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Abstract—Given the pervasiveness of time series data in all 
human endeavors, and the ubiquity of clustering as a data 
mining application, it is somewhat surprising that the problem 
of time series clustering from a single stream remains largely 
unsolved. Most work on time series clustering considers the 
clustering of individual time series, e.g., gene expression 
profiles, individual heartbeats or individual gait cycles. The 
few attempts at clustering time series streams have been shown 
to be objectively incorrect in some cases, and in other cases 
shown to work only on the most contrived datasets by carefully 
adjusting a large set of parameters. In this work, we make two 
fundamental contributions. First, we show that the problem 
definition for time series clustering from streams currently 
used is inherently flawed, and a new definition is necessary. 
Second, we show that the Minimum Description Length (MDL) 
framework offers an efficient, effective and essentially 
parameter-free method for time series clustering. We show 
that our method produces objectively correct results on a wide 
variety of datasets from medicine, zoology and industrial 
process analyses.  
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I.  INTRODUCTION 

Time series data is pervasive across almost all human 
endeavors, including medicine, finance, science, and 
entertainment. As such it is hardly surprising that it has 
attracted significant attention in the research community  
[1][3][26][21]. Given the ubiquity of clustering both as a 
data mining application in its own right and as a subroutine 
in other higher-level data mining applications (i.e., 
summarization, rule-finding, etc.), it is surprising that the 
problem of time series clustering from a single time series 
stream remains largely unsolved. Most work on time series 
clustering considers the clustering of individual time series, 
say, gene expressions or extracted signals such as individual 
heartbeats. The few attempts at clustering the contents of a 
single time series stream have been shown to be objectively 
incorrect in some cases [16], and in other cases shown to 
work only on the most contrived datasets by carefully 
adjusting a large set of parameters. In this work, we make 
two fundamental contributions. First, we show that the 
problem definition for time series clustering from streams 
currently used is inherently flawed. Any meaningful 
algorithm must avoid trying to cluster all the data. In other 
words, the subsequences of a time series should only be 
clustered if they are clusterable. This seems to open up a 
“chicken and egg” paradox. However, our second 
contribution is to show that the Minimum Description 
Length (MDL) framework offers an efficient, effective and 
essentially parameter-free solution to this problem.  

We begin by giving the intuition behind the fundamental 
observation, that clustering of time series from a single 
stream of data requires ignoring some of the data. 

A. Why Clustering Time Series Streams requires Ignoring 
some Data 

The observation motivating our efforts to cluster time 
series is that any attempt that insists on trying to explain all 
the data is doomed to failure. Consider one of the most 
obviously “clusterable” time series data sources: motion-
captured sign language, such as American Sign Language 
(ASL). There has been much recent work on nearest-
neighbor classification of such data, with accuracies greater 
than 90% frequently reported [1]. This suggests that a long 
data stream of ASL might be amenable to clustering, where 
each cluster maps to a distinct “word” or “phrase.” 

However, all such data contains Movement Epenthesis 
(ME) [7][26]. During the production of a sign language 
sentence, it is often the case that a movement segment needs 
to be inserted between two consecutive signs to move the 
hands from the end of one sign to the beginning of the next. 
These ME segments can be as long as—or even longer 
than—the true signs, and are typically not performed with 
the precision or repeatability of the actual words, since they 
have no meaning. Recent sophisticated sign language 
recognition systems for continuous streams have begun to 
recognize that “automated sign recognition systems need a 
way to ignore or identify and remove the movement 
epenthesis frames prior to translation of the true signs” [26]. 

What we observed about ASL as a concrete and intuitive 
example matches our experience with dozens of other 
datasets, and indicates that this is a pervasive phenomenon.  
We believe that almost all datasets have sections of data that 
do not represent a discrete underlying behavior, but simply a 
transition between behaviors or random drifts where no 
behavior is taking place. In many datasets, such sections 
constitute the majority of the data. If we are forced to try to 
model these in our clusters, they will swamp the true 
significant clusters. We can best demonstrate this effect, and 
hint at our proposed solution by an experiment on a discrete 
analogue of time series, in this case English text.  

We emphasis that this is just a expository example, and if 
we were really assigned to cluster such text data we could do 
better than the attempt shown below. 

Consider the following string D, which from left to right 
mentions three versions of the name David (English, Persian, 
Yiddish) and three versions of the name Peter (English, 
Croatian, Danish). Note that all names have five letters each. 

David enjoined Peter who identified Davud son of Petar friend to 
Dovid and Peder, to do what... 



Here the words between the names are exactly the 
epenthesis previously referred to. To make it more like our 
time series problem, we can strip out the punctuation and 
spacing, leaving us: 
davidenjoinedpeterwhoidentifieddavudsonofpetarfriendtodovidandpedertodowhat 

The discrete analogue of the clustering algorithm in [9] 
would begin by extracting all the subsequences of a given 
fixed length. Let us assume for simplicity the length five is 
used, and thus the data is transformed into: 

david 
avide 
viden 
idenj 
... 
owhat 

In Figure 1 we show representative clusters for two 
values of K, if we perform partitional clustering as in [9] on 
this extracted data. 

 

Figure 1. Representative partitional clusters from dataset D for two 
settings of K. 

Note that while the cluster of the name variants of David 
is discovered, we find that under any setting of K there are 
equally significant meaningless clusters, for example {nofpe, 
nedpe, andpe}. This is in spite of the fact that this can be 
considered a particularly easy task. Exactly 40% of the signal 
consists of data we hope to recover, and we deliberately 
avoided name variants of different lengths (i.e., pieter, pere).  
In more realistic settings we expect much less of the data to 
contain meaningful signals. Note also that the problem is not 
mitigated by using other clustering variants. The problem is 
inherent in the false assumption that a clustering of a single 
stream that must explain all such data could ever produce 
meaningful results [16]. 

