynamic Time Warp Distance
True Dynamic Time Warp Distance (16)
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T is in the range [0, 1], with the larger the better. To estimate T for each of the 32
datasets, we did the following: We randomly extracted 50 sequences of length 256.
We compared each sequence to the 49 others, using the true DTW distance, and the
three lower bounding functions. For each dataset, we report T as the average ratio
from the 1,225 (50*49/2) comparisons made.

Figure 13 shows the results of the experiments. On 24 out of 32 datasets, LB_Yi
produces tighter bounds than LB_Kim, and its average value is approximately 1.38
times larger. The most obvious result from the experiment, however, is the dominance
of LB_Keogh. It wins on every dataset, and its average value is approximately 3.11
times larger than its nearest rival. Because the efficiency of indexing has a (much)
greater than linear dependence on the tightness of the lower bounding function, these
results augur well for our approach.

Fig. 13. The mean value of T (tightness of lower bound) for the three lower bounding functions under con-
sideration for 32 datasets from finance, medicine, biometrics, chemistry, physics, astronomy, robotics, net-
working, and industry. Appendix A contains a key to the datasets

We choose to report results from a query length of 256 because this is about the
midrange of queries reported in the literature (Chan et al. 2003; Chu et al 2002; Park
et al. 1999; Yi et al. 1998). However, we also experimented with queries in the range
of 32-1,024. This range was chosen to include the longest and shortest reported in the
literature (Chan et al. 2003; Park, personal communication). All techniques perform
better for short queries; however, while both LB_Kim and LB_Yi degrade rapidly
for longer queries, LB_Keogh stays almost constant for longer queries. This effect
was observed on all datasets. For brevity, we just present results for the random walk
dataset in Fig. 14.

5.3. Comparison of pruning power

To compare the pruning power of the three techniques under consideration, we meas-
ure P, the fraction of the database that does not require full computation of DTW
while still allowing us to guarantee that we have found the nearest match to a 1-NN
query.

P = Number of objects that do not require full DTW
Number of objects in database (17)

To calculate P, we do the following. From each of the 32 datasets, we randomly
extract 50 sequences of length 256. For each of the 50 sequences, we separate out
the sequence from the other 49 sequences. We then find the nearest match to our
withheld sequence among the remaining 49 sequences using the sequential scan al-
gorithm of Table 2. We measure the number of times we can use the linear-time
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Fig. 14. The effect of query length on the tightness of lower bounds for the three techniques under consid-
eration

lower bounding functions to prune away the quadratic-time computation of the full
DTW algorithm. For fairness, we visit the 49 sequences in the same order for each
approach. The value P reported is averaged over all 50 runs.

Note the value of P depends only on the data and is completely independent
of any implementation choices, including spatial access method, buffer size, com-
puter language, or hardware platform. A similar idea for evaluating indexing schemes
appears in Hellerstein et al. (1997).

The results are summarized in Fig. 15. On 25 out of 32 datasets, LB_Yi is
more efficient at pruning than LB_Kim. On average, it was able to prune 1.53 times
as many items. Once again, however, the most obvious result is the dominance of
LB_Keogh. It wins on every dataset and was able to prune 3.95 times as many items
as LB_Yi and 6.06 times as many items as LB_Kim.

Fig. 15. The mean value of P (pruning power) for the three lower bounding functions under consideration
for 32 datasets from finance, medicine, biometrics, chemistry, physics, astronomy, robotics, networking, and
industry. Appendix A contains a key to the datasets

Note that, while these results are powerful implementation-independent predic-
tors of indexing performance, they may actually be pessimistic. There are two related
reasons why. First, the sequential scan algorithm of Table 2 is inefficient, as it vis-
its the items and calculates the DTW measures (where necessary) in a predefined
order. A more efficient implementation would sort and then visit the sequences, in
ascending order of the lower bounding distance. This, of course, is essentially what
spatial indexing does.
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The second reason why the results may be pessimistic predictors of indexing
performance is the relatively small size of the datasets. We should expect the frac-
tion of pruned sequences to increase on larger datasets. The reason is because the
larger the dataset, the greater the chance there is of a good match being found, and
a good match allows us to extract the maximum benefit from the pruning conditional
LB_dist < best_so_far in line 4 of the algorithm in Table 2. To demonstrate
this effect, we ran the same experiment above on increasingly larger subsets of the
random walk dataset. The results are shown in Fig. 16.

