
Time Series Epenthesis: Clustering Time Series Streams Requires Ignoring Some Data
Thanawin Rakthanmanon Eamonn J. Keogh Stefano Lonardi Scott Evans§

Department of Computer Science and Engineering
University of California, Riverside

§GE Global Research
{rakthant, eamonn, stelo} @cs.ucr.edu, §evans@ge.com

Abstract—Given the pervasiveness of time series data in all
human endeavors, and the ubiquity of clustering as a data
mining application, it is somewhat surprising that the problem
of time series clustering from a single stream remains largely
unsolved. Most work on time series clustering considers the
clustering of individual time series, e.g., gene expression
profiles, individual heartbeats or individual gait cycles. The
few attempts at clustering time series streams have been shown
to be objectively incorrect in some cases, and in other cases
shown to work only on the most contrived datasets by carefully
adjusting a large set of parameters. In this work, we make two
fundamental contributions. First, we show that the problem
definition for time series clustering from streams currently
used is inherently flawed, and a new definition is necessary.
Second, we show that the Minimum Description Length (MDL)
framework offers an efficient, effective and essentially
parameter-free method for time series clustering. We show
that our method produces objectively correct results on a wide
variety of datasets from medicine, zoology and industrial
process analyses.

Keywords—time series; clustering; MDL

I. INTRODUCTION

Time series data is pervasive across almost all human
endeavors, including medicine, finance, science, and
entertainment. As such it is hardly surprising that it has
attracted significant attention in the research community
[1][3][26][21]. Given the ubiquity of clustering both as a
data mining application in its own right and as a subroutine
in other higher-level data mining applications (i.e.,
summarization, rule-finding, etc.), it is surprising that the
problem of time series clustering from a single time series
stream remains largely unsolved. Most work on time series
clustering considers the clustering of individual time series,
say, gene expressions or extracted signals such as individual
heartbeats. The few attempts at clustering the contents of a
single time series stream have been shown to be objectively
incorrect in some cases [16], and in other cases shown to
work only on the most contrived datasets by carefully
adjusting a large set of parameters. In this work, we make
two fundamental contributions. First, we show that the
problem definition for time series clustering from streams
currently used is inherently flawed. Any meaningful
algorithm must avoid trying to cluster all the data. In other
words, the subsequences of a time series should only be
clustered if they are clusterable. This seems to open up a
“chicken and egg” paradox. However, our second
contribution is to show that the Minimum Description
Length (MDL) framework offers an efficient, effective and
essentially parameter-free solution to this problem.

We begin by giving the intuition behind the fundamental
observation, that clustering of time series from a single
stream of data requires ignoring some of the data.

A. Why Clustering Time Series Streams requires Ignoring
some Data

The observation motivating our efforts to cluster time
series is that any attempt that insists on trying to explain all
the data is doomed to failure. Consider one of the most
obviously “clusterable” time series data sources: motion-
captured sign language, such as American Sign Language
(ASL). There has been much recent work on nearest-
neighbor classification of such data, with accuracies greater
than 90% frequently reported [1]. This suggests that a long
data stream of ASL might be amenable to clustering, where
each cluster maps to a distinct “word” or “phrase.”

However, all such data contains Movement Epenthesis
(ME) [7][26]. During the production of a sign language
sentence, it is often the case that a movement segment needs
to be inserted between two consecutive signs to move the
hands from the end of one sign to the beginning of the next.
These ME segments can be as long as—or even longer
than—the true signs, and are typically not performed with
the precision or repeatability of the actual words, since they
have no meaning. Recent sophisticated sign language
recognition systems for continuous streams have begun to
recognize that “automated sign recognition systems need a
way to ignore or identify and remove the movement
epenthesis frames prior to translation of the true signs” [26].

What we observed about ASL as a concrete and intuitive
example matches our experience with dozens of other
datasets, and indicates that this is a pervasive phenomenon.
We believe that almost all datasets have sections of data that
do not represent a discrete underlying behavior, but simply a
transition between behaviors or random drifts where no
behavior is taking place. In many datasets, such sections
constitute the majority of the data. If we are forced to try to
model these in our clusters, they will swamp the true
significant clusters. We can best demonstrate this effect, and
hint at our proposed solution by an experiment on a discrete
analogue of time series, in this case English text.

We emphasis that this is just a expository example, and if
we were really assigned to cluster such text data we could do
better than the attempt shown below.

Consider the following string D, which from left to right
mentions three versions of the name David (English, Persian,
Yiddish) and three versions of the name Peter (English,
Croatian, Danish). Note that all names have five letters each.

David enjoined Peter who identified Davud son of Petar friend to
Dovid and Peder, to do what...

Here the words between the names are exactly the
epenthesis previously referred to. To make it more like our
time series problem, we can strip out the punctuation and
spacing, leaving us:
davidenjoinedpeterwhoidentifieddavudsonofpetarfriendtodovidandpedertodowhat

The discrete analogue of the clustering algorithm in [9]
would begin by extracting all the subsequences of a given
fixed length. Let us assume for simplicity the length five is
used, and thus the data is transformed into:

david
avide
viden
idenj
...
owhat

In Figure 1 we show representative clusters for two
values of K, if we perform partitional clustering as in [9] on
this extracted data.

Figure 1. Representative partitional clusters from dataset D for two
settings of K.

Note that while the cluster of the name variants of David
is discovered, we find that under any setting of K there are
equally significant meaningless clusters, for example {nofpe,
nedpe, andpe}. This is in spite of the fact that this can be
considered a particularly easy task. Exactly 40% of the signal
consists of data we hope to recover, and we deliberately
avoided name variants of different lengths (i.e., pieter, pere).
In more realistic settings we expect much less of the data to
contain meaningful signals. Note also that the problem is not
mitigated by using other clustering variants. The problem is
inherent in the false assumption that a clustering of a single
stream that must explain all such data could ever produce
meaningful results [16].

B. How MDL Can Help

In contrast to the previous section, it is instructive to see
what our proposed algorithm will do in this case. While the
details of our algorithm are not introduced until Section IV,
we can still outline the basic intuition here.