B. How MDL Can Help 

In contrast to the previous section, it is instructive to see 
what our proposed algorithm will do in this case. While the 
details of our algorithm are not introduced until Section IV, 
we can still outline the basic intuition here. 

The original string D has a bit-level representation whose 
length we denote as DL(D). Our algorithm can be imagined 
as attempting to losslessly compress the data by finding 
repeated structure in it. As there is little exactly repeated 
structure, we must find approximately repeated structure and 
encode the differences. For example, if we find the 
approximately repeated versions of the name “david”, we can 
think of one version as being a model or hypotheses for the 

data, and encode only the difference between the other 
occurrences: 

H1 =  {1:david} 
1____enjoinedpeterwhoidentified1___u_sonofpetarfriendto1_o___andpedertodowhat 

In terms of MDL we can see david as a partial hypothesis 
H1 or description of the data. This model has some size, 
which is simply the length in bits of the word DL(H1) = 
DL(david). In addition, the size of the remaining data was 
both reduced by factoring out the common structure and 
(slightly) increased by the overhead of the pointers to the 
dictionary, etc 1 . When encoded with the hypothesis, the 
length (in bits) of the description of the data is given as 
DL(D│H1). The total cost of both the hypothesis and the data 
encoded using the hypothesis is just DL(H1) + DL(D│H1)..  

Because this sum is less than the length of the original 
data DL(D), we feel that we are making progress. Perhaps, 
however, there is more structure we can exploit. A brief 
inspection of the data suggests another model, H2, that 
exploits both repeated names: 

H2 =  {1:david 2:peter} 
1___enjoined2___whoidentified1___u_sonof2___a_friendto1_o___and2__d__todowhat 

Because DL(H2) + DL(D│H2) < DL(H1) + DL(D│H1), 
we prefer this new hypothesis as a model of the data. 

Are we now done? We can try other hypotheses. For 
example, we could consider the hypothesis H3 = {1:david 
2:peter 3:ono}, attempting to exploit the two occurrences of 
a pattern “o*o” (i.e.,..sonof.. and ..to do.. ). However, because 
this pattern is short, and only has two occurrences, we cannot 
break even with the cost of the overhead: 

 DL(H2) + DL(D│H2) < DL(H3) + DL(D│H3) 
Because we cannot find any other hypotheses that 

produce a smaller model, we invoke the MDL principle to 
claim that H2 = {1:david 2:peter} is the best model of the 
data D.  Here best means something beyond simply 
achieving the greatest compression. We can claim that MDL 
approach has achieved the most parsimonious explanation of 
the data, recovering the true underlying structure [8][12][14] 
[18]. In at least this case, where the sentence was contrived 
as an excuse to use two names trice, MDL did recover the 
true underlying structure. 

Note that while our informally stated algorithm does 
manage to recover the two embedded clusters, it does not 
attempt to explain all of the data. This is a critical 
observation, in order to cluster a single stream of data, be it 
discrete or real-valued, we must be able to represent and rank 
solutions that ignore some of the data. 

II. RELATED WORK 

The tasks of clustering multiple time series streams, or 
many individual time series (i.e., gene expressions) have 
received significant attention, but the solutions do not inform 

                                                           
1 In this toy example, we are deliberately glossing over the concrete 
details of how the pointers are represented and how the amount 
compression achieved is measured, etc. [18]. We will formalize 
these details in Section III. 

Three clusters of equal diameter when K = 20

{whoid, davud, njoin, dovid, david}
{ified, frien, oined, oiden, viden, vidan}
{todow, todov, sonof}

Three clusters of equal diameter when K = 40
{avuds, ovida, avide}
{davud, dovid, david}
{nofpe, nedpe, andpe}



the problem we consider here, the task of clustering a single 
time series stream. The most commonly referenced 
technique for clustering a single time series stream is 
presented in [9] as a subroutine for rule discovery in time 
series. In essence the method slides a fixed length window 
across the stream, extracting all subsequences which are then 
clustered with K-Means. The reader may have already 
spotted a flaw here; the algorithm tries to explain all the data. 
In [16] (and follow-up works by more than twenty other 
authors [4][5][10]), it was shown that this method can only 
produce cluster centers that are sine waves, and the output of 
the algorithm is essentially independent of the input. Note 
that even if the algorithm did not have these fatal flaws, it 
assumes the cluster all have equal length, and that we know 
the correct value of K. As we shall show, our method 
requires neither assumption.  

Since the problem with [9] was pointed out in 2005 [16], 
at least a dozen solutions have been proposed. In Section 
V.C we show that the most referenced of these works [5] 
does not produce objectively correct results, even after 
extensive parameter tuning by the original authors on a 
relatively simple problem.   

While there have been some efforts to use MDL with 
time series [22][24], they all operate on a quantized 
representation of the data. This has the disadvantage of 
requiring three parameters (cardinality, dimensionality and 
window size), eliminating the greatest advantage of MDL, its 
intrinsically parameter-free nature.   

While MDL has had surprisingly little impact in data 
mining, it is a tool of choice for many bioinformatics 
problems. For example, working with RNA data, Evans et. 
al. have proposed a method using data compression and the 
MDL principle that is capable of identifying motif 
sequences, some of which were discovered to be miRNA 
target sites implicated in breast cancer [12]. Moreover, the 
authors showed the generality of their ideas by applying 
them, unmodified, to the problem of network traffic 
anomalies [13]. There is also a significant work on using 
MDL to mine graphs [14][21], dating back to classic work 
by Cook et al. [8]. 

