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Abstract The problem of sampling from data streams has attracted significant inter-
est in the last decade. Whichever sampling criteria is considered (uniform sample,
maximally diverse sample, etc.), the challenges stem from the relatively small amount
of memory available in the face of unbounded streams. In this work we consider
an interesting extension of this problem, the framework of which is stimulated by
recent improvements in sensing technologies and robotics. In some situations it is not
only possible to digitally sense some aspects of the world, but to physically capture a
tangible aspect of that world. Currently deployed examples include devices that can
capture water/air samples, and devices that capture individual insects or fish. Such
devices create an interesting twist on the stream sampling problem, because in most
cases, the decision to take a physical sample is irrevocable. In this work we show
how to generalize diversification sampling strategies to the irrevocable-choice setting,
demonstrating our ideas on several real world domains.

Keywords Irrevocable - Sampling - Data stream - Diversification

1 Introduction

In the last decade there has been an explosion of interest in sampling, diversification,
clustering, etc. on data streams. The streaming (or incremental) versions of such prob-
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lems differ from their batch equivalents in that they assume that they have a finite (and
generally small) memory, and that they will see objects arriving one at a time. As each
object arrives, the algorithms can exactly or approximately incorporate the object’s
influence into variables that maintain statistics about the stream (means, quartiles,
cardinality, etc.) and they can choose to exactly record the arriving value in one of k
memory locations.

Recording the value of an object is a generally non-trivial decision for the algorithm
to make. Since the algorithm only has £ memory slots, each time it records an object’s
value there is an opportunity cost: there are other objects whose value the algorithm
did not capture. The difficulty of this decision is mitigated by the fact that these writes
to the k memory slots are classic destructive writes; the algorithms can overwrite any
slot as many times as it likes, if it believes that a recently arrived object is more worthy
of saving than a currently cached item.

The capability of destructive writes means that in many cases, the streaming algo-
rithm can have a similar or identical performance to a random-access batch algorithm.
For example, if the task is to record the k largest values in a stream, then the k slots
simply act as k best-so-far variables and the streaming and batch algorithms have iden-
tical results. A less trivial example is the classic reservoir-sampling algorithm that can
obtain a completely random sample of size k from a stream of length N, where N is
either a very large or an unknown number (Vitter 1985). However, it is interesting to
consider the case in which we have one-time writes, not destructive writes. In such
cases, if the algorithm decides to record a value, then one of the k slots is irrevo-
cably lost, and can never be used again. We call such algorithms irrevocable-choice
algorithms.

While there are several types of memory hardware that permit Write Once Read
Many (WORM) access, from EPROMs to punch cards, here we are interested in
situations in which the k slots are physical devices that capture some tangible element
of the world being sampled. Since this is a novel problem setting, we take the time to
motivate it with three real world examples.

e Asshownin Fig. 1 the Bluefin Autonomous Underwater Vehicle is an autonomous
submarine robot platform that is used in undersea exploration in domains as varied
as biodiversity studies, oil exploration and deep-submergence archaeology (Roman
and Mather 2010). The standard robot is equipped with a host of sensors and the
ability to make 22 irrevocable decisions to capture water samples for later analyses
(Goldberg 2011). It is important to note that the irrevocability here is not due to a
software setting or an arbitrary design choice. The physics of water pressure (441
PSI at a depth of 1000 feet) mean that once you open a sample tube, there is no

BLUEFIN
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Fig. 1 The Bluefin 125 can make 22 irrevocable decisions to capture water samples for later analyses
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Fig. 2 (left) An audio clip of a mosquito flight sound can be converted into an amplitude spectrum; (right)
this representation allows classification and clustering

practical way to empty it.

Capturing one sample per hour during a daylong mission is an obvious possibility;
however, this may result in missed opportunities. Suppose that the onboard sensors
detect a sudden dramatic change in temperature and salinity minutes after the 1:00
p.m. sample was taken. If we wait until 2:00 p.m. to capture the next sample, we
may miss the opportunity to later investigate the interesting phenomenon (natural
plume, chemical spill, etc.).

e In recent years, researchers have begun to deploy insect sensors into the field

(Chen et al. 2014). As shown in Fig. 2, these sensors can optically record the flight
“sound” signal of an insect.
In several ongoing projects, researchers have built devices that can selectively
capture some of the sensed insects (Project Premonition 2015a). In some cases
the device can capture insects alive and unharmed, but, as hinted at in Fig. 3, in
other cases the device kills or incapacitates the insect. Note that even in the case in
which the mosquito is shot down, the choice is irrevocable and expensive in terms
of resources (draining power from a capacitor).

e A fish ladder is a structure on the side of large man-made dams to facilitate
diadromous fishes’ natural migration. These ladders enable fish to pass around
the otherwise insurmountable dam by swimming and leaping up a series of rela-
tively low steps. More than a thousand such fish ladders worldwide are augmented
with video and other sensors (Zhang et al. 2015) as hinted at in Fig. 4. Thus far,
fish ladders are passive devices, but researchers are experimenting with robots that
can selectively remove fish for later analysis (Jonsson 2015; Zhang et al. 2015).
In addition to these examples there are many other instances of irrevocable-choice
capture devices, including automatic water sampling devices which are deployed
in the millions worldwide (Honda and Watanabe 2007), a single chemistry lab
currently on Mars which can make at most twelve irrevocable-choice samples
each day (Webster and Agle 2012), and irrevocable-choice blood capture devices
(Fgnss and Munksgaard 2008).

2 Related work

Our project combined ideas from two mature yet still very active research areas,
optimal stopping algorithms and streaming algorithms. The former area is normally
considered a branch of game theory or optimization, and the latter a sub-area of
databases/data mining.
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Fig. 3 (left) A live mosquito. The mosquito was shot down in free flight by a short laser burst that burnt
oft 65 % of its wing. (right) The decision to shoot an insect is clearly irrevocable
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Fig. 4 A user interface showing a live video stream from a monitoring station in a fish ladder. Image
courtesy of Dah-Jye Lee of Brigham Young University

2.1 Optimal stopping algorithm

Optimal stopping algorithms are concerned with the problem of choosing a time to take
a given action based on sequentially observed random variables in order to maximize an
expected payoff (Hill 2009). Perhaps the most famous example is the secretary problem
(also known as the marriage problem, dowry problem, the fussy suitor problem, or the
googol game).

The problem can be stated as following: imagine an employer wants to hire the best
secretary out of N rankable candidates for a position. The candidates are interviewed
one by one in random order. A decision about each particular candidate is to be
made immediately after the interview. Once rejected, a candidate cannot be recalled.
During the interview, the administrator can rank the candidate among all candidates
interviewed so far, but is unaware of the quality of the candidates he has yet to see.
The objective is to maximize the probability of selecting the best candidate. If it is
possible to defer decision until after the last candidate is seen, then simply maintaining
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a best-so-far pointer gives a trivial solution. The difficulty is that the decision must be
made immediately, and the decision is irrevocable.

The problem has an unexpectedly simple and elegant solution. The employer should
maintain a best-so-far value for the first N /e candidates (where e is Euler’s number
~2.718), and thereafter pick the first candidate with a higher ranking. This stopping
algorithm gives a 1/e (about 37 %) chance of selecting the best candidate.

The secretary problem has been generalized in dozens of ways by adding con-
straints, changing the metric of success, increasing the possible actions that can be
taken, and adding uncertainly to the values/rankings; see Ferguson (2006) for an
overview. While the secretary problem may seem like just a contrived puzzle, it has
seen concrete applications in auctions and portfolio management, where decisions (to
bid/buy) are clearly irrevocable. Likewise, one can model house selling as an optimal
stopping problem. Assume that you have a house and wish to sell it. Each day you
need to pay k dollars to keep advertising the house, and on the ith day you are offered
x; dollar for it. If you sell your house on the nth day, you will earn y, dollars, where
Yn = X, — nk. The problem is when you should sell the house to maximize y,.