The original string D has a bit-level representation whose
length we denote as DL(D). Our algorithm can be imagined
as attempting to losslessly compress the data by finding
repeated structure in it. As there is little exactly repeated
structure, we must find approximately repeated structure and
encode the differences. For example, if we find the
approximately repeated versions of the name “david”, we can
think of one version as being a model or hypotheses for the

data, and encode only the difference between the other
occurrences:

H1 = {1:david}
1____enjoinedpeterwhoidentified1___u_sonofpetarfriendto1_o___andpedertodowhat

In terms of MDL we can see david as a partial hypothesis
H1 or description of the data. This model has some size,
which is simply the length in bits of the word DL(H1) =
DL(david). In addition, the size of the remaining data was
both reduced by factoring out the common structure and
(slightly) increased by the overhead of the pointers to the
dictionary, etc 1 . When encoded with the hypothesis, the
length (in bits) of the description of the data is given as
DL(D│H1). The total cost of both the hypothesis and the data
encoded using the hypothesis is just DL(H1) + DL(D│H1)..

Because this sum is less than the length of the original
data DL(D), we feel that we are making progress. Perhaps,
however, there is more structure we can exploit. A brief
inspection of the data suggests another model, H2, that
exploits both repeated names:

H2 = {1:david 2:peter}
1___enjoined2___whoidentified1___u_sonof2___a_friendto1_o___and2__d__todowhat

Because DL(H2) + DL(D│H2) < DL(H1) + DL(D│H1),
we prefer this new hypothesis as a model of the data.

Are we now done? We can try other hypotheses. For
example, we could consider the hypothesis H3 = {1:david
2:peter 3:ono}, attempting to exploit the two occurrences of
a pattern “o*o” (i.e.,..sonof.. and ..to do..). However, because
this pattern is short, and only has two occurrences, we cannot
break even with the cost of the overhead:

 DL(H2) + DL(D│H2) < DL(H3) + DL(D│H3)
Because we cannot find any other hypotheses that

produce a smaller model, we invoke the MDL principle to
claim that H2 = {1:david 2:peter} is the best model of the
data D. Here best means something beyond simply
achieving the greatest compression. We can claim that MDL
approach has achieved the most parsimonious explanation of
the data, recovering the true underlying structure [8][12][14]
[18]. In at least this case, where the sentence was contrived
as an excuse to use two names trice, MDL did recover the
true underlying structure.

Note that while our informally stated algorithm does
manage to recover the two embedded clusters, it does not
attempt to explain all of the data. This is a critical
observation, in order to cluster a single stream of data, be it
discrete or real-valued, we must be able to represent and rank
solutions that ignore some of the data.

II. RELATED WORK

The tasks of clustering multiple time series streams, or
many individual time series (i.e., gene expressions) have
received significant attention, but the solutions do not inform

1 In this toy example, we are deliberately glossing over the concrete
details of how the pointers are represented and how the amount
compression achieved is measured, etc. [18]. We will formalize
these details in Section III.

Three clusters of equal diameter when K = 20

{whoid, davud, njoin, dovid, david}
{ified, frien, oined, oiden, viden, vidan}
{todow, todov, sonof}

Three clusters of equal diameter when K = 40
{avuds, ovida, avide}
{davud, dovid, david}
{nofpe, nedpe, andpe}

the problem we consider here, the task of clustering a single
time series stream. The most commonly referenced
technique for clustering a single time series stream is
presented in [9] as a subroutine for rule discovery in time
series. In essence the method slides a fixed length window
across the stream, extracting all subsequences which are then
clustered with K-Means. The reader may have already
spotted a flaw here; the algorithm tries to explain all the data.
In [16] (and follow-up works by more than twenty other
authors [4][5][10]), it was shown that this method can only
produce cluster centers that are sine waves, and the output of
the algorithm is essentially independent of the input. Note
that even if the algorithm did not have these fatal flaws, it
assumes the cluster all have equal length, and that we know
the correct value of K. As we shall show, our method
requires neither assumption.

Since the problem with [9] was pointed out in 2005 [16],
at least a dozen solutions have been proposed. In Section
V.C we show that the most referenced of these works [5]
does not produce objectively correct results, even after
extensive parameter tuning by the original authors on a
relatively simple problem.

While there have been some efforts to use MDL with
time series [22][24], they all operate on a quantized
representation of the data. This has the disadvantage of
requiring three parameters (cardinality, dimensionality and
window size), eliminating the greatest advantage of MDL, its
intrinsically parameter-free nature.

While MDL has had surprisingly little impact in data
mining, it is a tool of choice for many bioinformatics
problems. For example, working with RNA data, Evans et.
al. have proposed a method using data compression and the
MDL principle that is capable of identifying motif
sequences, some of which were discovered to be miRNA
target sites implicated in breast cancer [12]. Moreover, the
authors showed the generality of their ideas by applying
them, unmodified, to the problem of network traffic
anomalies [13]. There is also a significant work on using
MDL to mine graphs [14][21], dating back to classic work
by Cook et al. [8].

Finally, we note that the task was informed by, and may
have implications for many other time series problems,
including time series segmentation2 [3]. To see why, let us
revisit the technique of text analogy. It is not obvious how
one should segment the three concatenated words
“hisabasiais”. Perhaps the best we could do is to exploit the
known frequencies of bigrams and trigrams, etc. In fact, most
time series segmentation algorithms essentially do the real-
valued equivalent of this [3]. However, if we see another
such triplet of three concatenated words from later in the
same stream, for example “withoutabasiais”, we can
immediately see that “abasia” must be a word3.

2 The phrase “time series segmentation” is unfortunately overloaded.
It can mean approximating the data with the smallest number of
piecewise polynomial segments for a given error threshold, or as
here; extracting small, discrete, semantically meaningful segments of
data [3].
3 Abasia is the inability to walk due to impaired muscle coordination.

III. BACKGROUND AND NOTATION

A. Definitions and Notation

We begin by defining the data type of interest, time
series:

Definition 1: A time series T is an ordered list of numbers.
T = t1, t2 ,...,tm. Each value ti can be any finite number
(e.g., for two-byte values they could be integers in range
[-32,768, 32,767]) and m is the length of time series T.

