

DTW-D: Time Series Semi-Supervised Learning from a
Single Example

Yanping Chen Bing Hu Eamonn Keogh Gustavo E.A.P.A Batista1

 University of California, Riverside
1
Universidade de São Paulo-USP

{ychen053, bhu002, eamonn}@cs.ucr.edu gbatista@icmc.usp.br

ABSTRACT
Classification of time series data is an important problem with

applications in virtually every scientific endeavor. The large

research community working on time series classification has

typically used the UCR Archive to test their algorithms. In this

work we argue that the availability of this resource has isolated

much of the research community from the following reality,

labeled time series data is often very difficult to obtain.

The obvious solution to this problem is the application of semi-

supervised learning; however, as we shall show, direct

applications of off-the-shelf semi-supervised learning algorithms

do not typically work well for time series. In this work we explain

why semi-supervised learning algorithms typically fail for time

series problems, and we introduce a simple but very effective fix.

We demonstrate our ideas on diverse real word problems.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Retrieval

– Information filtering, Selection process

Keywords
Time Series, Semi-Supervised Learning, Classification

1. INTRODUCTION
There has been an enormous interest in time series classification

in the last two decades [2][6][10]. Two related conclusions have

begun to emerge as a consensus in the community. First, while

there is a plethora of classification algorithms in the literature, the

nearest neighbor algorithm seems particularly suited to the unique

structure of time series, and virtually all competitive attempts at

time series classification use it [33]. Second, while there is also a

surfeit of possible distance measures for time series, Dynamic

Time Warping (DTW), a technique from the dawn of computing,

is exceptionally difficult to beat [6]. In particular, a recent paper

tested the most cited distance measures on 47 different datasets,

and no method consistently outperforms DTW. Thus recent

papers that claim improvements over DTW must resort to very

powerful statistical tests to demonstrate tiny improvements in

accuracy.

In the last decade, virtually all of the community has used the

UCR Archive to test their algorithms [11]. We believe that the

availability of this (admittedly very useful) resource has isolated

much of the research community from the following reality,

labeled time series data is often very difficult to obtain. For

example, in many situations, from medicine [20] to astronomy

[22], obtaining labeled data requires the time and attention of a

busy domain expert.

The obvious solution to this problem may appear to be the

application of semi-supervised learning; however, direct

applications of off-the-shelf semi-supervised learning algorithms

do not typically work well for time series. In this work we make

two related contributions. We explain why semi-supervised

learning algorithms typically fail for time series problems, and we

introduce a simple but very effective fix. While we defer a

detailed explanation of both until Section 4, we offer a simple

three sentence preview here:

Under certain assumptions, unlabeled members of a

circumscribed positive class may be closer to some unlabeled

members of a diverse negative class than to the labeled positive

data. This is true even under DTW. Nevertheless, unlabeled

positive data tend to benefit more from using DTW than unlabeled

negative examples. The amount of benefit from using DTW over

Euclidean Distance (ED) is a meta-feature that can be exploited.

We illustrate this in Figure 1 where we show the hierarchical

clustering of five objects under various measures. Two of the five

objects are randomly chosen examples (red/bold) from class 3 of

the Trace dataset [11]. The other three objects are simply random-

walk time series (blue/light).

ED

1

3

2

5

4
DTW

1

3

2

4

5
DTW-D

1

2

3

4

5

Figure 1: A complete linkage hierarchical clustering of two
items from the Trace dataset with three random walks. From
left to right, Euclidean distance (ED), Dynamic Time Warping
(DTW) and Dynamic Time Warping-Delta (DTW-D), our
proposed technique.

As we can see, Euclidean Distance does poorly here. This is not

surprising, since the Trace dataset is known to have classes that

contain exemplars that are time-warped versions of a prototypical

shape. Indeed, we see that DTW does manage to do better,

reducing the distance between Trace-1 and Trace-2. However, this

reduction is not enough; random-walk-3 is still closer to Trace-1

than Trace-2 is.

Our key observation is that moving from ED to DTW seems to

help the true class data more than the random unstructured data.

We can encode this difference/delta that DTW makes with DTW-

D, the ratio of DTW over ED. And as we see in Figure 1.right,

this does produce the correct clustering, at least in this example.

Imagine that we had been doing semi-supervised learning in this

dataset using just Trace-1 as our sole positive example. For both

ED and DTW, the very first item we added to the positive set

would have been a false positive, and it would be very difficult for

any algorithm to recover from this. In contrast, DTW-D would

have correctly suggested Trace-2 as the next item to add, and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’13, August 11--14, 2013, Chicago, Illinois, USA.

Copyright © 2013 ACM 978-1-4503-2174-7/13/08…$15.00.

mailto:permissions@acm.org

assuming only that we had good stopping criterion, we would

have done very well.