Finally, we note that the task was informed by, and may 
have implications for many other time series problems, 
including time series segmentation2 [3]. To see why, let us 
revisit the technique of text analogy. It is not obvious how 
one should segment the three concatenated words 
“hisabasiais”. Perhaps the best we could do is to exploit the 
known frequencies of bigrams and trigrams, etc. In fact, most 
time series segmentation algorithms essentially do the real-
valued equivalent of this [3]. However, if we see another 
such triplet of three concatenated words from later in the 
same stream, for example “withoutabasiais”, we can 
immediately see that “abasia” must be a word3. 

                                                           
2 The phrase “time series segmentation” is unfortunately overloaded. 
It can mean approximating the data with the smallest number of 
piecewise polynomial segments for a given error threshold, or as 
here; extracting small, discrete, semantically meaningful segments of 
data [3]. 
3 Abasia is the inability to walk due to impaired muscle coordination. 

III. BACKGROUND AND NOTATION 

A. Definitions and Notation  

We begin by defining the data type of interest, time 
series: 

Definition 1: A time series T is an ordered list of numbers. 
T = t1, t2 ,...,tm. Each value ti can be any finite number 
(e.g., for two-byte values they could be integers in range 
[-32,768, 32,767]) and m is the length of time series T. 

Before continuing, we must make and justify a choice. 
The MDL technique that is at the heart of our algorithm 
requires discrete data, but most time series datasets use four 
or eight bytes per value, and are thus real-valued. Our 
solution is simply to cast the real-valued numbers into a 
reduced cardinality version. Does such a reduction lose 
meaningful information? To test this, we did one nearest-
neighbor classification on eighteen public time series 
datasets, for cardinalities from the original four bytes down 
to a single bit.  Figure 2 shows the results. As we can see, we 
can drastically reduce cardinality without reducing accuracy. 
The original four-byte cardinality is typically a by-product of 
file format convention or hardware specification, and not a 
claim as to the intrinsic cardinality of the data. 

Figure 2. Classification accuracy on 18 time series datasets as a 
function of the data cardinality. Even if we reduce the cardinality of 
the data from the original 4,294,967,296 to a mere 64 (vertical bar), the 
accuracy does not decrease. 

We note that there may be other things we could have 
done. For example, the MML framework [25] which is 
closely related to MDL would allows us to work in original 
continuous space. However, we choose MDL because it is 
more familiar and it allows for a more intuitive explanation 
of our algorithms. Likewise, we have at least a dozen choices 
of how to discretize the time series (adaptive binning, 
uniform binning, SAX etc) however, after testing all 
published algorithms and finding it made little or no 
difference, we settled on the simple idea shown below in 
Definition 3. 

Based on the observations in Figure 2, we will simply use 
64-value (6-bit) cardinality in the rest of this work.  

While the source data is one long time series, we 
ultimately wish to cluster it into sets of shorter subsequences: 

Definition 2: A subsequence Ti,k of a time series T is a 
short time series of length k which starts from position i. 
Formally, Ti,k = ti,ti+1,..,ti+k, 1≤ i≤ m-k. 

As we previously noted, we are working in a space of 
reduced cardinality. Because comparing time series with 
different offsets and amplitudes is meaningless [16], we must 
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(slightly) adapt the normalization process for our discrete 
representation: 

Definition 3: A discrete normalization function 
DNorm is a function to normalize a real-valued 
subsequence T into b-bit discrete value of range [1,2b]. 
It is defined as followings: ݉ݎܰܦ(ܶ) = ݀݊ݑݎ  ൬ ܶ − ݔܽ݉݊݅݉ − ݉݅݊൰ ∗ (2 − 1) + 1 

where min and max are the minimum and maximum 
value in T, respectively.  

Based on the results in Figure 2, b is fixed at 6 for all 
experiments. We need to define a distance measure; we use 
the ubiquitous Euclidean distance measure:  

Definition 4: The distance between two subsequences 
Ti,k and Tj,k is the Euclidean distance (ED) between Ti,k 
and Tj,k. Both subsequences must be in the same length. 
Hence, it is: 

)ݐݏ݅ܦ ܶ,, ܶ,) = ඨ ൫ݐା − ା൯ଶିଵୀݐ  

As we shall see later, the Euclidean distance is not 
general enough to support clustering from time series 
streams; nevertheless, it is still a useful subroutine to speed 
up our more general measures. 

For both the full time series T and any subsequences 
derived from it, we are interested in knowing how many bits 
are necessary to represent it. Normally the number of bits 
depends solely on the data format, which is typically a 
reflection of some arbitrary choices of hardware and 
software.  In contrast, we are interested in knowing the 
minimum number of bits to exactly represent the data. In the 
general case, this number is not calculable, as it is the 
Kolmogorov complexity of the time series [19]. However, 
there are numerous ways to approximate this, using Huffman 
coding, Shanon-Fano coding, etc. Because entropy is a lower 
bound on the average code length from any such encoding, 
we can use the entropy of the time series as its description 
length: 

Definition 5: The entropy of a time series T is defined as: ܪ(ܶ) =  −  ܲ(ܶ = (ݐ logଶ ܲ(ܶ = ௧(ݐ  

where ܲ logଶ ܲ is defined as 0, if P = 0. 

We can now define the description length of a time series. 

Definition 6: A description length DL of a time series 
T of length m is the total number of bits required to 
represent it, that is DL(T)= m*H(T). 

The DL of a time series using entropy clearly depends on 
the data itself, not just arbitrary representational choices. 
Figure 3 shows four time series, which all require 250 bytes 
to characterize in the original representation, but which have 
differing entropies and thus different description lengths. 

Figure 3. Four time series of length 250 and with a cardinality of 256. 
Naively all require 250 bytes to represent, but they have different 
description lengths. 