Before continuing, we must make and justify a choice.
The MDL technique that is at the heart of our algorithm
requires discrete data, but most time series datasets use four
or eight bytes per value, and are thus real-valued. Our
solution is simply to cast the real-valued numbers into a
reduced cardinality version. Does such a reduction lose
meaningful information? To test this, we did one nearest-
neighbor classification on eighteen public time series
datasets, for cardinalities from the original four bytes down
to a single bit. Figure 2 shows the results. As we can see, we
can drastically reduce cardinality without reducing accuracy.
The original four-byte cardinality is typically a by-product of
file format convention or hardware specification, and not a
claim as to the intrinsic cardinality of the data.

Figure 2. Classification accuracy on 18 time series datasets as a
function of the data cardinality. Even if we reduce the cardinality of
the data from the original 4,294,967,296 to a mere 64 (vertical bar), the
accuracy does not decrease.

We note that there may be other things we could have
done. For example, the MML framework [25] which is
closely related to MDL would allows us to work in original
continuous space. However, we choose MDL because it is
more familiar and it allows for a more intuitive explanation
of our algorithms. Likewise, we have at least a dozen choices
of how to discretize the time series (adaptive binning,
uniform binning, SAX etc) however, after testing all
published algorithms and finding it made little or no
difference, we settled on the simple idea shown below in
Definition 3.

Based on the observations in Figure 2, we will simply use
64-value (6-bit) cardinality in the rest of this work.

While the source data is one long time series, we
ultimately wish to cluster it into sets of shorter subsequences:

Definition 2: A subsequence Ti,k of a time series T is a
short time series of length k which starts from position i.
Formally, Ti,k = ti,ti+1,..,ti+k, 1≤ i≤ m-k.

As we previously noted, we are working in a space of
reduced cardinality. Because comparing time series with
different offsets and amplitudes is meaningless [16], we must

0.3

0.4

0 .5

0 .6

0 .7

0 .8

0 .9

1

Deceasing Cardinality

C
lassification

 A
ccu

racy

(slightly) adapt the normalization process for our discrete
representation:

Definition 3: A discrete normalization function
DNorm is a function to normalize a real-valued
subsequence T into b-bit discrete value of range [1,2b].
It is defined as followings: ݉ݎܰܦ(ܶ) = ݀݊ݑݎ ൬ ܶ − ݔܽ݉݊݅݉ − ݉݅݊൰ ∗ (2 − 1) + 1

where min and max are the minimum and maximum
value in T, respectively.

Based on the results in Figure 2, b is fixed at 6 for all
experiments. We need to define a distance measure; we use
the ubiquitous Euclidean distance measure:

Definition 4: The distance between two subsequences
Ti,k and Tj,k is the Euclidean distance (ED) between Ti,k
and Tj,k. Both subsequences must be in the same length.
Hence, it is:

)ݐݏ݅ܦ ܶ,, ܶ,) = ඨ ൫ݐା − ା൯ଶିଵୀݐ

As we shall see later, the Euclidean distance is not
general enough to support clustering from time series
streams; nevertheless, it is still a useful subroutine to speed
up our more general measures.

For both the full time series T and any subsequences
derived from it, we are interested in knowing how many bits
are necessary to represent it. Normally the number of bits
depends solely on the data format, which is typically a
reflection of some arbitrary choices of hardware and
software. In contrast, we are interested in knowing the
minimum number of bits to exactly represent the data. In the
general case, this number is not calculable, as it is the
Kolmogorov complexity of the time series [19]. However,
there are numerous ways to approximate this, using Huffman
coding, Shanon-Fano coding, etc. Because entropy is a lower
bound on the average code length from any such encoding,
we can use the entropy of the time series as its description
length:

Definition 5: The entropy of a time series T is defined as: ܪ(ܶ) = − ܲ(ܶ = (ݐ logଶ ܲ(ܶ = ௧(ݐ

where ܲ logଶ ܲ is defined as 0, if P = 0.

We can now define the description length of a time series.

Definition 6: A description length DL of a time series
T of length m is the total number of bits required to
represent it, that is DL(T)= m*H(T).

The DL of a time series using entropy clearly depends on
the data itself, not just arbitrary representational choices.
Figure 3 shows four time series, which all require 250 bytes
to characterize in the original representation, but which have
differing entropies and thus different description lengths.

Figure 3. Four time series of length 250 and with a cardinality of 256.
Naively all require 250 bytes to represent, but they have different
description lengths.

The reader may have anticipated the following
observation. While the (slightly noisy) straight line B has a
high entropy, we would subjectively consider it a simple
shape. It is simple given our belief (hypothesis) that it is a
slightly corrupt version of a straight line. If H is this
hypothesis, then we can consider instead the entropy of a
time series B', which as shown in Figure 4, is simply B
encoded using H, and written as B' = (B│H). As a practical
matter, to use H to encode B, we simply subtract H from B to
get a difference vector B', and encode this simpler vector B'.

Figure 4. Time series B can be represented exactly as the sum of the
straight line H and the difference vector B'.

While the vector B' is also of length 250, it has only 10
unique values, all of which are small in magnitude, thus its
entropy rate is only 2.51 bits. In contrast, B has 172 unique
values and an entropy rate of 7.29. Note that if we are given
only B', we cannot reconstruct B; we also need to know the
slope and mean of the line. Thus, when reporting the overall
number of bits for B', we must also consider the number of
bits it takes to encode the hypothesis (the line H). We can
encode the line simply by recording the heights’ two
locations, the first and last points4, each of which requires a
single byte. Thus, the number of bits required to represent B
using our hypothesis is:

DL(B) = DL(H) + DL(B│H) = (2 *8) + (250* 2.51) = 643.5 bits

which is significantly less than the 1,822 bits required for
the naive encoding of B without any hypothesis.

Note the straight line would not help in reducing the
number of bits required to represent time series C, but using
a sine wave as the hypothesis would significantly help. This
observation inspired one of the principle uses of MDL,
model section [23]. Statisticians use this principle to decide
if some noisy observations suggest an underlying physical
model is produced by, say, a piecewise linear model as
opposed to a sinusoidal model. However, our work leverages
off a simple but unexploited observation. The hypotheses are
not limited to well-defined functions such as sine waves,
wavelet basis functions, polynomial models, etc. The
hypothesis model can be any arbitrary time series. We will
see how this observation can be exploited in detail later, but

4 If we know the time series is z-normalized, we only need one byte
to record the line.

0 50 100 150 200 250

A

0

250
B

C

D

0 50 100 150 200 250

0

250

B H

B’ which is B-H, denoted as B’ is B given H
B’ = (B|H)

in brief: if k subsequences of a stream truly form a cluster,
then it should be possible to store them in less space by
encoding them as a set of difference vectors to the mean of
all of them. Thus, we have a potential test to guide our search
for clusters.