2. RELATED WORK
In the past two decades, there has been an enormous interest in

time series classification. Most research efforts leverage off the

assumption that there are large amounts of labeled training data

[24][29]. In reality, the high cost of labeling the data may render

such an assumption invalid. For example, it requires the time and

expertise of a cardiologist to annotate individual heartbeats in an

ECG data trace [3], but a single polysomnography (sleep study)

test may produce up to 40,000 such heartbeats. Given that the

acquisition of unlabeled data is trivial, there is abundance of

unlabeled data readily available. For instance, PhysioBank

contains over 36,000 recordings of digitized polysomnographic

and other physiologic signals, only a tiny fraction of which are

labeled [7]; likewise there are tens of millions of books, images,

maps and historical manuscripts available on the internet [9],

many of which could be fruitfully mined in the time series space

[26][32], if only we had more labeled data (cf. Section 6.2).

Semi-supervised learning (SSL) is a learning paradigm useful in

application domains in which labeled data are limited, but

unlabeled data are plentiful [23][8][4]. The literature offers a

plethora of SSL methods, among which, self-training is perhaps

the most commonly-used [17][27][5][34]. Self-training is a

general framework with very few underlying assumptions. In self-

training, a classifier is first trained with a small number of labeled

data. It is then used to classify the unlabeled data, and adds the

most confidently classified object into the labeled set. The

classifier re-trains itself using the new labeled set and the

procedure repeated until adding new objects to the labeled set

does not increase the accuracy of the classifier or some other

stopping criteria is met. This general review of SSL is necessarily

brief; we refer the readers to [34] and the references therein for

more details.

 Recently, some SSL techniques explicitly designed for time

series have been proposed. To our best knowledge, thus far there

are only three approaches [16][25][19]. The first paper [16]

proposed to iteratively expand the labeled set by adding the

closest object that is classified as positive to the labeled set. The

classifier considers all unlabeled data as negative, and uses the

Euclidean Distance. As we shall show, and as has been noted

elsewhere [6][33], the inferiority of Euclidean Distance to DTW is

mitigated by large training set sizes. Conversely Euclidean

Distance is much more brittle a measure than DTW for tiny

datasets, which is of course exactly the situation we face here.

Thus [25] proposed to build a SSL classifier using DTW distance.

Although moving from ED to DTW helps to improve the accuracy

of the classifier, the algorithm is still not accurate enough in most

real applications (cf. Section 6.1).

 More recently, the authors of [19] introduced a SSL technique

that interleaves exemplar selection with feature selection, using

the work of [16] as a starting point. The method of [19] improves

the SSL algorithm, but still uses standard distance measures

(Euclidean Distance). As such it is orthogonal to our contribution,

which demonstrates that a subtle change in the distance measure

dwarfs all possible changes in the algorithms.

 In retrospect, only three research efforts on SSL for time series is

a surprisingly small number, given that both SSL and time series

classification are very popular research topics. In this work we

venture to claim that we understand why progress in this area has

been so slow. In brief, our claim is that there is little utility in

tweaking the architecture of the SSL algorithms for time series, as

they are all condemned to perform poorly if they use DTW or

Euclidean Distance. The contribution of this work is to show a

simple but effective fix that will allow the existing SSL methods

to work very well for time series. It is important to recognize that

we are not claiming a contribution to SSL algorithms per se.

Rather we will show that changing the distance function used in

SSL algorithms can produce a remarkable improvement for time

series.

3. DEFINITIONS AND NOTATIONS
We begin by introducing all necessary notation and definitions.

Although the algorithm presented in this work is applicable to all

SSL methods, for ease of exposition, we present just the notations

for Positive Unlabeled learning (PU learning), which is a

collection of SSL methods that trains a classifier based on the

positive (labeled) dataset and the unlabeled dataset only.

Definition 1: P is the set of training data, including all

positively labeled objects.

P initially contains only a small number of labeled objects from

the positive class, perhaps as few as one. As learning proceeds,

the size of P increases as some of the previously unlabeled objects

in U are labeled as positive and moved to P. Thus, P eventually

contains both the original labeled objects, as well as the objects

chosen by the classifier from the unlabeled dataset.

Definition 2: U is the set of unlabeled data.

Objects in dataset U can be from the positive class or the

negative class. It is generally expected that the vast majority of U

is from the negative class [34]. The goal of SSL is to map all the

objects in U to the correct class so that the classifier is accurately

trained with the classified objects. We denote individual time

series objects from these two sets with subscripts, thus the ith time

series object in P is denoted Pi.

Rather than making a onetime explicit decision as to which

objects from U should be added to P, most algorithms simply

iteratively add the next most likely candidate [27][18][34]. This

means that we must also specify a stopping criterion for the

algorithm to predict that it has added all the unlabeled positive

objects [34]. The problem of finding a good stopping criteria is an

open problem, with tentative solutions based on MDL, Bayesian

information criterion, bootstrapping [28][34], etc. As this issue is

somewhat orthogonal to our contribution, we simply gloss over it

here. However, note that as we shall show in the empirical

section, the difference our algorithm makes completely dwarfs

any considerations of the optimal stopping criteria. That is to say,

even if we did a post-hoc discovery of the optimal stopping

criteria for the state-for-art rival, our method would have much

higher accuracy for a huge range of “sub-optimal” stopping

values.