The reader may have anticipated the following 
observation. While the (slightly noisy) straight line B has a 
high entropy, we would subjectively consider it a simple 
shape. It is simple given our belief (hypothesis) that it is a 
slightly corrupt version of a straight line. If H is this 
hypothesis, then we can consider instead the entropy of a 
time series B', which as shown in Figure 4, is simply B 
encoded using H, and written as B' = (B│H). As a practical 
matter, to use H to encode B, we simply subtract H from B to 
get a difference vector B', and encode this simpler vector B'. 

Figure 4. Time series B can be represented exactly as the sum of the 
straight line H and the difference vector B'. 

While the vector B' is also of length 250, it has only 10 
unique values, all of which are small in magnitude, thus its 
entropy rate is only 2.51 bits. In contrast, B has 172 unique 
values and an entropy rate of 7.29. Note that if we are given 
only B', we cannot reconstruct B; we also need to know the 
slope and mean of the line. Thus, when reporting the overall 
number of bits for B', we must also consider the number of 
bits it takes to encode the hypothesis (the line H). We can 
encode the line simply by recording the heights’ two 
locations, the first and last points4, each of which requires a 
single byte. Thus, the number of bits required to represent B 
using our hypothesis is: 

DL(B) = DL(H) + DL(B│H) = (2 *8) + (250* 2.51) = 643.5 bits 

which is significantly less than the 1,822 bits required for 
the naive encoding of B without any hypothesis. 

Note the straight line would not help in reducing the 
number of bits required to represent time series C, but using 
a sine wave as the hypothesis would significantly help. This 
observation inspired one of the principle uses of MDL, 
model section [23]. Statisticians use this principle to decide 
if some noisy observations suggest an underlying physical 
model is produced by, say, a piecewise linear model as 
opposed to a sinusoidal model. However, our work leverages 
off a simple but unexploited observation. The hypotheses are 
not limited to well-defined functions such as sine waves, 
wavelet basis functions, polynomial models, etc. The 
hypothesis model can be any arbitrary time series. We will 
see how this observation can be exploited in detail later, but 

                                                           
4 If we know the time series is z-normalized, we only need one byte 
to record the line. 
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in brief: if k subsequences of a stream truly form a cluster, 
then it should be possible to store them in less space by 
encoding them as a set of difference vectors to the mean of 
all of them. Thus, we have a potential test to guide our search 
for clusters. 

Having seen this intuition, we can now formalize the 
notion of hypothesis as it pertains to our problem: 

Definition 7: A hypothesis H is a subsequence used to 
encode one or more other subsequences of the same 
length.  

As a practical matter, the encoding we use is the one 
visualized Figure 4, we simply subtract hypothesis H from 
the target subsequence(s) and encoded the difference 
vector(s). We could encode the difference vector(s) with, 
say, Huffman encoding, but as we noted in Definition 5, we 
really only care about the size of the encoding, so we simply 
measure the entropy of the difference vector(s) to get a lower 
bound of the size of encoding. 

A necessary (but not sufficient) condition to place two 
subsequences H and B into the same cluster is: 

DL(B) >DL(B|H) 

This inequality requires that the subsequence B takes 
fewer bits to represent when H is used as a basis to encode it, 
encoding the intuition that the two subsequences are related 
or similar.   

We can hint at the utility of thinking about our data in 
terms of hypothesis encoding by revisiting our text example. 
When a clustering text stream, would it be better to merge A 
or B? 

A = {david, dovid},  B = {petersmith, petersmidt} 

The first case allows a tight cluster of two short words, is 
that better than a looser but longer cluster B? The problem is 
exacerbated when we consider the possibility of clusters with 
more than two members: how would we rank the relative 
utility of the tentative cluster C = {bob, rob, hob}? 

Normally, clustering decisions are made by considering 
Euclidean distance (or its text counterpart, Hamming 
distance); however, Euclidean distance only allows 
meaningful comparisons when all the subsequences are the 
same length. The solution for text, to use the length-
normalized Hamming distance, cannot be generalized here. 
The reason is subtle and underappreciated, suppose we have 
two subsequences of length k that are distance d apart. If we 
truncate the end points and measure the distance again, we 
might find it has increased! This is because we should only 
compare z-normalized time series when using Euclidean 
distance5 , and after (re)Z-normalizing the slightly shorter 
subsequences, we may find they have grown further apart. 
Thus, the z-normalized Euclidean distance function is not 
linear in length and is not even monotonic. 

                                                           
5 The solution of not normalizing the time series would mitigate this 
problem, but measuring the Euclidean distance between two time 
series with different offsets or amplitudes produces meaningless 
results [16]. 

We have already hinted at the fact that the DL function 
can use extra information, by using “given”, i.e.,  DL(B'│H) 
is the DL of B' given H. We can now formalize this notion: 

Definition 8: A conditional description length of a 
subsequence A when a hypothesis H is given is (ܪ|ܣ)ܮܦ = ܣ)ܮܦ −  (ܪ

Recall from Figure 3 and Figure 4 that the DL of a 
subsequence depends on the structure of the data. For 
example a constant line has a very low DL, whereas a 
random vector has a very high DL. If A and H are very 
similar, their difference (A-H) will be close to a constant line 
and thus have a tiny DL. In essence then, the DL function 
gives us a parameter-free test to see if two subsequences 
should be clustered together.  