Having seen this intuition, we can now formalize the
notion of hypothesis as it pertains to our problem:

Definition 7: A hypothesis H is a subsequence used to
encode one or more other subsequences of the same
length.

As a practical matter, the encoding we use is the one
visualized Figure 4, we simply subtract hypothesis H from
the target subsequence(s) and encoded the difference
vector(s). We could encode the difference vector(s) with,
say, Huffman encoding, but as we noted in Definition 5, we
really only care about the size of the encoding, so we simply
measure the entropy of the difference vector(s) to get a lower
bound of the size of encoding.

A necessary (but not sufficient) condition to place two
subsequences H and B into the same cluster is:

DL(B) >DL(B|H)

This inequality requires that the subsequence B takes
fewer bits to represent when H is used as a basis to encode it,
encoding the intuition that the two subsequences are related
or similar.

We can hint at the utility of thinking about our data in
terms of hypothesis encoding by revisiting our text example.
When a clustering text stream, would it be better to merge A
or B?

A = {david, dovid}, B = {petersmith, petersmidt}

The first case allows a tight cluster of two short words, is
that better than a looser but longer cluster B? The problem is
exacerbated when we consider the possibility of clusters with
more than two members: how would we rank the relative
utility of the tentative cluster C = {bob, rob, hob}?

Normally, clustering decisions are made by considering
Euclidean distance (or its text counterpart, Hamming
distance); however, Euclidean distance only allows
meaningful comparisons when all the subsequences are the
same length. The solution for text, to use the length-
normalized Hamming distance, cannot be generalized here.
The reason is subtle and underappreciated, suppose we have
two subsequences of length k that are distance d apart. If we
truncate the end points and measure the distance again, we
might find it has increased! This is because we should only
compare z-normalized time series when using Euclidean
distance5 , and after (re)Z-normalizing the slightly shorter
subsequences, we may find they have grown further apart.
Thus, the z-normalized Euclidean distance function is not
linear in length and is not even monotonic.

5 The solution of not normalizing the time series would mitigate this
problem, but measuring the Euclidean distance between two time
series with different offsets or amplitudes produces meaningless
results [16].

We have already hinted at the fact that the DL function
can use extra information, by using “given”, i.e., DL(B'│H)
is the DL of B' given H. We can now formalize this notion:

Definition 8: A conditional description length of a
subsequence A when a hypothesis H is given is (ܪ|ܣ)ܮܦ = ܣ)ܮܦ − (ܪ

Recall from Figure 3 and Figure 4 that the DL of a
subsequence depends on the structure of the data. For
example a constant line has a very low DL, whereas a
random vector has a very high DL. If A and H are very
similar, their difference (A-H) will be close to a constant line
and thus have a tiny DL. In essence then, the DL function
gives us a parameter-free test to see if two subsequences
should be clustered together.

We generalize the notion of DL to multiple sequences
next. We can apply the same spirit by using a hypothesis to
calculate the minimum number of bits required to keep a
cluster. We call this description length of a cluster:

Definition 9: A Description Length of a Cluster
(DLC) C is the number of bits needed to represent all
subsequences in C. In this special case, H is the center
of the cluster. Hence, the description length of cluster C
is defined as: (۱)ܥܮܦ = (ܪ)ܮܦ + (ܪ|ܣ)ܮܦ − ∈۱(ܪ|ܣ)ܮܦ∈۱ݔܽ݉

The above DLC gives us a primitive to measure the
reduction in bits achieved by encoding data with a
hypothesis. Our clustering algorithm is essentially a search
algorithm, and there are three operators that avail of the DLC
definition to test how many bits a particular choice can save.
Thus, these three operators fall under the umbrella definition
of bitsave:

Definition 10: A bitsave is the total number of bits
saved after applying an operator that creates a new
cluster, adds a subsequence to an existing cluster, or
merges two existing clusters together. It is the
difference in the number of bits before and after
applying a given action:

 bitsave = DL(Before) - DL(After)

In detail, the bitsave for each operator is defined as
following:

1) Creating a new cluster C' from subsequences A and B

 bitsave = DL(A) + DL(B) - DLC(C')

2) Adding a subsequence A to an existing cluster C

 bitsave = DL(A) + DLC(C) - DLC(C')

where C' is the cluster C after including subsequence A.
3) Merging cluster C1 and C2 to a new cluster C'.

 bitsave = DLC(C1) + DLC(C2) - DLC(C')

Note that, as we discussed earlier, we do not use
Euclidean distance to make decisions about which
subsequences to place into which clusters. We use only use
Euclidean distance in two subroutines: motif discovery and
finding the closest subsequence from a given cluster center.
More details are in the following sections.

IV. CLUSTERING ALGORITHM

Having introduced the necessary notation, we are finally
in a position to introduce our algorithm. We begin by giving
a simple text and visual intuition in the next section, and
follow by giving detailed and annotated pseudo code in
Section IV.B.

A. The Intuition behind Stream Clustering

Recall that our input is a single time series like the one
shown in Figure 5.bottom and our required output is a set of
clusters -- possibly of different lengths and sizes. Recall that
the union of all the subsequences in this set of clusters may
only cover a fraction of the input time series. Indeed, for
pathological cases we are given a pure noise time series, we
want our algorithm to return a null set of clusters. In Figure 5
we show our running example. It contains the interwoven
calls of two very different species of birds.

Figure 5. Two interwoven bird calls featuring the Elf Owl, and Pied-
billed Grebe are shown in the original audio space (top), and as a time
series extracted by using MFCC technique and then clustered by our
algorithm (bottom).

Our proposed clustering algorithm is a bottom-up greedy
search over the space of clusters. For the moment, we will
ignore the computational effort that it requires and simply
explain what is done, leaving the how it is (efficiently) done
for the next section.

Our algorithm is an iterative merging algorithm similar in
spirit to an agglomerative clustering algorithm [15].
However, the differences are telling and worth enumerating:
• Our algorithm typically stops merging before explaining

all the data, thus producing a partitioning a subset of the
data, not producing a hierarchy of all the data.

