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ABSTRACT 
The Dynamic Time Warping (DTW) distance measure is a 
technique that has long been known in speech recognition 
community.  It allows a non-linear mapping of one signal 
to another by minimizing the distance between the two.  A 
decade ago, DTW was introduced into Data Mining 
community as a utility for various tasks for time series 
problems including classification, clustering, and anomaly 
detection. The technique has flourished, particularly in the 
last three years, and has been applied to a variety of 
problems in various disciplines. 

In spite of DTW’s great success, there are still several 
persistent “myths” about it. These myths have caused 
confusion and led to much wasted research effort. In this 
work, we will dispel these myths with the most 
comprehensive set of time series experiments ever 
conducted.   
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1. INTRODUCTION 
In recent years, classification, clustering, and indexing of 
time series data have become a topic of great interest within 
the database/data mining community.  The Euclidean 
distance metric has been widely used [17], in spite of its 
known weakness of sensitivity to distortion in time axis 
[15]. A decade ago, the Dynamic Time Warping (DTW) 
distance measure was introduced to the data mining 
community as a solution to this particular weakness of 
Euclidean distance metric [3].  This method’s flexibility 
allows two time series that are similar but locally out of 
phase to align in a non-linear manner.  In spite of its O(n2) 
time complexity, DTW is the best solution known for  time 
series problems in a variety of domains, including 
bioinformatics [1], medicine [5], engineering, 
entertainment [30], etc. 

The steady flow of research papers on data mining with 
DTW became a torrent after it was shown that a simple 
lower bound allowed DTW to be indexed with no false 
dismissals [15]. The lower bound requires that the two 
sequences being compared are of the same length, and that 
the amount of warping is constrained. This work allowed 

practical applications of DTW, including real-time query-
by-humming systems [30], indexing of historical 
handwriting archives [24], and indexing of motion capture 
data [6]. 

In spite of the great success of DTW in a variety of 
domains, there still are several persistent myths about it. 
These myths have caused great confusion in the literature, 
and led to the publication of papers that solve apparent 
problems that do not actually exist. The three major myths 
are: 

Myth 1: The ability of DTW to handle sequences of 
different lengths is a great advantage, and therefore the 
simple lower bound that requires different-length 
sequences to be reinterpolated to equal length is of 
limited utility [18][27][28]. In fact, as we will show, 
there is no evidence in the literature to suggest this, and 
extensive empirical evidence presented here suggests 
that comparing sequences of different lengths and 
reinterpolating them to equal length produce no 
statistically significant difference in accuracy or 
precision/recall. 

Myth 2: Constraining the warping paths is a necessary 
evil that we inherited from the speech processing 
community to make DTW tractable, and that we should 
find ways to speed up DTW with no (or larger) 
constraints[27].  In fact, the opposite is true. As we will 
show, the 10% constraint on warping inherited blindly 
from the speech processing community is actually too 
large for real world data mining. 

Myth 3: There is a need (and room) for improvements 
in the speed of DTW for data mining applications. In 
fact, as we will show here, if we use a simple lower 
bounding technique, DTW is essentially O(n) for data 
mining applications. At least for CPU time, we are 
almost certainly at the asymptotic limit for speeding up 
DTW. 

In this paper, we dispel these DTW myths above by 
empirically demonstrate our findings with a comprehensive 
set of experiments. In terms of number of objective datasets 
and size of datasets, our experiments are orders of 
magnitude greater than anything else in the literature. In 



particular, our experiments required more than eight billion 
DTW comparisons.  

Before beginning our deconstruction of these myths, it 
would be remiss of us not to note that several early papers 
by the second author are guilty of echoing them. This work 
is part of an effort to redress these mistakes. Likewise, we 
have taken advantage of the informal nature of a workshop 
to choose a tongue-in-cheek attention grabbing title. We do 
not really mean to imply that the entire community is 
ignorant of the intricacies of DTW. 

The rest of the paper is organized as follows. In Section 2, 
we give an overview of Dynamic Time Warping (DTW) 
and its related work.  The next three sections consider each 
of the three myths above. Section 6 suggests some avenues 
for future researches, and Section 7 gives conclusions and 
directions for future work. Because we are testing on a 
wide range of real and synthetic datasets, we have placed 
the details about them in Appendix A to enhance the flow 
of the paper. 