We generalize the notion of DL to multiple sequences 
next. We can apply the same spirit by using a hypothesis to 
calculate the minimum number of bits required to keep a 
cluster. We call this description length of a cluster: 

Definition 9: A Description Length of a Cluster 
(DLC) C is the number of bits needed to represent all 
subsequences in C. In this special case, H is the center 
of the cluster. Hence, the description length of cluster C 
is defined as:  (۱)ܥܮܦ = (ܪ)ܮܦ  +  (ܪ|ܣ)ܮܦ − ∈۱(ܪ|ܣ)ܮܦ∈۱ݔܽ݉  

The above DLC gives us a primitive to measure the 
reduction in bits achieved by encoding data with a 
hypothesis. Our clustering algorithm is essentially a search 
algorithm, and there are three operators that avail of the DLC 
definition to test how many bits a particular choice can save. 
Thus, these three operators fall under the umbrella definition 
of bitsave: 

Definition 10: A bitsave is the total number of bits 
saved after applying an operator that creates a new 
cluster, adds a subsequence to an existing cluster, or 
merges two existing clusters together. It is the 
difference in the number of bits before and after 
applying a given action:  

 bitsave = DL(Before) - DL(After) 

In detail, the bitsave for each operator is defined as 
following: 

1) Creating a new cluster C' from subsequences A and B 

 bitsave = DL(A) + DL(B) - DLC(C') 

2) Adding a subsequence A to an existing cluster C 

 bitsave = DL(A) + DLC(C) - DLC(C') 

where C' is the cluster C after including subsequence A. 
3) Merging cluster C1 and C2 to a new cluster C'. 

 bitsave = DLC(C1) + DLC(C2) - DLC(C') 

Note that, as we discussed earlier, we do not use 
Euclidean distance to make decisions about which 
subsequences to place into which clusters. We use only use 
Euclidean distance in two subroutines: motif discovery and 
finding the closest subsequence from a given cluster center. 
More details are in the following sections. 



IV. CLUSTERING ALGORITHM  

Having introduced the necessary notation, we are finally 
in a position to introduce our algorithm. We begin by giving 
a simple text and visual intuition in the next section, and 
follow by giving detailed and annotated pseudo code in 
Section IV.B. 

A. The Intuition behind Stream Clustering  

Recall that our input is a single time series like the one 
shown in Figure 5.bottom and our required output is a set of 
clusters -- possibly of different lengths and sizes. Recall that 
the union of all the subsequences in this set of clusters may 
only cover a fraction of the input time series. Indeed, for 
pathological cases we are given a pure noise time series, we 
want our algorithm to return a null set of clusters. In Figure 5 
we show our running example. It contains the interwoven 
calls of two very different species of birds. 

Figure 5. Two interwoven bird calls featuring the Elf Owl, and Pied-
billed Grebe are shown in the original audio space (top), and as a time 
series extracted by using MFCC technique and then clustered by our 
algorithm (bottom).  

Our proposed clustering algorithm is a bottom-up greedy 
search over the space of clusters. For the moment, we will 
ignore the computational effort that it requires and simply 
explain what is done, leaving the how it is (efficiently) done 
for the next section.  

Our algorithm is an iterative merging algorithm similar in 
spirit to an agglomerative clustering algorithm [15]. 
However, the differences are telling and worth enumerating: 
• Our algorithm typically stops merging before explaining 

all the data, thus producing a partitioning a subset of the 
data, not producing a hierarchy of all the data. 

• Agglomerative clustering algorithms are typically 
implemented such that they require quadratic space, our 
algorithm has only linear space requirements6. 

• Most critically, agglomerative clustering algorithms 
assume the K items of a fixed dimensionally 
(subsequence length) to be clustered are inputs to the 
algorithm. However, we do not know how many items 
will ultimately be clustered, or even how long the items 
will be. 

Similar to agglomerative clustering, we have a search 
problem that uses operators, in our case, create, add, and 
merge (Definition 10). When the algorithm begins, only 
create is available to us. 

                                                           
6 Linear space agglomerative clustering algorithms do exist, but 
require highly multiply redundant calculations to be performed, 
and are thus rarely used due to their lethargy. 

We begin by finding the best initial pair of subsequences 
to combine so that we may create a cluster of two items. To 
find this best pair, we treat one as a hypothesis and see how 
well it encodes the other (Definition 8). The pair that reduces 
the bit cost the most is the pair of choice. This is shown in 
Figure 6 as Step 1.  

There is a potential problem here. Even if we fix the 
length of subsequences to consider to a constant s, the 
number of candidate pairs to consider is quadratic in the 
length of the time series, approximately O((m-s)2/2). 
Furthermore, there are no known shortcuts that let us search 
this space in subquadratic time. 

The solution to this problem is to note that Euclidean 
distance and conditional description length are highly 
correlated where either of them is small. We can leverage off 
this fact because there exist very fast algorithms to find the 
closest pair of subsequences (which are known as time series 
motifs [20]) under Euclidean distance. So rather than a brute 
force search using the conditional description length, we do a 
fast motif search and then test the motif pair’s conditional 
description length.  

Figure 6. A trace of our algorithm on the bird call data shown in Figure 
5.bottom. 

In the next stage of the algorithm, there are two operators 
available to us. We can either add a third item to our existing 
cluster of size two, or we can create a new cluster, possibly 
of a different length. In Figure 6 in Step 2, we can see that in 
this case our scoring functions suggest creating a new cluster 
is the better option in.  

In the subsequent phase of the algorithm, it happens that 
all operators are available to us: we could try to create a new 
cluster, we could merge our two existing clusters, or we 
could add a subsequence to one of our two clusters. As we 
can see in Figure 6, Step 3, the last option is chosen.  

In the next iteration, the cheapest operator was to merge 
our two existing clusters as shown in Step 4. However, 
doing this does not decrease the size of the representation—it 
increases it. As such, our algorithm terminates after 
returning the two clusters it had created up to Step 3. The 
only other way that our algorithm can terminate is if it 
simply runs out of data to cluster. 
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B. Our algorithm in detail  

As we noted in the last section, our algorithm is a 
bottom-up search algorithm. The input is a single time series, 
and the output is a set of clusters of subsequences. Our 
algorithm can cluster subsequences of different lengths, and 
it does not require the number of clusters to be specified.  