For brevity, we do not explicitly define time series, Euclidean

distance or Dynamic Time Warping, which in any case are rather

well known. Instead we use the notation from [6], a heavily cited

survey paper on these topics. We do note however the following

useful fact, that the ED is an upper bound to the DTW. That is to

say, for all x, y, we have DTW(x,y) ≤ ED(x,y).

4. DTW-D
To explain our observations and our key insight, we consider a

concrete example. Let us imagine that we have target class of

objects that are defined by having three periods of a sine wave.

The instances may be corrupted by warping, different dampening

rates, noise, minor changes to the starting phases etc, but as shown

in Figure 2 they are unambiguously recognizable to the human

eye.

In this example the negative class consists of just a constant line

with the same mean as the positive class
1
, corrupted by some

noise.

P

U
U1

U2

P1

0

1

0

1

Figure 2: top) A labeled dataset P that consists of a single
object P1. bottom) The unlabeled dataset consist of a single
true negative U1 and a single true positive U2.

Suppose we ask any SSL algorithm to choose one object from U

to add to P using the Euclidean distance. As we can see in Figure

3, U1 is much closer to P1 than U2 is, thus our SSL algorithm

would do poorly here.

U2

P1

U1

P1

Figure 3： The Euclidean distance between two time series is

proportional to the length of the gray hatch lines. It is easy to
see that ED(P1,U2) > ED(P1,U1) .

In retrospect this is not surprising. The brittleness of Euclidean

distance to even small amounts of warping is well known, and

explains the ubiquity of DTW in most research efforts [13][6][26].

By finding the optimal “peak-to-peak/valley-to-valley” alignment

between two time series before calculating the distances, DTW is

largely invariant to warping, as shown in Figure 4.

U2

P1

U1

P1

Figure 4: The DTW distance between two time series is
proportional to the y-axis length of the gray lines.

Unfortunately, while DTW helps significantly, as shown in

Table 1, it is not enough: U1 is still closer to P1 than U2 is, and

the SSL algorithm would still pick the wrong object to move from

U to P. Why did DTW not solve our problem? While DTW is

invariant to warping, there are other differences between P1 and

U2, including the fact that the first and last peaks have different

heights. DTW cannot mitigate this.

Table 1: The Distance Matrices for the Three Objects in
[P,U], under both the ED and DTW Distances

 ED DTW

 P1 U1 U2 P1 U1 U2

P1 0 6.2 11 0 5.8 6.1

U1 0 6.8 0 6.5

U2 0 0

Moreover, the problem is compounded by the fact that U1 is a

“simple” shape. As pointed out in a recent paper, simple shapes

tend to be “close to everything” [2]. Figure 3 gives a hint as to

why this is true. The flat shape of U1 means that no part of it is

more than 0.5 away from any part of P1. In contrast where P1 and

1 In Figure 2 the objects are shown to the same scale. They are not

normalized for visual clarity. However, our analysis can be

demonstrated for z-normalization, min/max normalization etc.

U2 are out of phase, and the Euclidean distance is forced to match

a peak to a valley, the distance can be as much as 0.8. This is why

smooth, flat or least very slowly changing time series tend to be

(subjectively) surprisingly close to other objects [2]. This is a

grave disappointment  this seems to be a dataset for which DTW

is ideally suited, yet DTW fails here.

However, an examination of distance matrices shown in Table 1

does reveal an interesting fact. Moving from ED to DTW barely

changed the distance between P1 and U1, but it did greatly affect

the distance between P1 and U2. We can codify this with the

following observation:

Observation 1: If a class is characterized by the existence of

intra-class warping (possibly among other distortions [2]), then

we should expect that moving from ED to DTW reduces distances

more for intra-class comparisons than interclass comparisons.

To see this more clearly, we can consider the ratio of distance

under DTW and ED as shown in Table 2.

Table 2: The Ratio of the ED and DTW Distances Shown
in Table 1. This ratio is called DTW-D

 DTW/ED DTW-D = DTW/ED

 P1 U1 U2 P1 U1 U2

P1 0 5.8/6.2 6.1/11 0 0.93 0.55

U1 0 6.5/6.8 0 0.95

U2 0 0

Note that if we consider the DTW-D ratios, we finally have P1

and U2 appear closer than P1 and U1. Figure 5 visualizes all three

distance matrices with a complete linkage clustering.

ED DTW DTW-D

Figure 5: A visualization of the three distance matrices shown
in Table 1 and Table 2 under complete linkage hierarchical
clustering.

Note that there is one minor special case we need to consider. If

the ED is zero, then DTW-D would give a divide-by-zero error.