Fig. 16. The effect of database size on pruning power. Note that, as the size of the database increases, we
are able to prune a larger fraction of the data

5.4. Experiments on an implemented system

The 32 datasets used in the previous experiments illustrate the dominance of the pro-
posed approach on a wide variety of datasets. However, most are not large enough by
themselves to warrant the title of large database. We therefore pooled all 32 datasets
into a single dataset that we call mixed bag (MB). In addition to this ultraheteroge-
neous data, we created a very large database of random walk data (RW II) because
this is the most studied dataset for indexing comparisons (Chan et al. 2003; Chu et
al. 2002; Keogh et al 2000, 2001; Park et al. 1999, 2001; Yi et al. 1998), and is,
by contrast with the above, a very homogeneous dataset. Details of these datasets
appear in Appendix A.

We performed experiments on AMD Athlon 1.4 GHZ processor, with 512 MB of
physical memory and 57.2 GB of secondary storage. The spatial access method used
was the R-tree (Gollmer and Posten 1995).

To evaluate the performance of the proposed technique we used the normalized
CPU cost.

Definition. The Normalized CPU cost: The ratio of average CPU time to execute
a query using the index to the average CPU time required performing a linear (se-
quential) scan. The normalized cost of a linear scan is 1.0.

Beating a linear scan is nontrivial because it can take advantage of sequential
disk access, whereas any indexing technique must make random disk accesses. It is
generally understood that random access is about ten times slower than sequential ac-
cess (Hellerstein et al. 1997; Roussopoulos et al. 1995; Seidl and Kriegel 1988). For
fairness, we allowed linear scan to utilize the lower bounding function LB_Keogh.

Because there is no known exact indexing method for LB_Yi, we could not in-
clude it in this experiment. We originally included LB_Kim in the experiments, but
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found that it never beat the linear scan, and we therefore decided to exclude it from
graphic presentation.

We tested over a range of query lengths and dimensionalities, but show just one
typical result for brevity. Figure 17 shows the normalized CPU cost of linear scan and
LB_Keogh, for queries of length 256, with a 16-dimensional index, for increasingly
large databases.

Fig. 17. The normalized CPU cost of linear scan and LB_Keogh, for queries of length 256, with a 16-
dimensional index, for increasingly large databases. Note that the X-axis is in logarithmic scale and denotes
the number of items in the database

5.5. The effect of changing the warping window width on efficiency

The experiments above convincingly demonstrate the superiority of the proposed
lower bounding technique for different datasets, different query lengths, different
database sizes, etc. However, all the experiments use a Sakoe-Chiba band with a width
of 10% of the query length because, as noted above, this seems to be the most com-
mon constraint used in practice (Rabiner et al. 1978; Sakoe and Chiba 1978). How-
ever, it is natural to ask how sensitive the results are to this parameter. To find out, we
repeated the experiment in Sect. 5.2, this time also testing a warping window twice
as wide and half as wide as the original experiments. Because showing the results
for the entire 32 datasets is not practical, we chose to report only the first, middle
and last datasets from the list in Appendix A. The results are shown in Fig. 18.

The results are excellent. Even with an extremely wide warping window, we
still convincingly beat the two competing approaches. Furthermore, tightening the
warping window to a still realistic value of 5% of the query length produces an
extraordinary tight lower bound.