2. BACKGROUND AND RELATED WORK 
The measurement of similarity between two time series is 
an important subroutine in many data mining applications, 
including classification [11][14], clustering [1][10], 
anomaly detection [9], rule discovery [8], and motif 
discovery [7].  The superiority of DTW over Euclidean 
distance metric for these tasks has been demonstrated by 
many authors [1][2][5][29].  We will first begin with a 
review of some background material on DTW and its 
recent extensions, which contributes to our main motivation 
of this paper.  

2.1 REVIEW OF DTW  
Suppose we have two time series, a sequence Q of length n, 
and a sequence C of length m, where 

Q = q1,q2,…,qi,…,qn  (1) 

C = c1,c2,…,cj,…cm  (2) 

To align these two sequences using DTW, we first 
construct an n-by-m matrix where the (ith , jth ) element of 
the matrix corresponds to the squared distance, d(qi , cj) = 
(qi – cj)2, which is the alignment between points qi and cj.  
To find the best match between these two sequences, we 
retrieve a path through the matrix that minimizes the total 
cumulative distance between them as illustrated in Figure 1.   
In particular, the optimal path is the path that minimizes the 
warping cost 

⎩
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where wk is the matrix element (i,j)k that also belongs to kth 
element of a warping path W, a contiguous set of matrix 
elements that represent a mapping between Q and C. 

This warping path can be found using dynamic 
programming to evaluate the following recurrence. 

γ(i,j)  = d(qi,cj) + min{ γ(i-1,j-1) , γ(i-1,j ) , γ(i,j-1) } (4) 

where d(i,j) is the distance found in the current cell, and 
γ(i,j) is the cumulative distance of d(i,j) and the minimum 
cumulative distances from the three adjacent cells. 
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Figure 1. A) Two similar sequences Q and C, but out of phase.  
B) To align the sequences, we construct a warping matrix and 
search for the optimal warping path, shown with solid 
squares.  Note that the 'corners' of the matrix (shown in dark 
gray) are excluded from the search path as part of an 
Adjustment Window condition.  C) The resulting alignment. 

To reduce the number of paths to consider during the 
computation, several well-known constraints (Boundary 
Conditions, Continuity condition, Monotonic condition, 
and Adjustment Window Condition) have been applied to 
the problem to restrict the moves that can be made from 
any point in the path and so restrict the number of paths 
that need to be considered.  Figure 1 B) illustrates a 
particular example of the Adjustment Window Condition 
(or Warping Window Constraints) with the Sakoe-Chiba 
Band [26].  The width of this constraint is often set to 10% 
of the length of the time series [1][22][26].  

2.2 LOWER BOUNDING THE DTW 
DISTANCE 

A recent extension to DTW that significantly speeds up the 
DTW calculation is a lower bounding technique based on 
the warping window (envelope) [15].   
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Figure 2.  The two most common constraints in the literature 
are the Sakoe-Chiba Band and the Itakura Parallelogram 

Figure 2 illustrates two of the most frequently used global 
constraints in the literature, the Sakoe-Chiba Band [26] and 



the Itakura Parallelogram [13].  The latter is widely used in 
the speech community. 

The lower bound is only defined for sequences of the same 
length; if the sequences are of different lengths, one of 
them must be reinterpolated. This lower bounding 
technique uses the warping window to create a bounding 
envelope above and below the query sequence.  Then the 
squared sum of the distances from every part of the 
candidate sequence not falling within the bounding 
envelope, to the nearest orthogonal edge of the bounding 
envelope, is returned as its lower bound.  The technique is 
illustrated in Figure 3.   
 

Figure 3.  The Sakoe-Chiba Band A) can be used to create an 
envelope B) around a query sequence Q.  The Euclidean 
distance between any candidate sequence C and the closest 
external part of the envelope C) is a lower bound for the DTW 
distance 

For clarity, in Table 1, we will show a trivial algorithm that 
can exploit any lower bound to do faster sequential search.  
This algorithm is taken from Table 2 of [15]. 