• Agglomerative clustering algorithms are typically
implemented such that they require quadratic space, our
algorithm has only linear space requirements6.

• Most critically, agglomerative clustering algorithms
assume the K items of a fixed dimensionally
(subsequence length) to be clustered are inputs to the
algorithm. However, we do not know how many items
will ultimately be clustered, or even how long the items
will be.

Similar to agglomerative clustering, we have a search
problem that uses operators, in our case, create, add, and
merge (Definition 10). When the algorithm begins, only
create is available to us.

6 Linear space agglomerative clustering algorithms do exist, but
require highly multiply redundant calculations to be performed,
and are thus rarely used due to their lethargy.

We begin by finding the best initial pair of subsequences
to combine so that we may create a cluster of two items. To
find this best pair, we treat one as a hypothesis and see how
well it encodes the other (Definition 8). The pair that reduces
the bit cost the most is the pair of choice. This is shown in
Figure 6 as Step 1.

There is a potential problem here. Even if we fix the
length of subsequences to consider to a constant s, the
number of candidate pairs to consider is quadratic in the
length of the time series, approximately O((m-s)2/2).
Furthermore, there are no known shortcuts that let us search
this space in subquadratic time.

The solution to this problem is to note that Euclidean
distance and conditional description length are highly
correlated where either of them is small. We can leverage off
this fact because there exist very fast algorithms to find the
closest pair of subsequences (which are known as time series
motifs [20]) under Euclidean distance. So rather than a brute
force search using the conditional description length, we do a
fast motif search and then test the motif pair’s conditional
description length.

Figure 6. A trace of our algorithm on the bird call data shown in Figure
5.bottom.

In the next stage of the algorithm, there are two operators
available to us. We can either add a third item to our existing
cluster of size two, or we can create a new cluster, possibly
of a different length. In Figure 6 in Step 2, we can see that in
this case our scoring functions suggest creating a new cluster
is the better option in.

In the subsequent phase of the algorithm, it happens that
all operators are available to us: we could try to create a new
cluster, we could merge our two existing clusters, or we
could add a subsequence to one of our two clusters. As we
can see in Figure 6, Step 3, the last option is chosen.

In the next iteration, the cheapest operator was to merge
our two existing clusters as shown in Step 4. However,
doing this does not decrease the size of the representation—it
increases it. As such, our algorithm terminates after
returning the two clusters it had created up to Step 3. The
only other way that our algorithm can terminate is if it
simply runs out of data to cluster.

0.5 1 1.5 2 2.5 3 x 1050

50 100 150 200 250 3000

Step 1: Create a cluster
from top-1 motif

Step 2: Create another cluster
from next motif

Step 3: Add subsequence to
an existing cluster

Step 4: Merge 2 clusters
(rejected)

Subsequences Center/Hypothesis

1 2 3 4
-4
-2
0
2

Step of the clustering processbi
ts

a
ve

pe
r

un
it

Clustering stops here

Create
Add
Merge

B. Our algorithm in detail

As we noted in the last section, our algorithm is a
bottom-up search algorithm. The input is a single time series,
and the output is a set of clusters of subsequences. Our
algorithm can cluster subsequences of different lengths, and
it does not require the number of clusters to be specified.

There are three operators in our search algorithm: create,
add, and merge. In each step we do all (legal) operations and
choose the operator which maximizes the number of bits
saved as measure by bitsave (Definition 10). The current
clusters are updated with respect to that choice.

The algorithm can terminate in just two ways; either the
best possible choice cannot save any bits, or all data is used
up.

Most attempts to cluster time series [5][9][10] suffer
from a surfeit of parameters. Our algorithm allows
essentially none. However, if we allow subsequences that are
too short, we can get pathological results in some cases. For
example, there are only two possible z-normalized
subsequences of length two. Moreover, a user may wish to
bias the algorithm towards certain clustering. For example,
for electrical power demand load we may be interested in
weekly or daily patterns. Thus, as shown in TABLE I, we
allow the user the option of suggesting an approximate
length s.

The algorithm begins by initializing the cluster set to
empty, then it enters a loop until no more bits can be saved
(line 2) or it runs out of data. Within each iteration the loop,
we perform three operators create (line 4-9), add (line10-15),
and merge (line16-22), and we keep the results of the most
parsimonious operator.

For the create process, we call a subroutine to find time
series motifs under Euclidean distance using the fastest
currently known technique [20]. Because we do not know
how long the subsequences in the cluster should be, the
algorithm runs MotifDiscovery multiple times on
different lengths of motif (line 5). If the new cluster is
created, then the number of bits saved is calculated (line 7).
The temporary version of updated clusters are kept (line 8)
and used if the algorithm eventually chooses to create this
cluster (line 24). Recall that the details of function
ComputeBitsave are provided in Definition 9 and 10.

It is possible to add a subsequence into an existing
cluster (line 10-15). We first find the most similar
subsequence in the input time series with respect to the
center of a given cluster (line 11); we can achieve this task
by using any nearest-neighbor search algorithm [11],
including brute force search. After the search, the cluster is
updated to include that nearest subsequence (line 12), the
number of bits saved is calculated, and the temporary
clusters are recorded (line 13-14).

For our last operator, any pair of clusters is allowed to
merge (line 18); we then compute the number of bits saved
for each pair, and record the temporary cluster.

After the algorithm measures the number of bits saved
from all possible choices, the final cluster is updated with
respect to the choice that maximizes the number of bits saved
(line 23-24).