5.6. The effect of changing the warping window width on accuracy

In Sect. 3.3.1, we justified using warping windows by noting that researchers who
use DTW to solve real-world problems have documented their utility (Aach and
Church 2001; Caiani et al. 1998; Gavrila and Davis 1995; Gollmer and Posten 1995;
Itakura 1975; Kovacs-Vajna 2000; Munich and Perona 1999; Rath and Manmatha
2002). However, because warping windows are the cornerstone of our lower bound-
ing technique, we will conduct experiments to explicitly justify their use. As we are
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Fig. 18. The effect of warping window width on the tightness of lower bounds for various query lengths. Note
that, even with an extremely loose warping window, equal to 20% of the query length, the lower bounds for
LB_Keogh are tighter than the two competing approaches over the entire range of query lengths

interested in indexing data, an appropriate way to do this might be to measure pre-
cision/recall under varying warping windows. However, to our knowledge, there are
no large time series datasets that have been annotated as relevant/irrelevant for given
queries. Instead, we will consider the effect of warping windows on classification of
time series because accuracy in classification is a close analogue of precision/recall
in information retrieval.

To reduce the possibility of data bias, we will only test datasets that have ap-
peared in the literature several times and are publicly available (Kadous 1999; Diez
and Gonzalez 2000). In particular, we tested the following datasets, which are illus-
trated in Fig. 19A.

• Transient Classification Benchmark (TCB): A synthetic dataset designed to sim-
ulate instrumentation failures in a nuclear power plant. This is a multiclass, mul-
tidimensional dataset. For simplicity, we use only sensor 3 of classes 3 and 6.
There are 50 instances of length 275 in each class (data courtesy of Davide
Roverso).

• Australian Sign Language (ASL): This dataset consists of the X-axis motion of
a subject’s right hand as they sign the words girl, mine, read and thank in Aus-
tralian Sign Language (Kadous 1999). This is a nontrivial classification task be-
cause the data is undersampled (only 30 points long) and very noisy. In addition,
of the 20 instances in each class, each was created by four different individuals
on five different days.

For each dataset, we evaluated a one nearest neighbor classifier for every possible
width of the Sakoe-Chiba band from 1 to n. Each classifier was evaluated using the
leaving-one-out cross validation. The results are shown in Fig. 19B.

We can make the following observations about the experiments. It is yet another
confirmation of the superiority of DTW over Euclidean distance (recall that warping
window width = 1, is equivalent to Euclidean distance). A more interesting obser-
vation is that, while some DTW helps, there are diminishing returns. In the case
of ASL, too much freedom in warping actually hurts the accuracy. These results
strongly support the idea that constraining DTW with warping windows is a good
idea, independent of our ability to exploit it for speedup. The results also suggest an
interesting research direction; can one automatically learn the best warping window
for a particular dataset and query? We are actively exploring this question.
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Fig. 19. A) Top: examples of the two classes from the TCB dataset. Bottom: Examples of the four classes
from the ASL dataset. B) The effect of varying the warping window width on accuracy for the two datasets
in question

6. Discussion and conclusions

In one of the most referenced papers on time series similarity ever published (Agrawal
et al. 1995), the authors explicitly state, “Dynamic time warping . . . cannot be
speeded up by indexing.” This sentiment has since been echoed in several dozen
other papers (Chan et al. 2003; Yi et al. 1998). How then have we achieved the
seemingly impossible? First, we have only considered the case where the two se-
quences are of the same length. This is not really a limitation because the user can
always reinterpolate the query to any desired length in O(n) time. Second, we can
only index sequences if we assume the warping path is constrained. Once again,
we feel that this is not really a restriction because virtually every practitioner we
are aware of reiterates the absolute necessity of using constraints (Aach and Church
2001; Berndt and Clifford 1994; Caiani et al. 1998; Chu et al. 2002; Gollmer and
Posten 1995; Itakura 1975; Rabiner et al. 1978; Sakoe and Chiba 1978; Schmill et
al. 1999; Strik and Boves 1988; Tappert and Das 1978).

Our approach is particularly attractive because, as a special case (r is set to zero),
it degenerates to Euclidean indexing using PAA, an approach that has been shown
by two independent groups of researchers to be state of the art in terms of efficiency
and flexibility (Chu et al. 2002; Keogh et al. 2000; Yi et al. 1998).