There are three operators in our search algorithm: create, 
add, and merge. In each step we do all (legal) operations and 
choose the operator which maximizes the number of bits 
saved as measure by bitsave (Definition 10). The current 
clusters are updated with respect to that choice.  

The algorithm can terminate in just two ways; either the 
best possible choice cannot save any bits, or all data is used 
up.  

Most attempts to cluster time series [5][9][10] suffer 
from a surfeit of parameters. Our algorithm allows 
essentially none. However, if we allow subsequences that are 
too short, we can get pathological results in some cases. For 
example, there are only two possible z-normalized 
subsequences of length two. Moreover, a user may wish to 
bias the algorithm towards certain clustering. For example, 
for electrical power demand load we may be interested in 
weekly or daily patterns. Thus, as shown in TABLE I, we 
allow the user the option of suggesting an approximate 
length s. 

The algorithm begins by initializing the cluster set to 
empty, then it enters a loop until no more bits can be saved 
(line 2) or it runs out of data. Within each iteration the loop, 
we perform three operators create (line 4-9), add (line10-15), 
and merge (line16-22), and we keep the results of the most 
parsimonious operator. 

For the create process, we call a subroutine to find time 
series motifs under Euclidean distance using the fastest 
currently known technique [20]. Because we do not know 
how long the subsequences in the cluster should be, the 
algorithm runs MotifDiscovery multiple times on 
different lengths of motif (line 5). If the new cluster is 
created, then the number of bits saved is calculated (line 7). 
The temporary version of updated clusters are kept (line 8) 
and used if the algorithm eventually chooses to create this 
cluster (line 24). Recall that the details of function 
ComputeBitsave are provided in Definition 9 and 10. 

It is possible to add a subsequence into an existing 
cluster (line 10-15). We first find the most similar 
subsequence in the input time series with respect to the 
center of a given cluster (line 11); we can achieve this task 
by using any nearest-neighbor search algorithm [11], 
including brute force search. After the search, the cluster is 
updated to include that nearest subsequence (line 12), the 
number of bits saved is calculated, and the temporary 
clusters are recorded (line 13-14). 

For our last operator, any pair of clusters is allowed to 
merge (line 18); we then compute the number of bits saved 
for each pair, and record the temporary cluster.  

After the algorithm measures the number of bits saved 
from all possible choices, the final cluster is updated with 
respect to the choice that maximizes the number of bits saved 
(line 23-24). 

TABLE I.     MAIN TIME SERIES STREAM CLUSTERING ALGORITHM 

Input:  ts : time series,   
 s  : approximate length 
Output: cluster : final cluster of subsequences 

1 
2 
3 
 
4 
5 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
15 
 
16 
17 
18 
19 
20 
21 
22 
 
23 
24 
25 

cluster = {} 
while bitsave>0 
  bitsave=-∞, i=0 
  // create new cluster 
  for len = s to 2s 
    (A,B)  = MotifDiscovery(ts,len) 
     C'    = CreateCluster(a,b)  
     bs(++i)= ComputeBitsave(C',A,B) 
     cluster'(i) = cluster ∪{C'} 
  end for  
  // add subsequence to an existing cluster 
  for C ∈ cluster  
     A  = NearestNeighbor(ts,C) 
     C' = AddToCluster(C,A)  
     bs(++i)= ComputeBitsave(C',C,A) 
     cluster'(i) = cluster ∪{C'}-{C} 
  end for 
  // merge 2 clusters 
  for C1 ∈ cluster 
    for C2 ∈ cluster and C1~=C2 
       C' = MergeClusters(C1,C2) 
       bs(++i)=ComputeBitsave(C',C1,C2)     
       cluster'(i)=cluster ∪{C'}-{C1}-{C2} 
    end for 
  end for 
  // update the result 
  [bitsave ind] = max(bs); 
  cluster = cluster'(ind); 
end while 

We have glossed over an important detail: the two items 
being combined by the merge/add operators may be of 
different lengths. To allow this critical flexibility, we use a 
simple data structure to record a cluster. For any given 
cluster C, C.size records the number of subsequences in 
the cluster, C.cen is the center of the cluster, C.seq is a set 
of subsequences in the cluster, and C.shift is a set of shift 
positions (i.e., offsets) of each subsequence in C when it 
aligned to the C.cen. Note that to compute the conditional 
description length (Definition 8), a subsequence and its 
hypothesis must be of the same length. 

TABLE II shows how a new cluster can be created from 
two subsequences of the same size. Because those two 
subsequences are from motif discovery under Euclidean 
distance, their align position is set to 0 (line 4). The center of 
new cluster is the average of those two subsequences. 

When we want to add a subsequence A to an existing 
cluster C, the new center is created by the weighted average 
of the current center and the subsequence (line 1 of TABLE 
III). Because A is the nearest neighbor of C.cen, no offset 
alignment is needed for A. 

TABLE IV shows how two clusters of different lengths 
can be merged into the same cluster. The new cluster 
contains all subsequences from both clusters (line 1-2). 
Because two clusters may be different lengths, we need to 
align them before finding the new center. As the Figure 6 
example shows, Step 4 merges two clusters from Step 1 and 
Step 3. The red center in Step 1 is longer than the green 
center in Step 3. We align the red center at all possible 
offsets (line 6), and then create a new center by averaging 



two current centers. Parts of the new centers are created by 
weighted averaging from all (one or two) centers that cover 
that part (line 7-9). To make a decision among all possible 
offsets, MDL plays an important role again; at each offset, 
bitsave is calculated (line 11), and we choose the offset 
which can save the maximum number of bits (line 22-23). 
Similar to the code in line 6-13, which evaluates all offsets 
when C1.cen moves into C2.cen, the code in line 14-21 
evaluates the inverse when C1.cen moves out of C2.cen. 