TABLE I. MAIN TIME SERIES STREAM CLUSTERING ALGORITHM

Input: ts : time series,
 s : approximate length
Output: cluster : final cluster of subsequences

1
2
3

4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22

23
24
25

cluster = {}
while bitsave>0
 bitsave=-∞, i=0
 // create new cluster
 for len = s to 2s
 (A,B) = MotifDiscovery(ts,len)
 C' = CreateCluster(a,b)
 bs(++i)= ComputeBitsave(C',A,B)
 cluster'(i) = cluster ∪{C'}
 end for
 // add subsequence to an existing cluster
 for C ∈ cluster
 A = NearestNeighbor(ts,C)
 C' = AddToCluster(C,A)
 bs(++i)= ComputeBitsave(C',C,A)
 cluster'(i) = cluster ∪{C'}-{C}
 end for
 // merge 2 clusters
 for C1 ∈ cluster
 for C2 ∈ cluster and C1~=C2
 C' = MergeClusters(C1,C2)
 bs(++i)=ComputeBitsave(C',C1,C2)
 cluster'(i)=cluster ∪{C'}-{C1}-{C2}
 end for
 end for
 // update the result
 [bitsave ind] = max(bs);
 cluster = cluster'(ind);
end while

We have glossed over an important detail: the two items
being combined by the merge/add operators may be of
different lengths. To allow this critical flexibility, we use a
simple data structure to record a cluster. For any given
cluster C, C.size records the number of subsequences in
the cluster, C.cen is the center of the cluster, C.seq is a set
of subsequences in the cluster, and C.shift is a set of shift
positions (i.e., offsets) of each subsequence in C when it
aligned to the C.cen. Note that to compute the conditional
description length (Definition 8), a subsequence and its
hypothesis must be of the same length.

TABLE II shows how a new cluster can be created from
two subsequences of the same size. Because those two
subsequences are from motif discovery under Euclidean
distance, their align position is set to 0 (line 4). The center of
new cluster is the average of those two subsequences.

When we want to add a subsequence A to an existing
cluster C, the new center is created by the weighted average
of the current center and the subsequence (line 1 of TABLE
III). Because A is the nearest neighbor of C.cen, no offset
alignment is needed for A.

TABLE IV shows how two clusters of different lengths
can be merged into the same cluster. The new cluster
contains all subsequences from both clusters (line 1-2).
Because two clusters may be different lengths, we need to
align them before finding the new center. As the Figure 6
example shows, Step 4 merges two clusters from Step 1 and
Step 3. The red center in Step 1 is longer than the green
center in Step 3. We align the red center at all possible
offsets (line 6), and then create a new center by averaging

two current centers. Parts of the new centers are created by
weighted averaging from all (one or two) centers that cover
that part (line 7-9). To make a decision among all possible
offsets, MDL plays an important role again; at each offset,
bitsave is calculated (line 11), and we choose the offset
which can save the maximum number of bits (line 22-23).
Similar to the code in line 6-13, which evaluates all offsets
when C1.cen moves into C2.cen, the code in line 14-21
evaluates the inverse when C1.cen moves out of C2.cen.

TABLE II. Create OPERATOR

Function C = CreateCluster(A,B)

1
2
3
4

C.size = 2;
C.cen = (A+B)/2
C.seq = [A; B]
C.shift= [0; 0]

TABLE III. Add OPERATOR

Function C = AddToCluster(C,A)

1
2
3
4

C.cen = (C.cen*C.size+A*1)/(C.size+1)
C.size = C.size+1
C.seq = [C.seq; A]
C.shift = [C.shift; 0]

TABLE IV. Merge OPERATOR

Function C' = MergeClusters(C1,C2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

C'.seq = [C1.seq; C2.seq]
C'.size = C1.size+C2.size
n1=C1.size, m1=length(C1.cen)
n2=C2.size, m2=length(C2.cen)
i=0
for off = 0 to m2
 cen1 = [C2.cen(1,off), C1.cen]
 cen2 = [C2.cen, C1.cen(1,m1+off-m2)]
 C'.cen = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shift+off; C2.shift]
 bs(++i) = ComputeBitsave(C',C1,C2)
 Ctmp(i) = C'
end for
for off = 1 to m1
 cen1 = [C1.cen, C2.cen(1,m2+off-m1)]
 cen2 = [C1.cen(1,off), C2.cen]
 C'.cen = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shift; C2.shift+off]
 bs(++i) = ComputeBitsave(C',C1,C2)
 Ctmp(i) = C'
end for
[bitsave ind] = max(bs);
C' = Ctmp(ind);

To summarize, our algorithm contains three operators
(create, add, and merge), which all use MDL to decide the
best choice at each step of the clustering. As there are no
known indexing/motif discovery algorithms for MDL, we
avail ourselves of two fast external modules that use
Euclidean distance for motif discovery [20] and nearest
neighbor search [17]. Using Euclidean distance as a fast
proxy for MDL is possible because they are highly correlated
when both are small (details omitted for brevity).

V. EXPERIMENTAL RESULTS

We begin by stating our experimental philosophy. To
ensure our experiments are reproducible, all codes/data are
available at [27]. In addition, the site contains many more
experiments omitted due to space limitations. Furthermore,

the website contains video animations of the clustering
process for each dataset.

A. Comparison to Ground Truth

We begin by considering a time series for which we have
access to the ground truth (albeit indirectly). Consider the
time series shown in Figure 7.top. A visual inspection gives a
hint of some structure, but even on this tiny example, it is not
clear exactly what the clustering should be -- or even what is
the natural length for potential clusters. This dataset was
obtained by taking an audio snippet of a recording of Edgar
Allen Poe’s poem “The Bells” and transforming it in to the
Mel-Frequency Cepstral Coefficients (MFCC) retaining only
the first coefficient.

Figure 7. top) 29.8 seconds of an audio snippet, represented by the first
coefficient in MCFF space, and then annotated with colors to reflect
the clusters. bottom) A trace of the steps use to produce the clustering.

The clustering we obtained looks subjectively intuitive;
however, because of the original source material we are in a
unique position to do a more objective test. TABLE V shows
the original source text brushed with the colors reflecting the
clustering obtained.

TABLE V. THE TEXT CORRESPONDING TO THE TIME SERIES SHOWN IN
FIGURE 7, ANNOTATED BY COLOR/FONT

Original Order Grouped by clusters
In a sort of Runic rhyme,
To the throbbing of the bells--
Of the bells, bells, bells,
To the sobbing of the bells;
Keeping time, time, time,
As he knells, knells, knells,
In a happy Runic rhyme,
To the rolling of the bells,--
Of the bells, bells, bells--
To the tolling of the bells,
Of the bells, bells, bells, bells,
Bells, bells, bells,--
To the moaning and the groan-
ing of the bells.

 bells,bells, bells
 Bells, bells, bells
Of the bells, bells, bells
Of the bells, bells, bells
 the throbbing of the bells
 the sobbing of the bells
 the tolling of the bells
To the rolling of the bells
To the moaning and the
 time, time, time
 knells, knells, knells
sort of Runic rhyme
groaning of the bells.