Table 1. An algorithm that uses a lower bounding distance 
measure to speed up the sequential scan search for the query 
Q 
Algorithm Lower_Bounding_Sequential_Scan(Q)  

1. best_so_far = infinity; 

2. for all sequences in database 

3.  LB_dist = lower_bound_distance(Ci, Q); 

4.     if LB_dist < best_so_far 

5.         true_dist = DTW(Ci, Q); 

6.         if true_dist < best_so_far 

7.             best_so_far = true_dist; 

8.             index_of_best_match = i; 

9.         endif 

10.     endif 
11. endfor 

 

Note that the tightness of these lower bounds and pruning 
power essentially depend on the size of the warping 
window used as well. In general, the smaller the area of 
allowed warping, the more we can take advantage of 
pruning. As noted above, the best size of this warping is 
subject to controversy; we will examine the question in 
Section 4.   

For clarity, we will summarize before continuing. If we are 
willing to force the sequences to be of the same length, and 
to constrain the warping, then we have a simple solution for 
speeding up similarity search under DTW. We will call this 
solution 4S (Simple Straw man for Similarity Search).  As 
we shall see, the papers that try to speed up this simple 
approach, or relax its two assumptions, are motivated and 
misled by the myths discussed above. 

3. DOES COMPARING SEQUENCES OF 
DIFFERENT LENGTHS HELP OR 
HURT?  

Many recent papers suggest that the ability of classic DTW 
to deal directly with sequences of different length is a great 
advantage; some paper titles even contain the phrase “…of 
different lengths” [4][21] showing their great concerns in 
solving this issue. As further examples, consider the 
following quotes taken from recent papers: “Time warping 
enables sequences with similar patterns to be found even 
when they are of different lengths” [18], or “ (DTW is) a 
more robust distance measure than Euclidean distance in 
many situations, where sequences may have different 
lengths” [28] or “(DTW) can be used to measure similarity 
between sequences of different lengths”. Some of these 
papers further suggest that the simple 4S solution to DTW 
similarity search is not useful because it requires that 
sequences of different lengths to be reinterplolated to the 
same length, and use this fact to motive new approaches: 
for example “(4S) only works when the data and query 
sequences are of the same length.” [27]. 
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These claims are surprising in that they are not supported 
by any empirical results in the papers in question. 
Furthermore, an extensive literature search through more 
than 500 papers dating back to the 1960’s failed to produce 
any theoretical or empirical results to suggest that simply 
making the sequences to be of the same length has any 
detrimental effect. 

To test our claimed hypothesis that there is no significant 
difference in accuracies between using variable-length time 
series and equal-length time series in DTW calculation, we 
carry out an experiment as follows. 

For all variable-length time series datasets (Face, Leaf, 
Trace, and Wordspotting – See Appendix A for dataset 
details), we compute 1-nearest-neightbor classification 
accuracies (leaving-one-out) using DTW for all warping 
window sizes (1% to 100%) in two different ways: 

1) The 4S way; we simply reinterpolated the 
sequences to have the same length.  

2) By comparing the sequences directly using their 
original lengths. 



The latter case is not as simple as one might think since we 
need to normalize the returned distance in some way. All 
things being equal, we would expect longer sequences to be 
further apart than short sequences, since they have more 
dimensions on which to accumulate noise. The following 
normalization policies have appeared in the literature or are 
common sense ideas.  

• No normalization on the distance. 

• Normalize by the length of the optimal warping path. 

• Normalize by the length of the shorter time series (for 
each pair of the time series during each DTW 
computation). 

• Normalized by the length of the longer time series. 

To give the benefit of the doubt to different-length case, for 
each warping window size, we do all four possible 
normalizations above, and the best performing of the four 
options is recorded as the accuracy for the variable-length 
DTW calculation.   

For completeness, we test over every possible warping 
constraint size. Note that we start the warping window size 
of 1% instead of 0% since 0% size is Euclidean distance 
metric, which is undefined when the time series are not of 
the same length.  Also, when measuring the DTW distance 
between two time series of different lengths, the percentage 
of warping window applied is based on the length of the 
longer time series to ensure that we allow adequate amount 
of warping for each pair and deliver a fair comparison. 
 

Figure 4.  A comparison of the classification accuracies 
between variable-length datasets (dotted lines) and the 
(reinterpolated) equal-length datasets (solid lines). The two 
options produce such similar results that in many places the 
lines overlap. 