We simply define this special case as having a value of zero. If the

ED distance (and therefore also the DTW distance) between two

objects is zero, it would be perverse to call them anything but the

same class. This is a moot point, as we never expect observe

perfect duplicates for real-values objects.

We have now concretely seen the problem with using ED/DTW

for SSL, and our suggested fix, on a toy problem. However, it is

natural to ask when this phenomenon actually occurs in the real-

world, and would be amenable to our DTW-D solution. In the

next section, we explicitly discuss our assumptions about when

our ideas can help.

4.1 Two Key Assumptions
We do not claim our ideas will help for all time series problems.

In particular, we are making two explicit assumptions which we

will enumerate and discuss below. We will later show that these

assumptions are very often true in real world domains.

Assumption 1: The positive class (the target concept) contains

time warped versions of some platonic ideal (some prototypical

shape), possibly with other types of noise/distortions.

Note that this assumption was true of our toy example in Figure

1. While all members of the Trace dataset have some noise, as

shown in Figure 6, the most obvious variability between instances

is in the timing of the onset of the “ramp-up” and the “oscillation”

patterns. Dynamic time warping is able to compensate for and

remove this variability.

ED

DTW

Trace-1

Trace-2

Trace-1

Trace-2

ramp up

oscillation

Figure 6: The two examples from “Trace” shown in Figure 1
compared under ED and DTW. In this plot, the distances are
proportional to the variance of the y-axis lengths of the hatch
lines. Thus the longer and shorter hatch lines in ED contribute
to its large distance, whereas the y-axis lengths for DTW are
almost the same, producing a small distance.

This ability of DTW to compensate for the inherent warping in

this class can produce a dramatic difference in classification

accuracy. In the UCR Archive dataset the four-class Trace data is

provided with a 100/100 train test split. The ED error rate on this

dataset is 0.24, whereas DTW has an error-rate of 0.0. Since the

exact same splits and classification algorithm (1NN) were used,

and zero parameters are tuned for either approach, all of this

difference can be attributed to the superiority of DTW over ED.

Assumption 2: The negative class may be very diverse, and

occasionally by chance produces objects close to a member of

the positive class, even under DTW.

Empirically, negative classes do tend to be diverse [15][30]. For

example, there are only a limited number of ways an audio snippet

can sound like a mosquito, but there are infinite ways a sound can

be a non-mosquito (c.f. Section 6.1). Once again, this assumption

was illustrated by our toy example in Figure 1. The random walk

class is naturally very diverse, and it can (and did) produce an

instance that is closer to Trace-1 than the other member of the

positive class (Trace-2).

It is our central claim that if the two assumptions are true for a

given problem, our novel scoring function DTW-D will be better

than either ED or DTW. As these are the central assumptions, we

will next consider when we might expect them to be true.

4.2 Observations on our Key Assumptions
In the following sections we consider the implications of our

assumptions for the task at hand, and empirically investigate

whether these assumptions are warranted.

4.2.1 Assumption 1 is mitigated by large amounts of
labeled data

If we have a large enough set of labeled examples, we expect

that simple DTW or even ED will work very well. Our noted

weakness of semi-supervised learning happens when the nearest

instance to a labeled positive exemplar is a negative instance.

With more labeled positive instances this becomes less and less

likely to happen. To see this, we performed an experiment that

generalizes the toy example in Figure 1. We created an unlabeled

dataset U that contains just one exemplar from Class 3 of Trace,

and 200 random walks. We then consider the question of what is

the probability that the first object added to the labeled dataset P

is that sole true positive in U, for various sizes of P from 1 to 10

(i.e. P has 1 to 10 true members from Trace). To smooth out our

estimate, we averaged over 1,000 runs. As we can see in Figure 7,

this probability does indeed increase as |P| gets larger.

This plot suggests that if we had a large enough P, then DTW-D

would offer only a small advantage over ED, and a barely

perceptible improvement over DTW. However when P is small,

DTW-D is dramatically better than both ED/DTW, supporting our

assumption.

P
ro

b
a

b
ili

ty

1 2 3 4 5 6 7 8 9 10

Number of labeled objects in P

0.5

0.6

0.7

0.8

0.9

1

Figure 7: The probability that the first object added to P is a
true positive as the number of labeled objects increases, for
three distance measures.

4.2.2 Assumption 2 is compounded by a large

negative dataset
In a sense this observation is a direct corollary of the above. If

the negative class is random and/or diverse, then the larger the

negative class is, the more likely it is that it will produce an

instance that just happens to be close to a labeled positive item.

To see this, we again perform an experiment that generalizes

our toy example. We created a dataset P that contains just one

exemplar from Class 3 of Trace. Once again U contains a single

true positive, but this time we vary the number of random walks

from 100 to 1,000. As before we measure the probability that the

first object added to P is the true positive, averaged over 1,000

runs. Figure 8 shows the results.

In most semi-supervised settings, we expect |U| to be many

orders of magnitude larger than the |P|, thus this assumption is

almost always true in real settings.