The results are not perfect with reference to the text
version. Recall that we are only considering one of the
MFCC coefficients, instead of the ten plus typically used in
speech processing. This allows some collisions, such as
“time” and “knells”. However, the structure recovered by our
algorithm is significant. Note that our clusters are of different
sizes (three items, and two items) and of different lengths
(from 55 points to 70 points). Also, note that we could have
had a single cluster of eighteen occurrences of the word
“bells.” However, that would have obfuscated the
information that this word tends to be repeated in this work,
as in “bells, bells, bells.” These longer clusters are arguably
more parsimonious.

200 400 600 800 1000 12000

1 2 3 4 5 6 7 8 9 10
Step of the clustering process

b
it

sa
ve

pe
r

un
it

-1

0

1

2

Clustering stops here

Create
Add
Merge

B. Clustering a Noisy Dataset

In Figure 8 we show the results of clustering a noisy
industrial dataset. The data comes from an industrial wire
winding process. The original data consists of seven
dimensions; here we show only the results of clustering the
noisiest channel, labeled U1 (the results on the other
channels are at [27]). Note that the data has significant non-
uniform noise, including spikes and dropouts. While we do
not have access to the ground truth here, the clusters, which
have different sizes and length, clearly have the property of
being similar within a cluster and dissimilar between clusters.
Note that approximately 26% of the data remains
unclustered.

Figure 8. top) Dimension U1 of the Winding dataset. middle) A trace
of the clustering steps produced by our algorithm. bottom)
Representative clusters obtained.

C. Comparison to other Methods

As we noted above there are few candidate strawmen to
compare our work to. Here we compare our work to the most
referenced work in the literature. In a sequence of papers,
Chen proposes a series of fixes for the stream clustering
problem [4][5][6]. He demonstrates his ideas mostly on
synthetic data; however, as shown in Figure 9.right, he also
tests on short section of the Koski heartbeat dataset.

Figure 9. left) A screen dump of fig.11 from [5]. The original caption
read “TF Clustering: Koski-ECG result”. right) An annotation of the
clusters by a USC cardiologist.

While the results are perhaps reasonable, it is not clear
why we should have two clusters here since there is clearly
just one heartbeat. In addition, there is a subtle artifact
noticed by cardiologist, Dr. Helga Van Herle, whom we
asked to examine this. The slight slope on the light-gray
cluster show in Figure 9.left is not in the data; it comes from
the fact that the input data is not an integer multiple of beats,

instead being roughly 5.2 beats. Since the algorithm is trying
to explain all the data, it must explain the extra P-wave by
averaging it into a place where it does not belong.
Furthermore, as acknowledged in the original paper, the
algorithm requires the setting of several parameters and
“magic numbers” (i.e., “we chose p as the number of points
in the time series divided by 15..”). Finally, we note in
passing that the algorithm requires multiple calls to a
quadratic space and time (in the length of the time series)
algorithm, which would make it impractical for many real
data mining problems. Our algorithm requires linear space.

In Figure 10, we show the clustering we achieved on
exactly the same dataset. We believe the results here are
intuitively correct, discovering a complete single heartbeat as
the cluster. Note that our algorithm explains 87.5% of the
data; it does not try to explain the extra P-wave “bump”
caused by the fact that we do not have an integer number of
heartbeats.

Figure 10. top) The same 2,000 datapoints from Koski-ECG as used in
Figure 9. middle) A trace of the clustering steps produced by our
algorithm. bottom) the single cluster discovered has five members.

D. Scalability
From our algorithm in Section IV.B, assume that

MotifDiscovery takes time O(T). In each create step,
MotifDiscovery is called multiple times to find motifs
of different length; we run it at most O(s) times. Because
each subsequence is of length at least s, there are at most
O(m/s) new clusters to be created. This is why the running
time for creating new clusters is O(T*s*m/s) = O(mT).

Assume that NearestNeighbor can be finished in
time O(ms). The maximum number of clusters we can have
is O(m/s), and the original time series can be updated only
when a new motif is discovered, so the number of clustering
steps (cf. line 2 in TABLE I) is at most O(m/s). Thus, for add
steps we have O(ms * m/s * m/s) = O(m3/s).

For merge steps, if a cluster is created by merging k
clusters so far, the number of subsequences in that cluster is
at most O(k). The length of its center is at most O(ks);
therefore, the number of possible offsets is O(ks), and bitsave
calculation is finished in time O(k2s2). The maximum
number of clusters we can have is at most O(m/s), so we can
have cluster of size k at most O(m/sk) clusters, and there are
at most O(m/s) steps in our algorithm. This means that the
running of merge steps is at most O(m/s*(m/sk)2*k2s2) =
O(m3/s). Hence, the total running time of our algorithm is at

0 200 400 600

500 1000 1500 2000 25000

dropouts

spikes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

b
it

sa
ve

p
er

 u
n

it

Clustering stops here

Create
Add
Merge

PR

S

Q
Artifact of
clustering
algorithm

500 1000 1500 20000

1 2 3 4
Step of the clustering process

B
its

av
e

pe
r

un
it

0
1
2
3 Clustering stops

here, because there
is essentially no
data left to cluster

Cluster
plotted

Stacked,
Dithered

most O(mT+m3/s) where T is a running time for a motif
discovery. The empirical behavior is shown in Figure 11.

Figure 11. Running time of our algorithm on Koshi data when s = 350.

To put these results in perspective, the ornithology lab
we are working with has spent months collecting data in the
field (cf. Figure 5), so they are willing to wait the hour we
require to cluster several minutes of audio. Nevertheless, we
believe that a 100X speedup will soon be possible simply by
caching some near redundant motifs calculations.

VI. DISSCUSION OF THE MDL CHOICE

Now that the reader has gleaned some intuition for our
algorithm and its utility for clustering data, we will briefly
revisit a discussion of why MDL on a discretized time series
is our choice of measure to steer the clustering search.

We cannot use Euclidean distance (or the related
correlation or Dynamic Time Warping etc [11][17]) directly
because it does not allow us to compare the relative merits of
clusters of different lengths or different sizes. In contrast,
MDL does allow such meaningful comparisons. Moreover,
in the limited case when MDL and Euclidean distance can be
compared (when time series lengths are the same), we find
that the two measures are highly correlated so long as they
are small (if both are destined to be large, it does not really
matter how correlated they are).