The variable-length datasets are then linearly reinterpolated 
to have the same length of the longest time series within 

each dataset.  After that, we simply compute the 
classification accuracies using DTW for all warping 
window sizes (1% to 100%) for each dataset.  The results 
are shown in Figure 4. 

Note that the experiments do strongly suggest that changing 
the amount of warping allowed does affect the accuracy (an 
issue that will be discussed in depth in the next section), but 
over the entire range on possible warping widths, the two 
approaches are nearly indistinguishable. Furthermore, a 
two-tailed test using a significance level of 0.05 between 
each variable-length and equal-length pair indicates that 
there is no statistically significant difference between the 
accuracy of the two sets of experiments.  An even more 
telling result is the following.  In spite of extensive 
experience with DTW and an extensive effort, we were 
unable to create an artificial problem where reinterpolating 
made a significant difference in accuracy.  To further 
reinforce our claim, we also reinterpolate the datasets to 
have the equal length of the shortest and averaged length of 
all time series within the dataset.  We still achieve similar 
findings.  

These results strongly suggest that work allowing DTW to 
support similarity search that does require reinterpolation, 
is simply solving a problem that does not exist. 
Subsequently, while Wong and Wong claimed, “(DTW is 
useful) to measure similarity between sequences of different 
lengths” [28] we must recall that two Wongs do not make a 
right1. The often-quoted utility of DTW being able to 
support the comparison of sequences of different lengths is 
simply a myth.  
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4. ARE NARROW CONSTRAINTS BAD? 
Apart from (slightly) speeding up the computation, warping 
window constraints were originally applied mainly to 
prevent pathological warping (where a relatively small 
section of one sequence maps to a much larger section of 
another).  The vast majority of the data mining researchers 
have used a Sakoe-Chiba Band with a 10% width for the 
global constraint [1][22][26].  This setting seems to be the 
result of historical inertia, inherited from the speech 
processing community, rather than some remarkable 
property of this particular constraint. 
Some researchers believe that having wider warping window 
contributes to improvement in accuracy [30]. Or without 
realizing the great effect of the warping window size on 
accuracies, some applied DTW with no warping window 
constraints [20], or did not specify the window size used in 
the experiments [19] (the latter case makes it particularly 
difficult for others to reproduce the experiment results). In 
[27], the authors bemoan the fact that “(4S) cannot be 
applied when the warping path is not constrained” and use 
                                                                 
1 Yes, this is a very poor joke! 



this fact to justify introducing an alterative approach that 
works for the unconstrained case.  
To test the effect of the warping window size to the 
classification accuracies, we performed an empirical 
experiment on all seven classification datasets.  We vary 
the warping window size from 0% (Euclidean) to 100% (no 
constraint/full calculation) and record the accuracies. 

Since we have shown in Section 3 that reinterpolation of 
time series into the same length is at least as good as (or 
better than) using the original variable-length time series, 
we linearly interpolate all variable-length datasets to have 
the same length of the longest time series within the dataset 
and measure the accuracy using the 1-nearest-neighbor 
with leaving-one-out classification method. The results are 
shown in Figure 5. 

 

Figure 5.  The classification accuracies for all warping 
window sizes.  All accuracies peak at very small window sizes. 

As we hypothesized, wider warping constraints do not 
always improve the accuracy, as commonly believed [30].  
More often, the accuracy peaks very early at much smaller 
window size, as shown in Table 2 below. In essence, the 

results can be summarized by noting that a little warping is 
a good thing, but too much warping is a bad thing.  

Table 2.  The warping window size that yields maximum 
classification accuracy for each dataset, using DTW with 
Sakoe-Chiba Band. 

Dataset Max Accuracy 
(%) 

Warping 
Window Size 

(%) 

Face 96.43 3 

Gun 99.00 3 

Leaf 96.38 10 

Syn_contrl_chrt 99.67 8 

Trace 100.00 1 

TwoPatterns 100.00 3 

Wordspotting 98.90 3 Face
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We also did an additional experiment, where half of the 
objects in the databases are randomly removed from the 
database in each iteration.  We measure the classification 
accuracies for each database size, as shown in Figure 6.  As 
the database size decreases, the classification accuracy also 
declines and the peak appears at larger warping window 
size. 