100 200 300 400 500 600 700 800 900 1000
0.4

0.5

0.6

0.7

0.8

0.9

1

ED

DTW

DTW-D

P
ro

b
a

b
ili

ty

Number of negative objects in U
Figure 8: The probability the first object added is a true
positive as the number of true negatives in U increases.

Again this figure strongly supports our assumption. When we

have relatively few true negatives, all methods work well.

However, as the number of true negatives in U increases, ED

rapidly deteriorates. In contrast, DTW deteriorates more slowly.

Remarkably, however, DTW-D is completely unaffected by a

surfeit of true negatives, maintaining perfect accuracy.

4.2.3 Assumption 2 is compounded by low complexity

negative data
Our final observation requires us to define what is meant by the

“complexity” of a time series. Our remarks here are inspired by

[2], which makes a similar observation, but in a very different

context. As noted in [2], while a “complex” time series is hard to

define, it is something we can intuitively understand. For our

purposes, let us say that a complex time series is one that is not

well approximated by few DFT coefficients or by a low degree

polynomial.

The problem caused by low complexity data is that it is “close

to everything”, and as such, the chances that at least one instance

from the negative class is closer to an exemplar from P than a true

positive is much greater if some or all the negative data has low

complexity.

To see this we can repeat the experiment shown in Figure 1

after replacing the random walk series by randomly generated

third-degree polynomials.

1

3

4

2

5

1

4

2

3

5

1

2

4

3

5

ED DTW DTW-D

Figure 9: The experiment shown in Figure 1 after replacing
the three random walks with three random third-degree
polynomials.

The results here are visually jarring. It is important to emphasize

that this is not the result of an error, contriving of the data, or

crippling the ED/DTW in any way. It is simply the case that low

complexity time series have a tendency to have a small distance to

all other objects.

Apart from [2], other works have indirectly noted this

phenomenon. For example, [12] notes that if we average all

subsequences in a long time series, we will get a constant line,

which is surely the least complex time series under any definition.

Implicitly, this means that a constant line is the time series with

minimal expected distance to any randomly chosen time series.

Thus, if the negative class is complex, we should expect the

DTW or even ED will work well for semi-supervised learning. To

see this, we can repeat the experiment shown in Figure 1/Figure 9

after replacing negative class with pure random vectors. Note that

while we may consider random vectors as “noisy”, it is incidental

to the point that they are complex.

1

2

3

5

4

1

2

3

4

5

1

2

3

4

5
ED DTW DTW-D

Figure 10: The experiment shown in Figure 1/Figure 9 after
replacing the negative class with random vectors.

Figure 10 demonstrates that when the unlabeled data are

complex, even ED has little trouble in grouping the positive class.

Beyond the visual evidence shown in Figure 9 and Figure 10,

we can test our observation with another simple experiment. Once

more we perform an experiment that generalizes our toy example.

We created a labeled dataset P that contains just one exemplar

from Class 3 of Trace. This time U contains one true positive and

200 random time series that are approximated by k non-zero DFT

coefficients, with k ranging from 5 to 20. Figure 11 shows some

examples of time series that are approximated by 5 and 20 non-

zero DFT coefficients respectively.

0 100 200 300
0

0.5

1

0 100 200 300
0

0.5

1

Figure 11: left) Two time series examples that are created
using 5 non-zero DFT coefficients. right) Two time series
examples that are created using 20 non-zero DFT coefficients.
Clearly the latter are more complex.

As before we measure the probability that the first object added to

P is a true positive, averaged over 1,000 runs. Figure 12 shows the

results.

Once again this experiment strongly supports our hypothesis.

Low complexity items in the negative class make SSL more

difficult for all distance measures, but using DTW-D does greatly

mitigate the problem.

0.4

0.5

0.6

0.7

0.8

0.9

5 10 15

1

P
ro

b
a

b
ili

ty

Number of non-zero DFT coefficients
20

Figure 12: The probability the first object added is true
negative as the negative objects increase in complexity.

4.2.4 Implications of observations/assumptions
The observations and experiments in the previous sections tell us

when we should expect the DTW-D method to help. We should

not expect DTW-D to help with the classic time series

classification problems as exemplified by the UCR archive [11].

These datasets typically do have a relatively large set of label

positive data (at least dozens), and typically do not have one class

with much lower complexity and/or much higher diversity than

the other classes.

In contrast, it is easy to see that all our assumptions mesh

perfectly with most SSL assumptions [28][27][23]:

 We do have very small (as few as one) positive examples (cf.

Section 4.2.1).

 We do have relatively large amounts of negative data. For

example, when trying to learn the vacuum-cleaning

concept. (cf. Section 6.3), we must expect that most people

spend less than 0.01% of their time vacuuming. Likewise, if

we monitor audio streams, most sounds we hear are not

insects (cf. Section 6.1) etc.