TABLE II.     Create  OPERATOR 

Function C = CreateCluster(A,B) 

1 
2 
3 
4 

C.size = 2; 
C.cen  = (A+B)/2 
C.seq  = [A; B] 
C.shift= [0; 0] 

TABLE III.     Add  OPERATOR 

Function C = AddToCluster(C,A) 

1 
2 
3 
4 

C.cen   = (C.cen*C.size+A*1)/(C.size+1) 
C.size  =  C.size+1 
C.seq   = [C.seq; A] 
C.shift = [C.shift; 0] 

TABLE IV.     Merge  OPERATOR 

Function C' = MergeClusters(C1,C2) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

C'.seq = [C1.seq; C2.seq]  
C'.size = C1.size+C2.size 
n1=C1.size,    m1=length(C1.cen) 
n2=C2.size,    m2=length(C2.cen) 
i=0 
for off = 0 to m2 
  cen1 = [C2.cen(1,off), C1.cen] 
  cen2 = [C2.cen, C1.cen(1,m1+off-m2)] 
  C'.cen = (cen1*n1+cen2*n2)/(n1+n2) 
  C'.shift = [C1.shift+off; C2.shift] 
  bs(++i) = ComputeBitsave(C',C1,C2) 
  Ctmp(i) = C' 
end for 
for off = 1 to m1 
  cen1 = [C1.cen, C2.cen(1,m2+off-m1)] 
  cen2 = [C1.cen(1,off), C2.cen] 
  C'.cen = (cen1*n1+cen2*n2)/(n1+n2) 
  C'.shift = [C1.shift; C2.shift+off] 
  bs(++i) = ComputeBitsave(C',C1,C2) 
  Ctmp(i) = C' 
end for 
[bitsave ind] = max(bs); 
C' = Ctmp(ind); 

To summarize, our algorithm contains three operators 
(create, add, and merge), which all use MDL to decide the 
best choice at each step of the clustering. As there are no 
known indexing/motif discovery algorithms for MDL, we 
avail ourselves of two fast external modules that use 
Euclidean distance for motif discovery [20] and nearest 
neighbor search [17]. Using Euclidean distance as a fast 
proxy for MDL is possible because they are highly correlated 
when both are small (details omitted for brevity). 

V. EXPERIMENTAL RESULTS 

We begin by stating our experimental philosophy. To 
ensure our experiments are reproducible, all codes/data are 
available at [27]. In addition, the site contains many more 
experiments omitted due to space limitations. Furthermore, 

the website contains video animations of the clustering 
process for each dataset. 

A. Comparison to Ground Truth 

We begin by considering a time series for which we have 
access to the ground truth (albeit indirectly). Consider the 
time series shown in Figure 7.top. A visual inspection gives a 
hint of some structure, but even on this tiny example, it is not 
clear exactly what the clustering should be -- or even what is 
the natural length for potential clusters. This dataset was 
obtained by taking an audio snippet of a recording of Edgar 
Allen Poe’s poem “The Bells” and transforming it in to the 
Mel-Frequency Cepstral Coefficients (MFCC) retaining only 
the first coefficient. 

Figure 7. top) 29.8 seconds of an audio snippet, represented by the first 
coefficient in MCFF space, and then annotated  with colors to reflect 
the clusters. bottom) A trace of the steps use to produce the clustering. 

The clustering we obtained looks subjectively intuitive; 
however, because of the original source material we are in a 
unique position to do a more objective test. TABLE V shows 
the original source text brushed with the colors reflecting the 
clustering obtained. 

TABLE V.     THE TEXT CORRESPONDING TO THE TIME SERIES SHOWN IN 
FIGURE 7, ANNOTATED BY COLOR/FONT 

Original Order Grouped by clusters
In a sort of Runic rhyme,
To the throbbing of the bells--  
Of the bells, bells, bells,  
To the sobbing of the bells;  
Keeping time, time, time,  
As he knells, knells, knells, 
In a happy Runic rhyme,  
To the rolling of the bells,--  
Of the bells, bells, bells--  
To the tolling of the bells,  
Of the bells, bells, bells, bells,  
Bells, bells, bells,--  
To the moaning and the groan- 
ing of the bells.

   bells,bells, bells 
   Bells, bells, bells 
Of the bells, bells, bells 
Of the bells, bells, bells 
   the throbbing of the bells 
   the sobbing of the bells 
   the tolling of the bells 
To the rolling of the bells 
To the moaning and the 
   time, time, time 
   knells, knells, knells 
sort of Runic rhyme 
groaning of the bells. 

The results are not perfect with reference to the text 
version. Recall that we are only considering one of the 
MFCC coefficients, instead of the ten plus typically used in 
speech processing. This allows some collisions, such as 
“time” and “knells”. However, the structure recovered by our 
algorithm is significant. Note that our clusters are of different 
sizes (three items, and two items) and of different lengths 
(from 55 points to 70 points). Also, note that we could have 
had a single cluster of eighteen occurrences of the word 
“bells.” However, that would have obfuscated the 
information that this word tends to be repeated in this work, 
as in “bells, bells, bells.” These longer clusters are arguably 
more parsimonious.  
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B. Clustering a Noisy Dataset 

In Figure 8 we show the results of clustering a noisy 
industrial dataset. The data comes from an industrial wire 
winding process. The original data consists of seven 
dimensions; here we show only the results of clustering the 
noisiest channel, labeled U1 (the results on the other 
channels are at [27]). Note that the data has significant non-
uniform noise, including spikes and dropouts. While we do 
not have access to the ground truth here, the clusters, which 
have different sizes and length, clearly have the property of 
being similar within a cluster and dissimilar between clusters. 
Note that approximately 26% of the data remains 
unclustered. 