We work in the discrete space rather than the original
continuous space because MDL requires it, and because
working with the discretized time series makes no
perceptible difference in classification (shown in Figure 2) or
in similarity search, indexing, motif discovery or outlier
discovery (omitted for brevity).

VII. CONCLUSIONS

In this work, we have shown that any attempt to cluster a
single time series stream that insists on explaining all the
data is almost certainly doomed to failure. We introduced a
clustering representation that has the expressive power to
ignore some of the data, and can have clusters with different
length subsequences. We further showed an efficient and
parameter-lite MDL based algorithm to perform the
clustering. We have shown on our algorithm is effective on a
wide variety of datasets.

ACKNOWLEDGEMENT

We would like to acknowledge the financial support for
our research provided by the Royal Thai Government and
NSF grants 0803410 and 0808770.

REFERENCES
[1] V. Athitsos, H. Wang, and A. Stefan, “A database-based framework

for gesture recognition,” Personal and Ubiquitous Computing, vol.
14, no. 6, 2010, pp. 511-526.

[2] T. Bastogne, H. Noura, A. Richard, and J. M. Hittinger, “Application
of subspace methods to the identification of a winding process,” Proc.
of the 4th European Control Conference, Brussels, Belgium, 1997.

[3] D. Bouchard and N. I. Badler, “Semantic Segmentation of Motion
Capture Using Laban Movement Analysis,” IVA, 2007, pp 37-44 .

[4] J. R. Chen. “Making Subsequence Time Series Clustering
Meaningful,” ICDM, 2005, pp. 114-121.

[5] J. R. Chen., “Useful Clustering Outcomes from Meaningful Time
Series Clustering,” The Australasian Data Mining Conference. 2007.

[6] J. R. Chen., Making clustering in delay-vector space meaningful.
Knowl. Inf. Syst. 11, 3 (2007), 369-385.

[7] Z. J. Chuang, C. H. Wu, and W. S. Chen, “Movement Epenthesis
Generation Using NURBS-Based Spatial Interpolation,” IEEE Trans.
Circuit and Systems for Video Technology, vol. 16, no. 11, Nov.
2006, pp. 1313-1323.

[8] D. J. Cook and L. B. Holder, “Substructure Discovery Using
Minimum Description Length and Background Knowledge,” J.
Artificial Intelligence Research, vol. 1 , 1994, pp. 231-255.

[9] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule
Discovery from Time Series,” Proc. of the 3rd KDD, 1998, pp. 16-22.

[10] A. M. Denton, C. A. Basemann, and D. H. Dorr, “Pattern-based time-
series subsequence clustering using radial distribution functions,”
Knowledge and Information Systems journal, vol. 18, No. 1, Jan.
2009, pp. 1-27.

[11] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh,
“Querying and mining of time series data: experimental comparison
of representations and distance measures,” PVLDB, vol. 1, no. 2,
2008, pp. 1542-1552.

[12] S. C. Evans et. al. “MicroRNA target detection and analysis for genes
related to breast cancer using MDLcompress,” EURASIP J.
Bioinform. Syst. Biol., 2007, pp. 1-16.

[13] S. C. Evans, E. Eiland, T. S. Markham, J. Impson, and A. Laczo,
“MDLcompress for Intrusion Detection: Signature Inference and
Masquerade Attack,” MILCOM, Orlando, Florida, 2007.

[14] I. Jonyer, L. B. Holder, and D. J. Cook, “MDL-based context-free
graph grammar induction and applications,” Journal on Artificial
Intelligence Tools, vol. 13, no. 1, 2004, pp. 65-79.

[15] S. D. Kamvar, D. Klein, and C. D. Manning, “Interpreting and
Extending Classical Agglomerative Clustering Algorithms using a
Model-Based approach,” ICML, 2002, pp. 283-290.

[16] E. J. Keogh and J. Lin, “Clustering of time-series subsequences is
meaningless: implications for previous and future research,” Knowl.
Inf. Syst., vol. 8, no. 2, 2005, pp. 154-177.

[17] E. J. Keogh and S. Kasetty, “On the Need for Time Series Data
Mining Benchmarks: A Survey and Empirical Demonstration,” Data
Mining and Knowledge Discovery, vol. 7, no. 4, 2003, pp. 349-371.

[18] H. Li and N. Abe, “Clustering Words with the MDL Principle,” Proc.
of the 16th Int’ Conf’ on Computational Linguistics, 1996, pp. 5-9.

[19] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity
and Its Applications, 2nd ed., Springer Verlag, 1997.

[20] A. Mueen, E. J. Keogh, and N. B. Shamlo, “Finding Time Series
Motifs in Disk-Resident Data,” ICDM, 2009, pp. 367-376.

[21] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu, “Hierarchical,
Parameter-Free Community Discovery,” PKDD 2008, pp. 170-187.

[22] E. Pednault, “Some Experiments in Applying Inductive Inference
Principles to Surface Reconstruction,” IJCAI, 1998, pp. 1603-09.

[23] R. A. Stine, “Model Selection Using Information Theory and the
MDL Principle,” Sociological Methods and Research, vol. 33, no. 2,
Nov. 2004, pp. 230-260.

[24] Y. Tanaka, K. Iwamoto, and K. Uehara, K. “Discovery of time-series
motif from multi-dimensional data based on MDL principle,”
Machine Learning, vol. 58, no. 2, 2005.

[25] C. S. Wallace and D. M. Boulton, 1968. An information measure for
classification. Computer Journal 11, 2 (August 1968), 185-194.

[26] R. Yang, S. Sarkar, and B. L. Loeding, “Handling Movement
Epenthesis and Hand Segmentation Ambiguities in Continuous Sign
Language Recognition Using Nested Dynamic Programming,” IEEE
PAMI, vol. 32, no. 3, 2010, pp. 462-477.

[27] Supporting webpage. http://www.cs.ucr.edu/~rakthant/TSEpenthesis

5000 10000 15000 20000 25000 300001000

0

4000

8000

12000

T
im

e
(s

ec
)

Size of time series

Scalability16000

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