 We do have at least some low complexity negative instances

(cf. Section 4.2.3). This is true because the negative class is

usually highly variable. For human activity monitoring, there

are likely moments when a person is sitting still, producing

very low complexity data (cf. Section 6.3)

As we shall show in Section 6, SSL problems in very diverse

domains fit into our assumptions.

5. ALGORITHM DETAILS
 While we believe that our ideas can be applied to essentially any

time series SSL learning framework, simply by replacing the ED

or DTW distance calculations with DTW-D. However, for

concreteness, in this section we will explicitly define the exact

SSL algorithm used in our experiments. Note that we took pains

to choose a simple SSL algorithm here, because as we noted

before, we are not claiming a contribution to SSL per se. Rather,

our contribution is a simple but effective fix to a problem that will

otherwise plague any attempt at SSL for time series. Our focus in

this work is to demonstrate the effectiveness of our ideas, even

with a simple SSL algorithm.

Note that we are assuming that whatever “flavor” of SSL is, the

underlying classification algorithm will use Nearest Neighbor

(NN) [6]. This is because, in spite of two decades of

experimentation with neural networks, decision trees, Bayesian

methods [29] etc., there is strong empirical evidence that nearest

neighbor algorithms are the best approach for time series (see [33],

and the references therein and thereof).

5.1 DTW-D Algorithm
As hinted in Section 4, our proposed distance measure DTW-D

is accomplished with a simple equation:

-

(1)

Where is an extremely small positive quantity used to avoid

divide-by-zero error. We reiterate that is not parameter of our

system, it is device to enable a terser definition.

As shown in Table 3, the computation of DTW-D can be

achieved on two series x and y using one line of matlab code:

Table 3: Our Proposed Distance Measure

function distance = DTW-D(x, y)

 distance = DTW(x,y) / (ED(x,y) + eps);

5.2 Training the Classifier
The classifier used is a one-class classifier [30]. The training

dataset contains only the objects from the positive class. The goal

of the classifier is to accurately extract all the positive class

objects from the unlabeled dataset [15].

The data used to train the classifier includes a labeled dataset P

and an unlabeled dataset U. In the beginning, there is as few as

one labeled object in P. As shown in Table 4, the classifier trains

itself through the following steps:

Step 1: The classifier is trained on the initial labeled dataset,

which contains as few as only one object from the positive class.

Note that the labeled dataset is augmented gradually during the

training process.

 Step 2: For each object in the unlabeled dataset U, we compute

its distance to the labeled dataset using DTW-D (Line 10 to Line

13). An object’s distance to the labeled dataset is the distance of

the object to its nearest neighbor in the labeled dataset.

Step 3: Among all the unlabeled objects, the one we can most

confidently classify as positive is the object that is closest to the

labeled dataset (Line 3). The object is added into the labeled

dataset (Line 4) and removed from the unlabeled dataset (Line 5).

With the labeled dataset being adjusted, we return to Step 1 to re-

train the classifier. The procedure repeated until some stopping

criterion is met.

The intuition behind the algorithm is straightforward. The

labeled dataset defines the concept space for the positive objects.

The object closest to the labeled dataset is deemed to have the

highest probability to belong to the positive class.

Table 4: Time Series Semi-supervised Learning Algorithm

Function P = Train_Classifier (P, U, distance, N)
Input: P, the initial training dataset with a single training object

 U, the unlabeled dataset

 distance, the distance function

 N, the number of objects to be moved from U to P

Output: a trained classifier (for a NN classifier, it is the learned P)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

function P = Train_Classifier (P, U, distance, N)

 for iterations = 1 : N

 NNObject = findUnlabeledNN(P, U, distance);

 P = [P, NNObject]; // update P

 U = U - NNObject ; // update U

end

return P;

end

function NNObject = findUnlabeledNN (P, U, distance)

 Dist = zeros(1, |U|);

 for i = 1 : |U|

 Dist (i) = minj = 1,…|P| distance(Ui,Pj);

 end

 [~, NN_index] = min(Dist); // closest to P

NNObject = UNN_index ;

 return NNObject;

end

At the first blush, our algorithm to train the classifier seems

quite similar to the algorithm used in [16]. However, a more

careful introspection would reveal that they are fundamentally

different. The classifier used in [16] is a binary classifier, with all

the unlabeled objects regarded as training examples from the

negative class, whereas our classifier is a one-class classifier with

no training examples from the negative class. The advantage of

our classifier is that it makes much more realistic assumptions

about how SSL work in practice. As noted elsewhere, the negative

class is typically not a single well-defined concept as [16] and

others assume, rather it tends to be an extremely heterogeneous

class. To give an example in a domain we consider, there are very

limited ways humans can perform vacuum cleaning, but

there are an infinite number of possible human activities that are

not vacuum cleaning.

As noted above, in this work we gloss over the orthogonal

problem of finding a good stopping criterion. In our experimental

section, the training process stops when the unlabeled dataset U is

exhausted of true positives by DTW-D.