There are several directions in which this work may be extended. For example, we
note that some algorithms for matching two and three-dimensional shapes are very
close analogues of the DTW algorithm and thus may benefit from a similar lower
bounding function. In addition, Rath and Manmatha (Rath and Manmatha 2002)
have informed us that they have generalized LB_Keogh to multidimensional time
series and intend to use the resulting algorithm for indexing massive repositories of
handwritten historical documents (personal communication).

Acknowledgements. Thanks to the anonymous reviewers, Kaushik Chakrabarti, Dennis De-
Coste, Sharad Mehrotra, Per-Åke (Paul) Larson and Michalis Vlachos for their useful comments
on a preliminary version of this paper. Thanks also to the many donors of the data used in this
work.



E. Keogh, C.A. Ratanamahatana

Appendix A

The raw numbers obtained from the experiments discussed in Sects. 5.2 and 5.3 are
shown in Table 5. These numbers may be visualized in Figs. 13 and 15, respectively.

Table 5. The raw numbers obtained from the experiments discussed in Sects. 5.2 and 5.3

ID Name Size
T (Tightness of Lower Bound) P (Pruning Power)

LB_Kim LB_Yi LB_Keogh LB_Kim LB_Yi LB_Keogh

1 Sunspot 2,899 0.11 0.06 0.63 0.14 0.07 0.73

2 Power 35,040 0.12 0.13 0.73 0.27 0.32 0.80

3 ERP data 198,400 0.13 0.24 0.65 0.01 0.07 0.59

4 Spot exrates 2,567 0.12 0.21 0.75 0.01 0.03 0.77

5 Shuttle 6,000 0.12 0.29 0.87 0.20 0.39 0.85

6 Water 6,573 0.22 0.36 0.66 0.05 0.24 0.64

7 Chaotic 1,800 0.18 0.19 0.50 0.09 0.16 0.43

8 Steamgen 38,400 0.11 0.22 0.81 0.00 0.11 0.82

9 Ocean 4,096 0.13 0.19 0.84 0.20 0.34 0.87

10 Tide 8,746 0.16 0.16 0.56 0.02 0.01 0.39

11 CSTR 22,500 0.13 0.25 0.71 0.04 0.09 0.75

12 Winding 17,500 0.17 0.29 0.51 0.03 0.04 0.19

13 Dryer2 5,202 0.15 0.25 0.62 0.01 0.07 0.46

14 Robot arm 2,048 0.18 0.06 0.30 0.03 0.01 0.13

15 Ph Data 6,003 0.11 0.29 0.60 0.03 0.12 0.51

16 Power Plant 2,400 0.13 0.20 0.72 0.05 0.08 0.72

17 Evaporator 37,830 0.18 0.31 0.34 0.04 0.25 0.26

18 Ballbeam 2,000 0.12 0.15 0.65 0.20 0.21 0.63

19 Tongue 700 0.20 0.06 0.21 0.17 0.04 0.21

20 Fetal ECG 22,500 0.17 0.45 0.66 0.17 0.35 0.67

21 Balloon 4,002 0.18 0.22 0.55 0.09 0.12 0.33

22 Stand’ & Poor 17,610 0.13 0.10 0.71 0.06 0.04 0.75

23 Speech 1,020 0.16 0.11 0.53 0.14 0.04 0.69

24 Soil temp 2,304 0.14 0.11 0.48 0.13 0.08 0.32

25 Wool 2,790 0.11 0.19 0.79 0.26 0.48 0.83

26 Infrasound 8,192 0.10 0.18 0.76 0.07 0.09 0.78

27 Network 18,000 0.14 0.18 0.55 0.00 0.01 0.38

28 EEG 11,264 0.14 0.08 0.44 0.01 0.01 0.16

29 Koski ECG 144,002 0.18 0.39 0.73 0.36 0.54 0.78

30 Buoy sensor 55,964 0.17 0.20 0.61 0.03 0.06 0.38

31 Burst 9,382 0.10 0.15 0.77 0.09 0.12 0.76

32 Random walk I 65,536 0.13 0.11 0.68 0.03 0.02 0.75

Mean Value 0.144 0.199 0.622 0.094 0.144 0.572

MB Mixed bag 763,270

RW Random walk II 1,048,576
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