 

Figure 6. With fewer objects in the databases, the accuracies 
become less accurate and peak at larger window size 

This finding suggests that warping window size adjustment 
does affect accuracy, and that the effect also depends on the 
database size. This in turn suggests that we should find the 
best warping window size on realistic (for the task at hand) 
database sizes, and not try to generalize from toy problems. 

To summarize, there is no evidence to support the idea that 
we need to be able to support wider constraints. While it is 
possible that there exist some datasets somewhere that 
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could benefit from wider constraints, we found no evidence 
for this in a survey of more than 500 papers on the topic. 
More tellingly, in spite of extensive efforts, we could not 
even create a large synthetic dataset for classification that 
needs more than 10% warping. 

All the evidence suggests that narrow constraints are 
necessary for accurate DTW, and the “need” to support 
wide (or no) constraints is just a myth. 

5. CAN DTW BE FURTHER SPEEDED UP? 
Smaller warping windows speed up the DTW calculations 
simply because there is less area of the warping matrix to 
be searched. Prior to the introduction of lower bounding, 
the amount of speedup was directly proportional to the 
width of the warping window. For example, a nearest 
neighbor search with a 10% warping constraint was almost 
exactly twice as fast as a search done with a 20% window. 
However, it is important to note that with the introduction 
of lower bounding based on warping constraints (i.e. 4S), 
the speedup is now highly nonlinear in the size of the 
warping window. For example, a nearest neighbor search 
with a 10% warping constraint may be many times faster 
than twice a search done with a 20% window. 

In spite of this, many recent papers still claim that there is a 
need and room for further improvement in speeding up 
DTW.  For example, a recent paper suggested “dynamic 
time warping incurs a heavy CPU cost…” Surprisingly, as 
we will now show, the amortized CPU cost of DTW is 
essentially O(n) if we use the trivial 4S technique.  

To really understand what is going on, we will avoid 
measuring the efficiency of DTW when using index 
structures. The use of such index structures opens the 
possibility of implementation bias [17]; it is simply difficult 
to know if the claimed speedup truly reflects a clever 
algorithm, or simply the care in choice of buffer size, 
caching policy, etc.    

Instead, we measure the computation time of DTW for each 
pair of time series in terms of the amortized percentage of 
the warping matrix that needs to be visited for each pair of 
sequences in our database. This number depends only on 
the data itself and the usefulness of the lower bound. As a 
concrete example, if we are doing a one nearest neighbor 
search on 120 objects with a 10% warping window size, 
and the 4S algorithm only needs to examine 14 sequences 
(pruning the rest), then the amortized cost for this 
calculation would be (w * 14) / 120 = 0.12*w, where w is 
the area (in percentage) inside the warping window 
constraint along the diagonal (Sakoe-Chiba band).  Note 
that 10% warping window size does not always occupy 
10% of the warping matrix; it mainly depends on the length 
of the sequence as well (longer sequences give smaller w).  
In contrast, if 4S was able to prune all but 3 objects, the 
amortized cost would be (w * 3) / 120 = 0.03*w. 

The amount of pruning we should actually expect depends 
on the lower bounds. For example, if we used a trivial 
lower bound hard-coded to zero (pointless, but perfectly 
legal), then line 4 of Table 1 would always be true, and we 
would have to do DTW for every pair of sequences in our 
dataset. In this case, amortized percentage of the warping 
matrix that needs to be accessed for each sequence in our 
database would exactly be the area inside the warping 
window. If, on the other hand, we had a “magic” lower 
bound that returned the true DTW distance minus some 
tiny epsilon, then line 4 of the Table 1 would rarely be true, 
and we would have to do the full DTW calculation only 
rarely. In this case, the amortized percentage of the warping 
matrix that needs to be accessed would be very close to 
zero. 

We measured the amortized cost for all our datasets, and 
for every possible warping window size. The results are 
shown in Figure 7.   Figure 8 shows the zoom-in of the 
results from 0 to 10 % warping window size 
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Figure 7.  The amortized percentage of warping matrix that 
needs to be accessed during the DTW calculation for each 
warping window size.  The use of a lower bound helps prune 
off numerous unnecessary calculations. 

The results are very surprising. For reasonably large 
datasets, simply using a good lower bound insures that we 
rarely have to use the full DTW calculation. In essence, we 
can say that DTW is effectively O(n), and not O(n2), when 
searching large datasets. 