5.3 Evaluating the Classifier
To evaluate the accuracy of all classifiers, we test the classifier

using data that is “hidden” during the training stage. The test

(holdout) dataset contains some positive class objects and many

other objects. The goal of the classifier is to accurately extract all

the positive class objects from the test dataset. We use the classic

notion of precision and recall [31] to measure the performance of

the classifier. If an instance in the test dataset is top K closest to

the labeled dataset, the instance is classified as positive, otherwise

it is negative. K is the number of positive objects in the test

dataset. Thus we can count the number of true positives out of K

classifications.

Note that with this evaluation method, the value of recall equals

to the value of precision (because the number of false negatives is

the same as the number of false positives). For brevity, we report

only the precision here. The computation of precision is shown in

Equation (2), where Npositive denotes the number of true positives

among the top K closest instances.

positiveN
precision

K
 (2)

6. EXPERIMENTAL EVALUATION
We begin by noting that all experiments (including all the

figures above) are completely reproducible. All experimental code

and data (and additional experiments omitted for brevity) are

archived in perpetuity at [36].

For all experiments, we divide the data into two mutually

exclusive datasets: the learning dataset and the holdout dataset.

 Learning dataset: The learning dataset is used in the SSL

process to train the classifier. It is divided into the labeled

dataset P and the unlabeled dataset U. The labeled dataset

includes a single positive example, which is a randomly

selected true positive object from the learning dataset. The

rest of objects in the learning dataset are regarded as

unlabeled objects and are included in U.

 Holdout dataset: The holdout dataset is used to test the

accuracy of the learned classifier. Objects in the holdout

dataset are hidden from the SSL process.

The performance of the trained classifier can be sensitive to the

initial training (labeled) example. To mitigate this sensitivity, for

each experiment, we repeat the training process by each time

starting from a different training example. In particular, we allow

each positive object in the learning dataset to be used as the initial

training example once, and average the accuracy of the classifier

over all runs.

To show the changes in the performance of the classifier as the

labeled dataset P is gradually augmented, we show the average

accuracy for each size of P. That is, we evaluate the classifier

using the holdout dataset each time an unlabeled object is added

to P. Thus all figures shown below show the holdout accuracy.

For each experiment, we compare the performance of three

different classifiers, the classifier using ED, the classifier using

DTW, and the classifier using DTW-D. All three classifiers are

trained using the same SSL algorithm as shown in Table 4. The

only difference among them is the distance function used. As we

shall show, by simply changing the distance function from ED or

DTW to DTW-D, we can improve the performance of SSL

algorithms for time series by a significant amount.

In all our experiments, DTW-D learns from a single positive

example. There is nothing about our technique that requires this.

We simply wish to show we can learn under the most hostile

assumptions.

We also compare our idea with rival time series SSL approaches

[16][25]. In order to be scrupulously fair to the rival approaches,

we allow them to “cheat” by starting with more training examples.

As we shall show, even given this severe disadvantage, our

algorithm still significantly outperforms the rival approaches.

6.1 Insect Wingbeat Sound Detection
In this experiment, we would like to detect insect wing-beat

sounds from unstructured audio streams. The insect used in this

experiment is Culex quinquefasciatus female. The wingbeat

sounds are acquired using the sensors described in [1], and the

data stream also contains diverse negative data, including

speech/music etc.

For this experiment, we randomly select 1,000 insect sounds

and 4,200 non-insect segments. The length of each sound snippet

is 0.1 second. All the sound data are first converted into “time

series” using DFT [1]. Based on entomological advice, we

preserve only the coefficients corresponding to the frequency

range between 200 and 2,000, because all other coefficients are

unlikely to be the result of insect activity.

We divide the time series dataset into two parts: a learning

dataset with 500 insect sounds and 2000 non-insect sounds, and a

holdout dataset with 500 insect sounds and 2,200 radio sounds.

The SSL process is repeated 500 times, each time starting with a

different training example. For each run, we trained three

classifiers, the NN classifier using ED distance, the NN classifier

using DTW and the NN classifier using DTW-D. The average

performance of the three classifiers over 500 runs for each size of

P is shown in Figure 13.

0 100 200 300 400

0

0.2

0.6

0.8

1

0.4

ED

DTW

DTW-D

Number of labeled objects in P

A
c

c
u
ra

c
y
 o

f c
la

ss
if
ie

r

Figure 13: The average accuracy of the three classifiers for
different size of P, evaluated using the holdout dataset.

The results are impressive, given that the default accuracy is just

20%. With DTW-D, we can converge on greater than 95%

accuracy. The DTW-D classifier consistently outperforms the

other two classifiers across the entire range of values for P. Note

that, after the size of P reaches 150, the accuracy of the ED

classifier begins to decrease. As we might expect, the DTW

classifier’s invariance to warping allows it both to start from a

higher baseline, and keep improving for a longer time. However it

too is doomed to eventually add true negatives into P and begin a

rapid decrease in performance.