Most optimal stopping problems can be written in the form of a Bellman equation,
and are thus amiable to solution by dynamic programming (Peskir and Shiryaev 2006).
When the underlying process is determined Markovian transition probabilities, very
powerful analytical tools provided by the theory of Markov processes can often be
utilized (Peskir and Shiryaev 2006).

More general optimal stopping algorithms have seen applications in biological
domains similar to our motivating examples. For example, as far back as 1979
Rasmussen and Starr asked “when should you stop searching for a new species?”
(Rasmussen and Starr 1979).

2.2 Streaming algorithms

In the early years of database/data mining research it was largely assumed that the data
of interest was static. However, in the last decade, our increasing ability to dynam-
ically monitor data sources has given rise to an ever-growing interest in streaming
algorithms (Vitter 1985; Cormode and Hadjieleftheriou 2010). Thus, virtually all use-
ful data mining batch algorithms have been generalized to the streaming case, including
classification, clustering, segmentation, repeated pattern discovery (Begum and Keogh
2014) and diversification (Drosou and Pitoura 2012a,b). The “cost” of moving from
the batch case to the streaming case is highly variable; in some cases, such as certain
kinds of sampling (Vitter 1985) or time series segmentation, there is no overhead for
handling the streaming case. In fact, for these problems, practitioners may use the
streaming algorithms even if all the data is available with random access. However,
for many problem definitions, moving to the streaming case comes with the loss of
performance guarantees, and we must resort to offering approximate solutions (Begum
and Keogh 2014).

The problem of selecting the £ most diverse items from a set of real-valued data
objects is an interesting one. It is known that even the batch case is NP-complete;
therefore, we must resort to approximate solutions. However, streaming algorithms
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have been designed that can produce essentially identical results, and offer similarly
tight bounds on performance (Drosou and Pitoura 2012a).

This review of streaming algorithms was necessity brief; we refer the interested
reader to Aggarwal (2006) and the references therein.

3 Definitions and assumptions
3.1 Diversification problems

Among all the variants of sampling from data streams, result diversification has
recently attracted significant attention as a technique to increase user satisfaction
in web/data base search, recommender systems, etc. (Drosou and Pitoura 2012a,b;
Ghosh 1996; Minack et al. 2011). Diversification is also an important tool in scientific
discovery, in the sense that we often want to capture the most representative samples
in the world we are exploring. Note that in most information retrieval uses of diver-
sification, only the answer set, a relatively small subset of the entire data collection,
must be diversified. In contrast, in the applications we consider, we need to consider
diversification with respect to the entire data collection, as there is no well-defined
answer set. In this section, we first define two classical diversification problems, then
extend the notation to the irrevocable-choice diversification problem we wish to solve.

3.1.1 Batch k-diversification problem

LetU = uy, ua, ..., uy be anordered set of N items. For every possible pair of items
ui,uj (i <N, j =< N),we define a distance measure dist(u;, u;): U x U — RT. To
prevent pathological solutions to our problem, we require dist (u;, u ;) to be symmetric,
ie.dist(u;, uj) = dist(u, u;). Euclidean distance is clearly one such eligible distance
measure.

To define the k-diversification problem, we must first clarify the meaning of k. We
use k as the user’s choice/constraint for the number of items in the answer set. For
example, in the diversification of web search results, k is often set to ten, the default
number of results returned on the first page of the desktop version of most familiar
search engine interfaces. In our case, k is the number of capture choices we can make
given hardware constraints. The batch k-diversification problem is to find a subset
S C U : |S| = k, such that the diversity of S is maximized. The diversity of a set S
is measured by a function divs: S x dist — R™. There are two common variations
of the divs function (Drosou and Pitoura 2012b; Ghosh 1996). One is called the SUM
diversity, which is defined as:

divssyy (S, dist) = Z dist (s,-, sj) ,

Sl',SjGS,l.;ﬁj

the other is called the MIN diversity, which is defined as:

divsygn (S, dist) =  min  dist (si, sj) .
S,‘,SjES,l'-f—j
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(b) .

Fig.5 MAXMIN (a) versus MAXSUM (b) solutions for N = 3500 and k = 100. Diverse items are shown
in red/bold. Inspired by a similar figure in Drosou and Pitoura (2012b) (Color figure online)

Corresponding to these two different diversity definitions, the two most common
variants of the diversification problem are referred to as the MAXSUM diversity
problem and the MAXMIN diversity problem, respectively. In general, it has been
noted that the MAXMIN diversity “tends to select items that intuitively provide a
better cover of the set” (Drosou and Pitoura 2012b). To visually confirm and illustrate
this, in Fig. 5 we show the results of both strategies on a small synthetic dataset
consisting of four different sized Gaussian “balls” in two-dimensional space.

We can see that items selected by MAXMIN diversity are evenly spread among
the set, while those selected by MAXSUM diversity are located mainly at the bor-
ders. Therefore, we use MAXMIN diversity in this paper, and define the batch
k-diversification problem formally as finding such a subset S*of U':

S* = argmax divsyy (S, dist) .
SCU,|S|=k

The batch k-diversification problem has been proved to be NP-hard (Erkut 1990; Ghosh
1996); however, demonstrably good approximation algorithms are known (Erkut et al.
1994). Beyond the intractable time requirements of the problem, most algorithms
assume that when attempting to optimize subset S*, we could store the entire set of U
in memory and have random access to it (Erkut 1990; Ghosh 1996).

3.1.2 Streaming k-diversification problem

An interesting variant k-diversification problem is to consider it in a streaming setting
(Cormode and Hadjieleftheriou 2010; Vitter 1985). The streaming k-diversification
problem makes the random-access requirement of the batch k-diversification problem
moot, as we do not have full knowledge of set U in advance. In addition, potential
algorithms cannot be expected to keep an unbounded number of previously seen objects
in memory, and must resort to keeping a small constant-sized buffer. Concretely, the
problem setting is as follows. The N items of set U arrive one by one. We are provided
k memory slots, and when an item arrives, we need to decide immediately whether to
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discard it or place it in memory. A discarded item cannot be retrieved later, but items
in memory can be overwritten. In Minack et al. (2011) the author gives an efficient
algorithm to solve this problem with a diversification quality very close to the batch
algorithm.

3.1.3 Irrevocable-choice k-diversification problem

In contrast to the above instantiations of the k-diversification problem, which deals
only with digital memory, we are interested in the situation where the memory is
an analogue capture device which physically captures some tangible aspects of the
world: an insect, a water sample, a rock sample, etc. In such cases, we can only
fill each physical memory slot once. We call this situation the irrevocable-choice
k-diversification problem.

More formally, we have N items from set U arriving one by one, and we wish to fill
the kK memory slots. As an item arrives, we can either drop it or physically place it in
memory. A dropped item cannot be retrieved later. In contrast to the classic streaming
k-diversification problem, the items stored in memory slots cannot be replaced. The
goal of the problem is to find a subset s Cc U: |S,| = k, such that divsyn (S’, dist)
is as close to divsyy (S*, dist), the solution of the batch k-diversification problem, as
possible. Of course, this digital goal is really a proxy for our true goal of capturing
diverse physical objects.

3.2 Assumptions

To clarify the setting of the irrevocable-choice k-diversification problem, we begin by
listing the following assumptions.

Assumption 1 The size of set U (denoted as N) is known in advance.

This assumption will generally not be true in real world setting. However, it greatly
simplifies the notations and algorithms that follow. Later we will show that as long
as a reasonable and conservative (i.e. lower bounding) estimate of N is provided, our
algorithm is robust enough against violations of this assumption.