For example, in the Gun, Trace, and 2-Pattern problems (all 
maximum accuracy at 3% warping), we only need to do 
much less than half a percent of the O(n2) work that we 
would have been forced to do without lower bounding. For 
some of the other datasets, it may appear that we need to do 
a significant percentage of the CPU work. However, as we 
will see below, these results are pessimistic in that they 
reflect the small size of these datasets. 



 

Figure 8. Zoom-in of Figure 6, from 0 to 10% warping 
window size. Note that from Section 4, we recognize that the 
most accurate results for all datasets happen in this range.  

If the amortized cost of DTW is linear, where does the 
claimed improvement from recent papers come from? It is 
true that these approaches typically use indexes, rather than 
sequential search, but an index must do costly random 
access rather than the optimized linear scans of sequential 
search. In order to simply break even in terms of disk 
access time, they must avoid looking at more than 10% of 
the data [16], but for time series where even the reduced 
dimensionality (i.e. the Fourier or wavelet coefficients) is 
usually greater than 20 [17], it is not obvious that this is 
possible.  

Some recent papers that claim speedups credit the 
improved lower bounds, for example “…we present 
progressively tighter lower bounds… that allow our method 
to outperform (4S) ” [27]. Indeed, it might be imagined that 
speedup could be obtained by having tighter lower bounds. 
Surprisingly, this is not true! We can see this with the 
following simple experiment. Let us imagine that we have a 
wonderful lower bound, which always returns a value that 
is within 1% of the correct value (more concretely, a value 
uniformly distributed between 99% and 100% of the true 
DTW value). We will call this idealized lower bound 
LB_Magic. In contrast, the current best-known lower 
bounds typically return a value between 40% and 60% of 
the true value [15]. 

We can compare the speedup obtained by LB_Magic with 
the current best lower bound, LB_Keogh [15], on 1-nearest 
neighbor search. Note that we have to cheat for LB_Magic 
by doing the full DTW calculation then assigning it a value 
up to 1% smaller.  We will use a warping constraint of 5%, 
which is about the mean value for the best accuracy (cf. 
Section 4). As before, we measured the amortized 
percentage of the warping matrix that needs to be accessed 
for each sequence in our database. For this experiment, we 

use a randomwalk data of length 128 data points, and vary 
the database size from 10 objects to 40,960 objects. Figure 
9 shows the results. 
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Figure 9. Amortized percentage of the warping matrix that 
needs to be accessed.  As the size of the database is increasing, 
the amortized percentage of the warping matrix accessed 
becomes closer to zero. 

Once again, the results are very surprising. The idealized 
LB_Magic allows a very impressive speedup; for the 
largest size database, it eliminates 99.997% of the CPU 
effort. However, the very simple lower bounding technique 
that has been in the literature for several years is able to 
eliminate 99.369% of the CPU effort! The difference is not 
quite so dramatic for very small datasets, say less than 160 
objects. But here we can do unoptimized search in much 
less than a hundredth of a second. Note that we obtain 
similar results for other datasets. 

To summarize, for problems involving a few thousand 
sequences or more, each with a few hundred data points, 
the “significant CPU cost of DTW” is simply non-issue (as 
for problems involving less than a few thousand sequences, 
we can do them in less than a second anyway).  

The lesson for the data mining community from this 
experiment is the following; it is almost certainly pointless 
to attempt to speed up the CPU time for DTW by 
producing tighter lower bounds. Even if you could produce 
a magical lower bound, the difference it would make would 
be tiny, and completely dwarfed by minor implementation 
choices.  

6. AVENUES FOR FUTURE RESEARCH 
In this section, we will attempt to redress the somewhat 
negative tone of this paper by suggesting many avenues for 
future research with DTW.  Since it has been demonstrated 
by many authors that DTW is the solution to many data 
mining problems, we would like to present some of the 



other applications or problems that can effectively benefit 
from DTW distance measure. 

6.1 VIDEO RETRIEVAL 
Generally, research on content-based video retrieval 
represents the content of the video as a set of frames, 
leaving out the temporal features of frames in the shot.  
However, for some domains, including motion capture 
editing, gait analysis, and video surveillance, it may be 
fruitful to extract time series from the video, and index just 
the time series (with pointers back to the original video).  
Figure 10 shows an example of a video sequence that is 
transformed into a time series. This example is the basis for 
the Gun dataset discussed in Appendix A. 