Figure 8. top) Dimension U1 of the Winding dataset.  middle) A trace 
of the clustering steps produced by our algorithm. bottom) 
Representative clusters obtained.  

C. Comparison to other Methods 

As we noted above there are few candidate strawmen to 
compare our work to. Here we compare our work to the most 
referenced work in the literature.  In a sequence of papers, 
Chen proposes a series of fixes for the stream clustering 
problem [4][5][6]. He demonstrates his ideas mostly on 
synthetic data; however, as shown in Figure 9.right, he also 
tests on short section of the Koski heartbeat dataset. 

Figure 9. left) A screen dump of fig.11 from [5]. The original caption 
read “TF Clustering: Koski-ECG result”. right) An annotation of the 
clusters by a USC cardiologist. 

While the results are perhaps reasonable, it is not clear 
why we should have two clusters here since there is clearly 
just one heartbeat. In addition, there is a subtle artifact 
noticed by cardiologist, Dr. Helga Van Herle, whom we 
asked to examine this. The slight slope on the light-gray 
cluster show in Figure 9.left is not in the data; it comes from 
the fact that the input data is not an integer multiple of beats, 

instead being roughly 5.2 beats. Since the algorithm is trying 
to explain all the data, it must explain the extra P-wave by 
averaging it into a place where it does not belong. 
Furthermore, as acknowledged in the original paper, the 
algorithm requires the setting of several parameters and 
“magic numbers” (i.e., “we chose p as the number of points 
in the time series divided by 15..”). Finally, we note in 
passing that the algorithm requires multiple calls to a 
quadratic space and time (in the length of the time series) 
algorithm, which would make it impractical for many real 
data mining problems. Our algorithm requires linear space.  

In Figure 10, we show the clustering we achieved on 
exactly the same dataset. We believe the results here are 
intuitively correct, discovering a complete single heartbeat as 
the cluster. Note that our algorithm explains 87.5% of the 
data; it does not try to explain the extra P-wave “bump” 
caused by the fact that we do not have an integer number of 
heartbeats. 

Figure 10. top) The same 2,000 datapoints from Koski-ECG as used in 
Figure 9.  middle) A trace of the clustering steps produced by our 
algorithm.  bottom) the single cluster discovered has five members. 

D. Scalability 
From our algorithm in Section IV.B, assume that 

MotifDiscovery takes time O(T). In each create step, 
MotifDiscovery is called multiple times to find motifs 
of different length; we run it at most O(s) times. Because 
each subsequence is of length at least s, there are at most 
O(m/s) new clusters to be created. This is why the running 
time for creating new clusters is O(T*s*m/s) = O(mT).  

Assume that NearestNeighbor can be finished in 
time O(ms). The maximum number of clusters we can have 
is O(m/s), and the original time series can be updated only 
when a new motif is discovered, so the number of clustering 
steps (cf. line 2 in TABLE I) is at most O(m/s). Thus, for add 
steps we have O(ms * m/s * m/s) = O(m3/s).  

For merge steps, if a cluster is created by merging k 
clusters so far, the number of subsequences in that cluster is 
at most O(k). The length of its center is at most O(ks); 
therefore, the number of possible offsets is O(ks), and bitsave 
calculation is finished in time O(k2s2). The maximum 
number of clusters we can have is at most O(m/s), so we can 
have cluster of size k at most O(m/sk) clusters, and there are 
at most O(m/s) steps in our algorithm. This means that the 
running of merge steps is at most O(m/s*(m/sk)2*k2s2) = 
O(m3/s). Hence, the total running time of our algorithm is at 
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most O(mT+m3/s) where T is a running time for a motif 
discovery. The empirical behavior is shown in Figure 11. 

Figure 11. Running time of our algorithm on Koshi data when s = 350. 

To put these results in perspective, the ornithology lab 
we are working with has spent months collecting data in the 
field (cf. Figure 5), so they are willing to wait the hour we 
require to cluster several minutes of audio. Nevertheless, we 
believe that a 100X speedup will soon be possible simply by 
caching some near redundant motifs calculations. 

VI. DISSCUSION OF THE MDL CHOICE 

Now that the reader has gleaned some intuition for our 
algorithm and its utility for clustering data, we will briefly 
revisit a discussion of why MDL on a discretized time series 
is our choice of measure to steer the clustering search.  

We cannot use Euclidean distance (or the related 
correlation or Dynamic Time Warping etc [11][17]) directly 
because it does not allow us to compare the relative merits of 
clusters of different lengths or different sizes. In contrast, 
MDL does allow such meaningful comparisons.  Moreover, 
in the limited case when MDL and Euclidean distance can be 
compared (when time series lengths are the same), we find 
that the two measures are highly correlated so long as they 
are small (if both are destined to be large, it does not really 
matter how correlated they are).  

We work in the discrete space rather than the original 
continuous space because MDL requires it, and because 
working with the discretized time series makes no 
perceptible difference in classification (shown in Figure 2) or 
in similarity search, indexing, motif discovery or outlier 
discovery (omitted for brevity).  

VII. CONCLUSIONS 

In this work, we have shown that any attempt to cluster a 
single time series stream that insists on explaining all the 
data is almost certainly doomed to failure. We introduced a 
clustering representation that has the expressive power to 
ignore some of the data, and can have clusters with different 
length subsequences. We further showed an efficient and 
parameter-lite MDL based algorithm to perform the 
clustering. We have shown on our algorithm is effective on a 
wide variety of datasets. 
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