Assumption 2 All items in U are independent and identically distributed (i.i.d.), i.e.,
they have the same probability distribution and are mutually independent.

Note that though all the items come from the same probability distribution, we do
not know what that distribution is in advance, nor do we need to explicitly model it.

Assumption 3 N is much larger than k, and is large enough for U to approximate the
probability distribution it comes from.

This assumption matches the scenarios we described in Sect. 1. For example, the
first mosquito capture device built for Microsoft’s Project Premonition (2015a) is able
to capture 64 insects (k = 64) but may see more than ten thousand insects in a single
night (N = 10,000+) (Silver 2008).

Assumption 4 We are given digital memory large enough to store all the data.
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Note that this digital memory is different from the physical “memory slot” we
discussed in Sect. 3.1.3. We need to select k irrevocable-choices to fill the “memory
slots”. If we decide to drop a data point, we cannot retrieve it later to fill in those memory
slots. But we are allowed the memory to “remember” all the discarded digital data to
gain some insights into the entire data set (seen thus far). To better differentiate between
these two usages of “memory” in the rest of the paper, where there is a possibility of
ambiguity we refer the space we store digital data as the D-Memory (Digital Memory)
and the space we store physical objects as the P-Memory (Physical Memory).

Assumption 5 For all items u;, u j, dist(u;, u ;) can be evaluated.

Here we are simply assuming that we have an appropriate distance measure defined
by the digital signature of the physical objects we wish to capture. This measure will
be data-dependent. For example, for flying insects, the Euclidean distance between
frequency amplitude spectrums (cf. Fig. 2) has been shown to be effective (Chen et al.
2014); for water samples the absolute difference in turbidity may be appropriate; and
for rock samples (both Terrestrial and Martian, Webster and Agle 2012) the Spectral
Information Divergence or Spectral Angle of the spectral signatures may be appropriate
(Cerra et al. 2011).

Having defined our problem and stated our assumptions, we are now in a position to
introduce our solution. For clarity of presentation, we begin by introducing a “static”
algorithm, which learns a key parameter by examining the distribution of the first
items it encounters, and “hardcodes” this parameter until the program terminates.
As we shall show, this simple algorithm often works reasonably well, but can have
occasional dramatic failures with an unlucky permutation of the arrival order. To solve
this problem, in Sect. 5 we generalize our algorithm to again learn the key parameter,
but to dynamically adapt it over time as needed.

4 The static algorithm: Simplek

To explain our solution, we begin with an assumption that is clearly untrue, and
later show that we can nevertheless approximate it. Concretely, we assume MD =
divsyn (S*, dist) is known in advance. Given this, in order to obtain the optimal set
S*, the distance between any two data objects we capture must be at least MD. Based on
this observation, we can develop a naive solution (Strategy 1) to the problem. Suppose
our irrevocable selection set is S, which is empty at the beginning. Let T = MD.

Strategy 1 (NaiveStrategy) Place the first data point «1 in set S. Then, for any upcom-
ing data u;, we calculate dist (u;, S), the minimum distance between u; and all objects
in S. If dist (u;, S) is greater than or equal to T, place u; in S. Otherwise discard u;.

Consider the role that T plays in the above strategy. Two unwelcome possibilities are:

e T is set too small. In this case, we will quickly fill P-Memory (set S) with objects
that are not particularly diverse.

e T issettoo large. In this case, we will rarely or never place objects into P-Memory
(set S).
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Thus we must consider the “Goldilocks principle” and carefully set the value of T'.
Even so, this strategy can still fail. This is because the strategy is sensitive to the u
captured in the first move as well. For example, suppose we have U = 2,1,3,4,5
and k = 3, then S* = 1,3,5, MD = 2. But since u; = 2, the items we capture are
actually S = 2, 4; we terminate with | S| < k. We can prevent this with a simple policy
(later formalized in lines 11-12 of Table 2). If there are E empty slots remaining in
S, and only E objects remaining to be seen from the stream, then we simply capture
every remaining object, given that accepting suboptimal objects is nevertheless better
than having unfilled slots. Note that even if we got lucky and u; € S*, the strategy
may still fail, simply because we might have captured a data point u;, such that
dist (uj, S) > MD but u; ¢ S* (e.g. U = 1,4,2,3,5, then S* = 1,3,5, MD = 2,
but we will actually capture S = 1,4, and 4 ¢ S*). In that case, |S| will again be
smaller than k, unless we resort to the “fill the last E slots” fix suggested above. These
issues could possibly be mitigated if we set T' to be slightly less than MD. However,
this requires us to address our assumption that we know MD in the first place. The
following observation explains our rationale.

Assume we divide the dataset U into two parts: Uy = uy, ua, ..., u, and Us =
Um+1, Um+2, - - -, UN. Suppose S ]“ is the solution of the batch k-diversification problem
of set Uy, S5 is the solution of set U3, and the MIN diversity values of ST and SJ are
MD and MD,, respectively. Since all the items in U are i.i.d., given |U1| and |U;| are
much larger than k, we have MD| ~ MD;, ~ MD.

Since this assumption is a cornerstone of our proposed algorithm, and it is somewhat
surprising, we will take the time to justify it. Recall the dataset shown in Fig. 5a. The
MIN diversity MD for the entire 3500 data objects is 1.37. If we randomly divide the
dataset into two equal sized halves, we find MD; = 1.25 and MD, = 1.28. Thus in
this case we do have MD| ~ MD, ~ MD.

This observation suggests a two-phase algorithm:

Step 1: Learning Phase. Allow items in U to pass by, observe their values and learn
an appropriate threshold 7' from them.

Step 2: Capture Phase. Apply T to Strategy 1 to make the k irrevocable choices in
U;.

Our proposed algorithm to learn the appropriate threshold 7 is outlined in Table 1.
For notational convenience, in the peusdocode we use “Data’ instead of “U”.

The FindThreshold algorithm calculates 7', the threshold we must set in Strategy 1
to capture at least k items in Data. Line 1 finds the extreme values in the search space
of T. Then in lines 2-9 we use binary search to find 7.

Table 2 explains the algorithm that exploits the learned threshold to trigger the
irrevocable captures. In the Simplek algorithm in Table 2, lines 1 and 2 delineate the
dataset into two sections. We drop the first m data physically, but keep their associated
digital values in D-Memory. Line 3 uses the FindThreshold algorithm in Table 1 to
calculate the threshold 7. Then we apply T and Strategy 1 to the rest of the data,
such that the distance between any two items in set S is no less than 7. The process
terminates when | S| = k.

Note that no matter how accurate our estimate of 7T is, there is some danger that
we will fail to capture enough physical objects, and that as we approach the end of
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Table 1 Algorithm to learn the threshold value

FindThreshold(Data, k)

FindThreshold(Data, k)
Input: Data: dataset; k: number of items to select
Output: T Threshold
1 Tmin<min(Distances(Data)), Tmax<max(Distances(Data))
L Tmin,h<—Tmax,Sl<NaiveStrategy(Data,l),Sh<—NaiveStrategy(Data, h)
T<«(l + h)/2, S<NaiveStrategy(Data,T)
while |S| # k and |SI| # |Sh| do
if |S| < k then h«-T, SheS
else [« T, Sl<S
end if
T<(+ h)/2, S« NaiveStrategy(Data,T)

end while
return T

— 0 00 0 N L AW N

(=}

Table 2 A simple algorithm to select k diverse items

Simplek(Data, k)

Simplek(Data, k)
Input: Data: dataset, data coming in one by one; k: number of items to select
Output: S: Set of the k selected items
1 N<«|Data|
m«|N /2], Drop« Data[1:m] //keep digital signature in D-Memory
3 T<«FindThreshold(Drop, k) //i.e. Table 1, learning phase
4 S« {Data[m+1]}
5 for i«—m+2 to N do
6 if Dist(Datali], S)>T then
7 S S U{Datalil}
8 if | S|==k then
9 return S
10 end i
11 if k-‘[lS | == N-i then // Failure Case (Definition 1)
12 S« S U{Datali+1:N]} // We were too aggressive..
13 return S /I ..s0 we must take all..
14 end if // ..the remaining objects.
15 end if
16 end for
17 return S

the data stream we realize that |S| will be smaller than k. To avoid this situation, lines
11-12 forces the process to place the last several data into S when it reaches the end. In
this case, the MIN diversity of set S is no longer bounded by 7. It can be any random
value. For clarity, we define this situation as a failure.