 

Figure 10. Stills from a video sequence; the right hand is 
tracked, and converted into a time series 

One obvious reason why using time series representation 
may be superior to working with the original data is the 
massive reduction in dimensionality, which enhances the 
ease of storage, transmission, analysis, and indexing.  
Moreover, it is much easier to make the time series 
representation invariant to distortions in the data, such as 
time scaling and time warping. 

6.2 IMAGE RETRIEVAL 
For some specialized domains, it can be useful to convert 
the images into “pseudo time series”.  For example, 
consider Figure 11 Below.  Here, we have converted an 
image of a leaf into a time series by measuring the local 
angle of a trace of its perimeter.  The utility of such a 
transform is similar to that for video retrieval. 

 

Figure 11. An example of a leaf image converted into a 
"pseudo time series” 

6.3 HANDWRITING RETRIEVAL 
The problem of transcribing and indexing existing 
historical archives is still a challenge.  For even such a 
major historical figure as Isaac Newton, there exists a body 
of unpublished, handwritten work exceeding one million 
words.  For other historical figures, there are even larger 
collections of handwritten text.  Such collections are 

potential goldmines for researchers and biographers. 
Recent work by [24] suggests that DTW may be best 
solution to this problem. 

A)
B)

C)
A)A)

B)

C)

B)

C)
 

Figure 12.  A) An example of handwritten text by George 
Washington. B) A zoom-in on the word “Alexandria”, after 
being processed to remove slant.  C) Many techniques exist to 
convert 2-D handwriting into a time series; in this case, the 
projection profile is used (Fig. created by R. Manmatha). 

6.4 TEXT MINING 
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Surprisingly, we can also transform text into a time series 
representation.  For instance, we consider a problem of 
translating biblical text in two different languages (English 
and Spanish).  The bible text is converted into bit streams 
according to the occurrences of the chosen word in the text.  
For example, subsection of the bible containing the word 
‘God’ in “In the beginning God created the heaven and the 
earth” will be represented by “0001000000”.  Then the bit 
streams are converted into time series by recording the 
number of word occurrences within the predefined sliding 
window.   

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

God

Dios

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

0 1 2 3 4 5 6 7 8 9

x 10
5

-2

0

2

4

6

God

Dios

 
Figure 13. Times series of the number of occurrences of the 
word 'God' in English (top) and 'Dios' in Spanish (bottom) 
bible text using 6,000 words as the window size (z-normalized 
and reinterpolated to the same length).  The two time series 
are almost identical. 

The intuition behind this approach is that for each 
appearance of each word in English, there must be a 
corresponding Spanish word that also appears in the same 
vicinity in the Spanish bible text.  However, there can be 
some discrepancies in the number of words in the entire 
text as well as the position of the word within the sentence 



between the two languages.  This can be overcome by 
DTW technique.  

These suggestions are only subsets of variety of problems 

7. CONCLUSIONS AND FUTURE WORK 
h  

searchers focus on 
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that could benefit from transforming them into time series, 
which DTW could be trivially applied to.  There are still 
considerable amount of applications that are left to be 
explored. 

In t is work, we have pointed out and investigated some of
the myths in Dynamic Time Warping measure.   We 
empirically validated our three claims. 

We hope that our results will help re
more useful problems. For example, while there have been 
dozens of papers on speeding up DTW in the last decade, 
there has only been one on making it more accurate [23]. 
Likewise, we feel that the speed and accuracy of DTW that 
we have demonstrated in this work may encourage 
researchers to apply DTW to a wealth of new 
problems/domains.   

All atasets used in this paper are avai
by emailing either author. We thank Yasushi Sakurai for 
his useful comments.  We note that some of the claims in 
this paper might be controversial. We welcome comments 
and criticism, and will be happy to run experiments on your 
favorite dataset. The online version on this paper (at 
www.cs.ucr.edu/~eamonn/selected_publications.php) will 
be updated within 48 hours of any contradictory evidence 
being found.  
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1
THE DATASETS USED 

 

ave chosen seven classification dW
o

e h

standard deviation = 1) all the datasets used in this work. 