Definition 1 Failure: If we have just E remaining data items left to process, and we
have captured only k — E objects, we switch to a suboptimal “just take all of the next
E items” subroutine, and denote this situation as a failure.

Note that this is a failure in the sense that we did not make optimal choices, but
we did not fail to capture k items. We clearly wish to reduce the probability of such
failures as much as possible.
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Fig. 6 The effect of the first value on the selection result. The tops of the box-and-whisker plots correspond
to the maximum value obtained in the 100 runs, and the bottoms correspond to the minimum of the 100 runs

4.1 Discussion of Simplek algorithm on our running example

To help the reader appreciate the characteristics of the Simplek algorithm (and the
challenges of the problem setting itself), we begin by considering a concrete problem
instantiation as a running example. Suppose we will encounter 5000 random-walk
time series of length 512, and need to select k diverse items from this set. We will use
z-normalized random walks here for convenience, but recall that our algorithm does
not know that (otherwise exploitable) fact.

4.1.1 The impact of the first value

In line 4 of Table 2, we always select the first item in the data stream as we reach the
capture phase, is this a good strategy? It seems to open our algorithm to the possibility
of occasional poor luck, where the first item affects our irrevocable-choice results
significantly. Should we spend more effort in creating a better strategy for selecting a
good first value?

To answer this question, we randomly shuffled the 5000 random-walk samples 100
times, and then applied the FindThreshold algorithm in Table 1 to see how different
the resulting threshold 7 would be. Figure 6 shows the box-and-whisker plot of T
corresponding to four different k values. The red lines represent the medians, the
upper and lower bounds of the blue box represent quantiles, and the black lines stand
for extreme values.

As expected, we see that as k increases, the threshold 7" decreases, which means
the minimum distance between any two items of the selection set S in Table 1 also
decreases. Figure 6 also shows that the variance of T decreases dramatically as k
grows. Note that the variance of T is already very low when k is as small as 10. These
results strongly suggest that as long as k is reasonably large, the arbitrariness of the
first value selection will not affect the selection result significantly.

4.1.2 The setting of m
The setting of the value m offers a classic tradeoff. Given a finite pool of data, should we

use more data to learn, at the expense of candidate data we could consider capturing, or
should we use less data to learn, but have more candidate items to capture? In Table 2
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Fig. 7 The effect of m/N on the threshold learned. Note that for a large range of [0.2, 0.5], 71 =~ T3, and
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line 2, we had simply set m as [N /2| without discussion. We repair that omission
here.

If m is larger, we will use more data in the first part U; to learn an appropriate
threshold T'. As aresult, less data are left in the second part U, for us to choose from.
In contrast, if m is smaller, we will learn T from a smaller Uy, but will have more
data in U3 to choose from. Figure 7 shows how the learned threshold 7" would change
as m/N increases when we need to choose k = 10 samples from the 5000 random
walks. The result is averaged over 100 random shuffles of the data.

The curves in Fig. 7 are obtained by applying FindThreshold algorithm in Table 1
to both parts of the data. The blue curve shows the estimated threshold we learned
from the first part of the data. We denote it 7. The red curve is the actual threshold
we should set to get at least 10 samples from the second part of the data. We denote
this 75.

When m is very small, say m < N/5, the value of 77 is much less than 73. In
that case, we will obtain a very pessimistic estimate of the threshold to use for the
remaining data. In contrast, when m is large, say m > N /2, the value of T is larger
than the value of 7. This is very undesirable since it will probably lead to failure (cf.
Definition 1).

Note that when m = | N/2], T is the closest estimate of 7. This fact can be
derived without experiment. However, the figure also shows us that for a relatively
large range of m (% € [0.2, 0.5]), T1 = T, and T1 < T». This is good news for us,
telling us that our algorithm is not very sensitive to the parameter choice.

Finally, note that Fig. 7 shows that the appropriate threshold for N /2 of the data
(the value of the blue curve at m/N = 0.5) is very close to that for the entire data set
(the value of the blue curve at m /N = 1). This means that, in principle, we can be very
competitive with an oracle algorithm that is told the optimal threshold in advance.

4.2 Simplek algorithm: empirical result on our running example

To evaluate the Simplek algorithm, we will compare the results of three algorithms:

e Batch: The batch k-diversification assumption outlined in Sect. 3.1.1. Note that
this algorithm is able to “cheat” relative to our problem setting, by making an
arbitrary number of passes over all the objects. This algorithm provides an upper
bound to the performance of our algorithm, which can make only a single pass
over the data.
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Fig. 8 A comparison of three algorithms on an irrevocable-choice k-diversification problem

e Incremental: The streaming k-diversification algorithm outlined in Sect. 3.1.2.
Once again, this algorithm is cheating relative to our problem setting, because it is
allowed to make choices that are not irrevocable. This algorithm provides a more
realistic upper bound for the irrevocable streaming case in which we are interested.

e Simplek: The irrevocable-choice k-diversification algorithm outlined in this sec-
tion.

Note that since the batch k-diversification problem is NP-hard, we use the heuristic
algorithm in Erkut et al. (1994) to calculate the approximate solution instead of the
theoretical optimal one. For the streaming k-diversification assumption, we use the
algorithm in Minack et al. (2011), which is the state of the art.

The task-at-hand is in making £ = 10 diverse selections from the 5000 z-normalized
random-walk samples. We compared the three algorithms by conducting 100 indepen-
dent experiments. For each experiment we randomly shuffled the arriving order of the
5000 random-walk samples, and calculated the MIN diversity of the selected set cor-
responding to all three versions of k-diversification setting. Figure 8 summarizes the
results with box-and-whisker plots.

4.2.1 Analysis of the Simplek algorithm result

The first thing we note is that the incremental algorithm’s performance is very close
to that of the heuristic batch algorithm (confirming the findings in Minack et al.
2011). This is somewhat surprising given the constraints under which the incremental
algorithm runs.

The results for the Simplek algorithm are more mixed. The average performance
is significantly worse, but considering only the average hides the great variability in
performance. The box-and-whisker plot shows that about half of the Simplek results
are close to those of the other two algorithms. However, more than 25 % of the results
are much lower, and in extreme cases can be as low as 10, which is very undesirable.

With further investigation, we find this is a result of the too-aggressive “failure”
case (cf. Definition 1). In 35 out of the 100 experiments, we are unable to capture
enough items before reaching the end of the data, and forced to select the last several
items. The MIN diversity obtained in those experiments is highly susceptible to poor
luck.

More generally, the appropriate threshold 7" learned from the FindThreshold process
in Table 1 not only depends on the data distribution, but also on their arrival order. For

@ Springer



Irrevocable-choice algorithms for sampling from a stream

230 dynamic

o

225

o .

= 20 static

s ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50

Threshold

Fig.9 Comparison of static threshold algorithm (red) and dynamic threshold algorithm (blue), as explained
in Sect. 5 (Color figure online)

example, suppose U1 = 1,2,3,4,5,k =3 and U = 2,4,3, 1,5, arandom shuffle
of U;. The appropriate threshold learned from U; is T = 2. But if we apply T to
U, failure occurs. After capturing 2 and 4, there are no more items exceeding the
threshold, and we are forced to accept 5, the last item.

To summarize the findings of this experiment, we have shown that the Simplek
algorithm can often perform very close to the performance of greedy algorithm, but
occasionally fails catastrophically. Moreover, these disastrous failures can be largely
attributed to the threshold learning algorithm predicting a slightly too aggressive
(too large) value for 7. Therefore, we have developed two techniques that conser-
vatively estimate 7', one of which successfully reduced the failure rate to as low as
2 %. For brevity we are not discussing them here; we direct interested readers to
Project Webpage (2016) for a detailed explanation.

4.2.2 Limitations of the static threshold algorithm

The algorithms discussed so far learn a static threshold from the first section of the
stream, and then apply it to the remaining section. Though we have enhanced the basic
Simplek algorithm with two effective strategies to find a good setting for the threshold
(Project Webpage 2016), we cannot eliminate the possibility of failure cases, as we are
at the mercy of an unlucky order of arrival. We can mitigate this sensitivity to order of
arrival by setting the threshold even smaller; however, if the arriving order of the data
is actually good, then this too-conservative threshold will decrease the MIN diversity
we are able to obtain.

Thus there is a trade-off here: a too-aggressive threshold may result in failure cases,
while a too-conservative threshold will limit the quality of our selection set. To better
visualize this trade-off, we conducted the following experiment with the random-walk
dataset. We exhaustively explored all possible threshold values. For each threshold
value, we applied Strategy 1 to the latter half (latter 2500) of the random-walk dataset,
captured five samples (k = 5) and evaluated the MIN diversity. Figure 9 shows the
result averaged by 100 random shuffles of the data.

The red curve represents the result of the static threshold algorithm. We can clearly
see a peak MIN diversity value when Threshold = 30. However, note that the MIN
diversity value around the peak is very sensitive to the threshold: when threshold is
smaller, MIN diversity decreases almost linearly; when threshold is larger, failure
(Definition 1) occurs and the MIN diversity drops sharply. This is very undesirable,
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because the peak threshold value would change as the data (or just their arriving order)
vary, and as we cannot see the data beforehand, a slightly suboptimal estimate of the
threshold value can cause a large degradation in the MIN diversity.

Thus far our approach has assumed a single, static threshold. In the next section,
we will show a dynamic threshold algorithm that greatly mitigates this problem. The
dynamic threshold algorithm begins with an optimistic estimate of the threshold value
and adjusts it (as needed) as we see additional data. The blue curve in Fig. 9 previews
the result of the dynamic threshold algorithm with different initial threshold settings.
The result is equal or superior to the static algorithm result for all threshold values.
This is because the new algorithm is able to avoid failure by dynamically reducing
the threshold value as we approach the end of a run and the algorithm realizes it is
behind schedule in capturing items. To ground concrete numbers with this dataset, the
range of values of the threshold for the static algorithm that give a MIN diversity that
is within 1 % of optimal is 0.6171, but for the dynamic algorithm that range is 2.064.
Thus we have essentially made the threshold estimation problem 3.35 times easier.
The next section explains our dynamic threshold algorithm in detail.

5 A dynamic threshold algorithm

We propose the basic strategy of beginning with an optimistic (large) threshold, then
dynamically adjusting it as we see more items. If we are capturing items too slowly,
we lower the threshold, otherwise we keep the current value of the threshold.

A little introspection reveals that this start-high-then-lower option is the only pos-
sibility. A start-low-then-raise scheme results in the irrevocable selection of many
items with small distances between each other before we have a chance to ratchet up
the threshold.

Table 3 outlines our proposed dynamic algorithm to select k diverse items. Essen-
tially, the dynamic algorithm measures the distances between all dropped items and
the selected items, and summarizes the distribution in a histogram. The histogram is
used to approximate the probability distribution of the distance between future items
and selected items. The threshold is updated according to the probability distribution
as more items arrive.

Similar to the Simplek algorithm, lines 1-3 evaluate an initial threshold 7 with the
FindThreshold algorithm by learning from the first half of the data. Line 4 captures
the first item of the second half into S. The variable restk is the remaining number of
items to capture, while restn is the remaining number of items we expect to arrive.

In line 6, Dist(Dropli], S) is the minimum distance between Drop[i] and every
item in S. Lines 9—11 update the current threshold 7. We use Fig. 10 to give a visual
intuition of lines 9-11.

Each time after we have explored a range (defined by lines 12—18, explained below)
of items, we update the histogram of the minimum distances between every dropped
item and the selection set S, as Fig. 10 shows. This histogram is converted to a proba-
bility density function using simple kernel density estimation (Bowman and Azzalini
1997; Matlab 2016). Note that we need to capture at least restk items among the
remaining restn items, and all these items must be at least 7; away from the current
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Table 3 A dynamic algorithm to select k diverse items

Dynamic(Data,k)

Dynamic(Data, k)
Input: Data: dataset, data coming in one by one; k: number of items to select
Output: S: Set of the k selected items

1 N<«|Data|

2 m«|N /2|, Drop<—Data[1:m] //keep digital signature in D-Memory
3 T« FindThreshold(Drop, k) //Table 1

4 S{Data|m+1]}, startpt—m+2, restk<k-1, restn<N-m-1
5 for eachj in Drop

6 DistToS[j]« dist(Dropl[j], S)

7 end

8 while restk # 0 do

9 hist—histogram(DistToS), pdf<hist2pdf(hist)

10 Ta<—DynamicThreshold(pdyf, restk/restn)

11 Tmin(T, Ty)

12 if restk==restn then

13 S<S U{Data[startpt:N1}, break //Failure, Definition 1
14 elseif restk > 1 then

15 endpt<startptt|restn/restk|-1

16 else

17 endptstartpt

18 end if

19 curend<«—endpt

20 for i « startpt to endpt do

21 if Dist(Data[i], S)= T then //capture

22 SS U{Datalil}, restkerestk-1, curend<—i

23 for each j in Drop

24 DistToS[j]<—min(dist (Droplj], Datali)), DistToS[j])
25 end

26 break

27 else  //drop physically, but keep digital signature in D-Memory
28 Drop<Drop U{Datali]}, DistToS[|Drop|]« dist (Datali], S)
29 end if

30 end for

31 startpte—curend+1, restn—N-curend

32 end while

33 return S

0.04
0.02

0 10 20 30 40 50 0 10 20 30 40 50

Fig. 10 (left) An example of the histogram of distances between all dropped items and the first selected
item in the random-walk dataset. While this distribution is strongly suggestive of a reverse-lognormal,
we need to make no such assumptions. (right) Dynamic Threshold process based on probability density
function derived by the histogram

selection set S. Therefore 7 is determined such that the area below the pdf curve and
to the right of 7 is 7 g;’; Line 11 updates the current threshold 7 if T; < T.

In lines 12-18, [startpt, endpt] define the range of items to explore with the current
threshold 7. When restk > 1 (lines 14—15), we explore the next | restn/restk] items
with the current threshold 7' unchanged. This is because if T is appropriate, there is
a high probability we will capture at least one item within this range. If we capture
nothing in this range, then the threshold needs to be adjusted. Note that when restk = 1

(lines 16—-17), we have |restn/restk| = restn, but it is undesirable to explore all of the
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remaining items with a static threshold 7. Thus we set the length of the range to be 1,
allowing us to adjust threshold 7" after the arrival of every single item.