10.1 FACE DATASET 
This is a face classification problem
profiles.  We took a number
different individuals (1 female, 3 males) making different 
expressions on the face, e.g. talking, smiling, frowning, 
laughing, etc.  We then convert each head profile, starting 
from the neck area into a “pseudo time series” by 
measuring the local angle of a trace of its perimeter, as 
shown in Figure 14.  The dataset contains 112 instances in 
total with the length of each instance ranges from 107 to 
240 data points. 

  

Figure 14. Starting from the neck area, the head profile is 
converted into a "pseudo time series" 

   

10.2 GUN PROBLEM 
This dataset comes from the video surveillance domain.  
The dataset has two classes, each containing 100 instances.  
All instances were created using one female actor and one 
male actor in a single session.  The two classes are: 

Gun-Draw: The actors have their hands by their sides.  
They draw a replicate gun from a hip-mounted holster, 
point it at a target for approximately one second, then 
return the gun to the holster, and their hands to their sides. 

Point: The actors have their gun by their sides.  They point 
with their index fingers to a target for approximately one 
second, and then return their hands to their sides. 

For both classes, we tracked the centroid of the actor’s right 
hands in both X- and Y-axes, which appear to be highly 
correlated; therefore, in this experiment, we only consider 
the X-axis for simplicity. 

The overall motions of both classes are very similar.  
However, it is possible for human to visually classify the 
two classes with great accuracy, after noting that the actor 
must lift his/her hand above a holster, then reach down for 
the gun.  This action creates a subtle distinction between 
the classes as shown in Figure 15. 
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Figure 15. (left) some examples from the Gun-Draw data. 
(right) some examples from the Point data 

The dataset contains 200 instances, 100 for each class.  
Since each actor was periodically signaled every 5 seconds 
before each repetition of Gun-Draw/Point, the video clip 
(captured at 30 frames per second) was easily segmented 
into 150 data points for each instance. 

10.3 LEAF DATASET 
This dataset contains a collection of six different species of 
leaf images, including 2 genera of plant, i.e. oak and maple 
(all original images can be found at 
[http://web.engr.oregonstate.edu/~tgd/leaves/dataset/herbari



um]).  The dataset comprises four different species of 
Maple and two species of Oak, with 442 instances in total.  
We convert each leaf image into “pseudo time series” using 
similar method as the Face Dataset.  Figure 11 shows an 
example of a Glabrum maple image converted into a ‘time 
series’.  The length of each time series ranges from 22 to 
475 data points. 

10.4 SYNTHETIC CONTROL CHART 
This six-class dataset was retrieved from the UCR Time 
Series Data Mining Archive [http://www.cs.ucr.edu/ 
~eamonn/TSDMA/].  It contains 600 instances in total with 
100 instances in each class.  Each instance has the same 
length of 60 data points.  

10.5 TRACE DATASET 
This dataset is a subset of the Transient Classification 
Benchmark first introduced by Davide Roverso [25].  This 
is a synthetic dataset designed to simulate instrumentation 
failures in a nuclear power plant.  The full dataset consists 
of 16 classes, 50 instances in each class.  Each instance has 
4 features. 

For simplicity, we only use the second feature of class 2 
and 6, and the third feature of class 3 and 7 for our 

experiment.  Our dataset contains 200 instances, 50 for 
each class.  The length of each instance ranges between 279 
and 386 data points. 

10.6 TWO-PATTERN DATASET 
This four-class dataset contains 5,000 instances.  Each 
instance has the same length of 128 data points.  The 
dataset was introduced in [12].  Each class is characterized 
by the presence of two patterns in a definite order, down-
down, up-down, down-up, and up-up. 

10.7 WORDSPOTTING DATASET 
This is a subset of the WordSpotting Project dataset created 
by Rath and Manmatha [24] 

In the full dataset, there are 2,381 words with four features 
that represent each word image’s profiles or the 
background/ink transitions. 

For simplicity, we pick the “Projection Profile” (feature 1) 
of the four most common words, “the”, “to”, “be”, and 
“that”, to be used in our experiment.  “the” has 109 
instances; “to” has 91 instances; “be” has 38 instances, and 
“that” has 34 instances.  Once combined, we obtain a 
dataset of 272 instances, with the length of each instance 
ranges from 41 to 192 data points. 
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