Lines 20-30 explore items in range [startpt, endpt] according to the current thresh-
old T. We call this a static-threshold exploring session. If an item is captured before
we reach endpt, we end the exploration process instantly, update restk, restn and set
startpt as the next item to arrive. Otherwise, we set startpt as the item following endpt
and update restn.

5.1 Complexity and scalability of the algorithm

As our goal is to capture physical items in a streaming setting, the algorithm needs
to be fast and space-efficient. Therefore, before moving on to empirical evaluation,
we analyze the complexity of the algorithm in Table 3. The space complexity of the
algorithm is O(Nd), where d is the length of the physical signature of an item. In the
learning phase (line 2), we simply store the digital signature of the first m items in
memory, so the processing time for each item is O(d). After that the FindThreshold
process in line 3 takes O(N2d) time to calculate an initial threshold value. In the capture
phase (lines 4-30), the time used to process each item differs in three cases. If the item
is dropped and we have not reached the end of a static-threshold exploring session, we
simply spend O(kd) time to store its digital signature in memory and update DistToS
(line 28). If the item is dropped and we have reached the end of a static-threshold
exploring session, we run through lines 9—-11 to obtain a new threshold value with
O(N) time. If the item is captured, we need to update both DistToS (lines 23-25) and
the threshold value (lines 9—11); in this case the time spent is O(Nd).

In all our real-life applications in Sect. 6, the processing speed of each item is at
least two orders of magnitude faster than its arrival rate. However, if N is too large,
the data cannot easily be stored in D-Memory, and the FindThreshold process in line
3 becomes intractable. Consider an insect-capture experiment that lasts for a week.
If the insects arrive two per second, then we must examine the digital signature of
1,209,600 insects. If the digital signature of each insect sample consists of 1000 data
points with double precision, then the dynamic algorithm would require an infeasible
9GB of memory. Nevertheless we can easily handle this situation, because we do not
need to keep the digital signature of all the data in D-Memory to obtain high-quality
MIN diversity result. We will see later that Fig. 13 (incidentally) provides a strong
evidence for the claim. Randomly sampling a small fraction of a massive dataset allows
us to tightly estimate MIN diversity of the entire dataset.

Thus all we have to do to handle such cases is replace the data we store in D-
Memory (cf. the variable Drop in Table 3) with a tractable random sampling of them.
For brevity, we explain and test this idea in detail at Project Webpage (2016), showing
that our ideas easily scale to millions of objects.

5.2 Result of the dynamic threshold algorithm on the running example

Figure 11 shows the result of the dynamic algorithm on our running example problem.
This time we have no failure case, and in 3/4 of the runs, the MIN diversity obtained
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Fig. 11 The effectiveness of the dynamic threshold algorithm. Compare to Fig. 8

is within 5 % of the approximate batch MIN diversity. This is a stunningly small per-
formance gap, given the very restrictive constraints of the irrevocable-choice problem
setting.

While the results in Fig. 11 bode well for our proposed algorithm, this is just a
single problem setting. In the next section, we will empirically evaluate the algorithm
under more diverse conditions including three real world case studies.

6 Empirical evaluation

We begin by noting that all our experiments (including all the figures above) are
completely reproducible. All experimental code and data (and additional experiments
omitted for brevity) are archived in perpetuity at Project Webpage (2016). The stream-
ing and dynamic natures of our algorithm lend themselves to visual intuition, and we
have created short videos to illustrate this work (Project Webpage 2016).

Our proposed algorithm performed well on the running example toy-problem in the
previous sections. Here we want to see how the algorithm performs for more diverse
problems, and for problems in which our simplifying assumptions no longer hold.

6.1 The Effect of Varying k

As all our previous examples consider only a single value for &, the number of diverse
items to capture, we will begin by testing performance of the algorithm by various
values of k. We continue to consider our running example of 5000 z-normalized
random-walk time series of length 512, and again randomly shuffle the dataset 100
times to allow averaging over 100 experiments. Figure 12 shows the resulting average
MIN diversity of three algorithms: the approximate batch algorithm, the incremental
algorithm and our proposed dynamic algorithm.

The sharp-eyed reader may notice that the average MIN diversity results of the
batch algorithm is very slightly lower than the incremental algorithm when k is small.
That is because the batch result is obtained by the approximate heuristic algorithm
Erkut et al. (1994). The incremental algorithm Minack et al. (2011) can perform better
by chance. Our proposed algorithm also performs better in some of the experiments.
More importantly, no matter how k varies, the average MIN diversity obtained with
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Fig. 12 The performance of three algorithms with various values of k. The difference in the performance
of three algorithms is difficult to tell, which is the point of this plot

our proposed algorithm (dynamic) is always more than 92 % of the approximate batch
MIN diversity.

6.2 The Effect of the N is Known Assumption

We envision that in real-life deployment, the value of k will be known in advance. For
example, the IARPA-funded, Microsoft-led project on “using mosquitoes as pathogen
sensors” has converged on a device that will make 64 irrevocable mosquito captures
(k = 64) (Project Premonition 2015a).

However, our assumption that we can know the exact value of N ahead of time
is clearly unrealistic. We typically will only be able to estimate the value of N. For
example, for the mosquito capture problem, examining historical (analogue) trap cap-
tures might allow us to estimate that trap in a particular location, during a particular
season, might expect to see approximately 3000-5000 insects.

Thus we will explore how incorrect estimations of N will affect the performance
of our algorithm. Imagine we have overestimated N. If we have reached the end of
data before we complete the learning phase of the algorithm, the result will be very
undesirable: no item will be captured. Even if we are lucky enough to reach the capture
phase, we will still be prone to failure, since the overestimation of N will result in
over-setting the threshold value. Thus there is a very high probability that we will not
be able to capture k items.

Now let us consider the opposite situation. If we have underestimated N, then we
will clearly be able to capture k items, however we will suffer from an opportunity
cost. How large is this opportunity cost?

To answer this, we used 10,000 z-normalized random-walk time series of length
512 as a dataset to test the proposed dynamic algorithm and set k = 10. We varied
the actual value of N in range [1000, 10,000], and always told the batch algorithm the
true N. In contrast, we always told the dynamic algorithm that the estimated N was
1000. That is to say, the dynamic algorithm would only be able to “see” the first 1000
time series. When it reached the end of the first 1000 time series and “thought” failure
happened, it would apply the strategy in Definition 1.

Figure 13 shows the average MIN diversity result of both algorithms. Each data
point is obtained by averaging 100 random shuffling results of the dataset. Due to
the strategy employed in Definition 1, the result of the dynamic algorithm remains
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Fig. 13 The relative insensitivity of the dynamic algorithm to the situation when N is underestimated

constant as the true N goes beyond 1000. The batch algorithm result improves as N
increases, but very slowly. Even when the true N reaches 10,000, which is ten times
greater than the estimated N, the dynamic result is no more than 10 % worse than the
batch result. So long as the estimated N is still large enough to reflect the distribution
of the dataset, the performance of our proposed algorithm is assured.

To summarize, the effect of N on our proposed algorithm is highly asymmetric.
If N is overestimated, we may not be able to capture enough items and that is very
undesirable. In contrast, if N is underestimated, even by an order of magnitude, the
performance of our algorithm will not be harmed much. Thus it is always desirable to
give a slightly pessimistic estimate of N. In almost all cases this “within an order of
magnitude” requirement will be easy to achieve. For example, in the insect sampling
problem discussed in Sect. 6.3.1, we can use historical trap counts to estimate new
trap counts within a factor of two (Silver 2008).

6.3 Case Studies

In this section, we will investigate how our proposed algorithm performs in three case
studies. As before, we compare the numeric values of the MIN diversity with the
batch “oracle”. In addition, for these experiments we have access to class labels, so
we measure the diversity in the more concrete sense of number of unique classes in
the captured set, in this case comparing to the only obvious strawman in the literature,
random sampling.

6.3.1 Case Study: Insect Sampling

The Intelligence Advanced Research Projects Activity (IARPA) has recently funded
an ambitious 5-year project on pathogen surveillance (Project Premonition 2015a).
Project Premonition seeks to detect pathogens in animals before these pathogens
make people sick. It does this by treating a mosquito as a “device” that can find ani-
mals/humans and sample their blood. Project Premonition uses drones and new robotic
mosquito traps to capture mosquitoes from the environment, and then analyzes their
stomach contents for pathogens. Pathogens are detected by gene sequencing collected
mosquitoes and searching for known and unknown pathogens in sequenced genetic
material. A key element of the project is the ability to sense and capture individual
mosquitoes. In some cases it may be useful to target particular species; however, in the
first exploratory visit to a new site, it is necessary to capture a representative sample of
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the species present. In many cases we have only the vaguest understanding of which of
the approximately 3600 species of mosquitoes are present in the target area. Capturing
a representative sample is an ideal application for our algorithm.

Note that this domain violates one of our assumptions, that the distribution during
the learning phrase is approximately the same as the distribution during the capture
phase. This is because many insects, especially mosquitos (Chen et al. 2014), have
widely varying flight behaviors, usually synchronized around the timing of dawn/dusk.
For example, in a region where there are only Culex tarsalis and Aedes aegypti, at
sunrise we are about three times more likely to encounter a farsalis, but at sunset we
are about fifteen times more likely to encounter aegypti (see Fig. 5 of Chen et al. 2014).
There are two ways to deal with this. First, we can perform our learning phase at a
fixed time, say 7:00 a.m. to 8:00 a.m. on one day, and perform our capture phase at
the same time the next day. The other solution is simply to make sure the total time
for the learning and capture phases is relatively short, say under 5 min. In the initial
tests in Granada in 2015 (Project Premonition 2015b), the sensors detected insects at
the rate of up to one per-second, so the short-window solution seems tenable.

One difficulty in evaluating our algorithm’s efficacy in this domain is in obtaining
ground truth. However, we are able to address this issue in the following way. We reared
cohorts of insects in the same insectary, but in separate yet adjacent cages. Each cage
had its own sensor, which could only sense the insects in that cage. However, we
simultaneously fed all sensors into a single data recorder. Thus, the former gives us
ground truth and the latter stream is the only data our algorithm has access to. Note
that we simulated the capture of insects in this experiment, pending the fabrication of
the insect capture device (Project Premonition 2015a). The six species we consider
are:

e Aedes aegypti & e Culex quinquefasciatus & e Culex stigmatosoma &
o Aedes aegypti Q o Culex quinquefasciatus Q o Culex tarsalis Q

For simplicity, we assume that the insects are equally frequent and their arrival
order is random. Our task is as follows: we will see 1200 insects and we have the
ability to capture exactly eight of them (i.e. N = 1200, &k = 8). Thus we have the
possibility to capture one of each insect type, plus two “spare” captures. If we had a
random capture policy we would expect to capture a full set of insects only 11.5 % of
the time. However, with our proposed dynamic algorithm, the probability of success
is much higher. To show this, we randomly shuffle the arriving order of insects 500
times, and each time we capture eight items using both algorithms.

We then measure the number of distinct species captured (NoDSC) in each experi-
ment. Ideally, NoDSC = 6, so that we capture at least one sample from each species,
but sometimes we are not that lucky. Figure 14 shows the quality of the MIN diversity
result of the proposed algorithm, and summarizes the 500 NoDSC results of both the
random policy and our proposed algorithm.

Figure 14a compares the MIN diversity of our algorithm with both the batch algo-
rithm and the random policy in the 500 experiments. The lowest MIN diversity value
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Fig. 14 a The effectiveness of the dynamic algorithm on insect data. b The insect NoDSC result of the
random policy (blue) versus the proposed dynamic algorithm (red) (Color figure online)

of the dynamic algorithm results from two failure cases. The remaining 498 experi-
ments have achieved over 90 % the quality of batch algorithm, and the average MIN
diversity is about two times better than the random policy result, validating the diver-
sification quality of our proposed algorithm. Furthermore, Figure 14b shows that with
random policy, only 54 out of 500 experiments succeed in capturing all six species
(agreeing with our theoretical estimate), while with our proposed dynamic algorithm
we succeed more than four times as often (224 out of 500 experiments). The ran-
dom algorithm captures three or less species about 6.4 % of the time, whereas for the
dynamic algorithm that number is just 0.2 %.

6.3.2 Case Study: Fish Sampling

Following our success with insects, we consider a very similar experiment with fish,
inspired by the example of fish ladders discussed in Sect. 1 (cf. Fig. 4). While the
scenario of robotically capturing individually selected fish may seem farfetched, there
are multiple ongoing research efforts in this direction, both for edible fish capture
(Jonsson 2015) and invasive species mitigation (Zhang et al. 2015).

Our dataset includes four different fish species, with fifty examples of each. We
assume that the fish enter the fish ladders in random order. We will see 200 fish passing
by and we are allowed to capture exactly four of them (i.e. N = 200,k = 4). We
randomly shuffle the arriving order of the fish 500 times, and each time we measure
the number of distinct species captured (NoDSC).

Figure 15 shows the diversification quality of all three methods, and compares the
NoDSC histogram of our proposed algorithm with the random policy.

From Fig. 15b we can see that although N is relatively small, the dynamic algorithm
still achieves over 75 % of the diversification quality of batch algorithm in more than
75 % experiments. Only seven out of 500 experiments end in failure (which determines
the lowest dynamic MIN diversity value), and the MIN diversity result is more than
twice of the random policy result by average. The NODSC result in Fig. 15¢ shows
that the random policy succeeds in capturing all four species 8.8 % of the time, while
our algorithm succeeds 21.6 % of the time. In about 35.6 % experiments the random
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Fig. 15 a We convert the fish outline to a pseudo time series, an effective representation for this domain.
b The effectiveness of the dynamic algorithm on fish data. ¢ The fish NoDSC result of the random policy
(blue) versus the proposed dynamic algorithm (red) (Color figure online)

policy captures no more than two fish species, but our algorithm reduces the rate of
this undesirable occurrence by more than a half to just 16.2 %.

Because N is much smaller than the insect sampling case, it is easier for the random
algorithm to achieve a higher NoDSC. Moreover, because the data size is no longer
large enough to robustly represent the distribution of each fish species’ shape, the dis-
tributions of the learning phase and capture phase can differ significantly. Nevertheless,
our experimental results provide strong evidence that our algorithm outperforms the
random policy significantly.

6.3.3 Case Study: Rock Sampling

Our final case study is inspired by the capabilities and limitations of NASA’s Mars
Curiosity Rover, as shown in Fig. 16a (Anderson et al. 2010). While the previous
case studies both assume that the classes are approximately equally frequent, this will
clearly not be generally true. Imagine that Curiosity is exploring a small region of
Mars in which there are four types of rocks:

o mafic (26) e quartzite (11) o marble (14) o schist (19)

The values in parenthesis are the number of rocks in each type. The robot can detect
the spectral reflectance of rocks with low cost (Cerra et al. 2011), but must make only
five irrevocable choice to drill into a rock for further analysis, moving the powdered
samples from the rocks’ interiors to the onboard laboratory instruments. The choices
are irrevocable because of the limited chemical supplies in the onboard laboratory and
the inevitable wear on the drill bit. Thus, in this case, N = 70 and k = 5 (we have the
possibility to capture all four types of rock, plus one spare capture).

We use the data from ASTER Spectral Library (Baldridge et al. 2009) to simulate
this situation. Similar to the previous case studies, we randomly shuffle the order of
the rocks 500 times, and compare the MIN diversity results of the batch algorithm, the
proposed dynamic algorithm and the random policy. We also compare the NoDRTC
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Fig. 16 a The first hole drilled by Rover. b The effectiveness of the dynamic algorithm on rock data. ¢
The insect NoDRTC result of the random policy (blue) versus the proposed dynamic algorithm (red) (Color
figure online)

(“Rock Types”) result of the proposed algorithm with the random policy. The results
are shown in Fig. 16.

Because N is very small, our proposed algorithm has a failure case in 22 out of 500
experiments. Nevertheless, the MIN diversity result is within 8 % of the batch result
in over 75 % experiments, and the average MIN diversity is about three times that of
the random policy. The dynamic algorithm captures all four types of rocks in 39 % of
the experiments, which is more than twice the random policy result (18.4 %).

7 Conclusion

We introduced the problem of irrevocable-choice diversification sampling, and showed
that it maps well onto diverse real-world problems of commercial and scientific inter-
est. We further demonstrated a somewhat surprising result, that in spite of the severe
constraints of the problem setting (streaming data, irrevocable-choices), we can typ-
ically produce results that are very close to those of an oracle algorithm that sees
all the data at once. We have several plans for future work. First, we would like to
investigate the problem from a more theoretical point of view. Second, we will have
several opportunities to do irrevocable-choice diversification sampling of insects in
the coming years (Project Premonition 2015a), and it will be interesting to see how
our results in Sect. 6.3 generalize to field settings. Finally, we wish to consider stream-
ing versions of other algorithms under the irrevocable-choice constraints, including
clustering and outlier detection.

References

Aggarwal CC (2006) Data streams: models and algorithms (advances in database systems). Springer, New
York

Anderson R et al (2010) Mars Science Laboratory participating scientists program proposal information
package. NASA/Jet Propulsion Laboratory, Pasadena

Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens
Environ 113(4):711-715

Begum N, Keogh E (2014) Rare time series motif discovery from unbounded streams. Proc VLDB Endow
8(2):149-160

@ Springer



Y. Zhu, E. Keogh

Bowman A, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with
S-Plus illustrations. Oxford University Press, New York

Cerra D, Bieniarz J, Avbelj J, Reinartz P, Mueller R (2011) Compression-based unsupervised clustering of
spectral signatures. Whispers, Oro Valley

Chen Y, Why A, Batista G, Mafra-Neto A, Keogh E (2014) Flying insect classification with inexpensive
sensors. J Insect Behav 27(5):657-677

Cormode G, Hadjieleftheriou M (2010) Methods for finding frequent items in data streams. VLDB J
19(1):3-20

Drosou M, Pitoura E (2012a) Disc diversity: result diversification based on dissimilarity and coverage. Proc
VLDB Endow 6(1):13-24

Drosou M, Pitoura E (2012b) Dynamic diversification of continuous data. In: Proceedings of the 15th
EDBT/ICDT, ACM, pp 216-227

Erkut E (1990) The discrete p-dispersion problem. Eur J Oper Res 46(1):48-60

Erkut E, Ulkiisal Y, Yenicerioglu O (1994) A comparison of p-dispersion heuristics. Comput Oper Res
21(10):1103-1113

Ferguson TS (2006) Optimal stopping and applications. Online Book. www.math.ucla.edu/~tom/Stopping/
Contents.html

Fgnss A, Munksgaard L (2008) Automatic blood sampling in dairy cows. Comput Electron Agric 64(1):27—
33

Ghosh JB (1996) Computational aspects of the maximum diversity problem. Oper Res Lett 19(4):175-181

Goldberg D (2011) Huxley: a flexible robot control architecture for autonomous underwater vehicles. In:
Proceedings of IEEE OCEANS conference (Spain, 2011), pp 1-10

Hill TP (2009) Knowing when to stop: how to gamble if you must—the mathematics of optimal stopping.
Am Sci 97(2):126-133

Honda MC, Watanabe S (2007) Utility of an automatic water sampler to observe seasonal variability in
nutrients and DIC in the Northwestern North Pacific. J Oceanogr 63(3):349-362

Jonsson F (2015) Real-time fish type recognition in underwater images for sustainable fishing. Technical
report. Uppsala University, Uppsala

Matlab ksdensity function (2016) http://www.mathworks.com/help/stats/ksdensity.html

Minack E, Siberski W, Nejdl W (2011) Incremental diversification for very large sets: a streaming-based
approach. In: ACM SIGIR (July 2011), pp 585-594

Peskir G, Shiryaev A (2006) Optimal stopping and free-boundary problems. Lectures in Mathematics. ETH,
Ziirich

Project Premonition (2015a) http://www.research.microsoft.com/en-us/um/redmond/projects/project
premonition/default.aspx. Accessed 2 Aug 2015

Project Premonition (2015b) URL of Video of First Trials in Granada. Seeking to prevent disease outbreaks.
https://www.youtube.com/watch?v=v8uG82Z7VLM

Project Webpage (2016) https://sites.google.com/site/irrevocablestreamingdata/

Rasmussen SL, Starr N (1979) Optimal and adaptive stopping in the search for new species. ] Am Stat
Assoc 74(367):661-667

Roman C, Mather R (2010) Autonomous underwater vehicles as tools for deep-submergence archaeology.
Eng Marit Environ 224(4):327-340

Silver JB (2008) Chapter 14: estimating the size of the adult population. Mosquito ecology field sampling
methods, 3rd edn. Springer, New York

Vitter JS (1985) Random sampling with a reservoir. ACM Trans. Math Softw (TOMS) 11(1):37-57

Webster G, Agle DC (2012) Mars Science Laboratory/Curiosity Mission status report. NASA, New York

Zhang D et al (2015) Automatic fish taxonomy using evolution-constructed features for invasive species
removal. Pattern Anal Appl 18(2):451-459

@ Springer


www.math.ucla.edu/~tom/Stopping/Contents.html
www.math.ucla.edu/~tom/Stopping/Contents.html
http://www.mathworks.com/help/stats/ksdensity.html
http://www.research.microsoft.com/en-us/um/redmond/projects/projectpremonition/default.aspx
http://www.research.microsoft.com/en-us/um/redmond/projects/projectpremonition/default.aspx
https://www.youtube.com/watch?v=v8uG82Z7VLM
https://sites.google.com/site/irrevocablestreamingdata/

	Irrevocable-choice algorithms for sampling from a stream
	Abstract
	1 Introduction
	2 Related work
	2.1 Optimal stopping algorithm
	2.2 Streaming algorithms

	3 Definitions and assumptions
	3.1 Diversification problems
	3.1.1 Batch k-diversification problem
	3.1.2 Streaming k-diversification problem
	3.1.3 Irrevocable-choice k-diversification problem

	3.2 Assumptions

	4 The static algorithm: Simplek
	4.1 Discussion of Simplek algorithm on our running example
	4.1.1 The impact of the first value
	4.1.2 The setting of m

	4.2 Simplek algorithm: empirical result on our running example
	4.2.1 Analysis of the Simplek algorithm result
	4.2.2 Limitations of the static threshold algorithm


	5 A dynamic threshold algorithm
	5.1 Complexity and scalability of the algorithm
	5.2 Result of the dynamic threshold algorithm on the running example

	6 Empirical evaluation
	6.1 The Effect of Varying k
	6.2 The Effect of the N is Known Assumption
	6.3 Case Studies
	6.3.1 Case Study: Insect Sampling
	6.3.2 Case Study: Fish Sampling
	6.3.3 Case Study: Rock Sampling


	7 Conclusion
	References