6.1.1 Why is DTW-D better?
While DTW-D is clearly better than its rivals, Figure 13 does

not tell us why. In particular we may ask if it is because: DTW-D

generally selects better labeled objects during the SSL process, or

because DTW-D selects better top K nearest neighbors from the

holdout dataset in the classifier’s evaluation process (recall that K

is the number of true positives in the holdout dataset).

To answer this question, we conducted a combinatorial

experiment in which we crippled DTW-D independently in each

phase (training/evaluating).

For example, to see if DTW-D selects better labeled objects

than DTW, we train two NN classifiers, one using DTW-D and

one using DTW. We then evaluate both classifiers using the same

holdout dataset. In the evaluation process, we use the same

distance function (DTW) to find the top K nearest neighbors for

both classifiers. In this way, we ensure that the only difference

between the two classifiers is the use of two different distance

functions in the training process.

The experiment to see if DTW-D is better at selecting the top K

nearest neighbors during evaluation process is similar. This time,

we train only one classifier, the NN classifier using DTW. In the

evaluating process, we use two different distance functions, DTW

and DTW-D, to find the top K nearest neighbors for this classifier.

In this experiment, the labeled dataset learned from the training

process is the same. The only difference is the use of different

distance functions in the evaluation process.

 Figure 14 shows the results of the combinatorial experiment for

this dataset.

0 100 200 300 400

0.2

0.6

1

DTW

DTW-D

Number of labeled objects in P

A
c
c
u
ra

c
y

DTW-D

ED

0 100 200 300 400

0

0.5

1

0 100 200 300 400

0.2

0.6

1

DTW

DTW-D

Number of labeled objects in P

A
c
c
u
ra

c
y

0 100 200 300 400

0

0.5

1 DTW-D

ED

Figure 14: top) Comparison of DTW-D with DTW / DTW-D
with ED, to see if DTW-D helps the training process by
selecting better exemplars. bottom) Comparison of DTW-D
with DTW / DTW-D with ED, to see if DTW-D helps the
evaluating process by selecting better top K nearest neighbors.

The results show that DTW-D is superior to ED and DTW in

both the training (exemplar choosing) and evaluation (the later

classification) processes. The results shown in Figure 14 are

generally true for all the experiments done in this work. For

brevity, we omit these results for the following applications, but

archive them in [36] for interested readers.

6.1.2 Comparison to rival methods
 We compare our algorithm with the widely-used rival

approaches that are specially designed for time series [16][25]. In

the comparison, we favor our rival approaches by offering them

with fifty more initial labeled examples. That is, through the entire

range of comparison, our rivals always have fifty more labeled

objects in their labeled dataset than our method. Recall that our

algorithm starts with a single labeled example, thus the rival

methods have a fiftyfold advantage here. Figure 15 shows the

results for this dataset.

0 100 200 300 400

0.7

0.75

0.8

0.85

0.9

0.95

1 Both rivals start with 51 labeled examples

A
c

c
u

ra
c

y

Number of objects added to P

DTW-D starts
with a single
labeled
example

Wei’s method

Ratana’s method

Gray curve: The algorithms have stopped
adding objects to the labeled set

Figure 15: Comparison of our SSL method using DTW-D with
two rival methods in the literature. The curves show the
average performance of classifiers over 100 runs

 As we can see, our method was not as good as the rivals at the

beginning. This is hardly surprise given that the rival methods had

fifty times as many labeled objects. However, using DTW-D, our

method intelligently selects objects from the unlabeled dataset U

to expand the labeled set P. After adding just nine objects, we beat

Wei’s method. This is very impressive because this happened

when we have only ten labeled objects while our rivals have sixty.

In other words, we evaluate our classifier with the holdout dataset

with only ten labeled objects while our rivals have sixty labeled

objects. We are doing better here because while both methods

have added nine objects, DTW-D made better choices of what to

add. Ratana’s method is beaten after adding 21 objects.

 In addition, as can be seen from Figure 15, our method

continues to do better after we beat the rivals, which implies that

whatever stopping criterion is used, we will always do better. In

this example, Wei’s method stops after adding 103 objects.

Ratana’s method stops after adding 62 objects. No matter if we

stop at 62 or 103 or any other position greater than 21, we are

always better than the rivals.

It might be imagined that the two rival methods [16][25] do

(eventually) make better decisions about which objects to add, but

are crippled by too conservative a stopping criteria. However, to

be clear, this is not the case. When the two algorithms terminate,

they have labeled everything in the learning dataset. Thus, there

are no actions (wise or unwise) left for them to perform.

 In addition to [16][25], there is only one other semi-supervised

approach for time series that we are aware of. In [19], the authors

introduce a technique that interleaves exemplar selection with

feature selection. We do not compare to this work for the

following reasons: The work assumes that the positive class

objects are similar to each other, and the negative class objects are

similar to each other. For this reason they test on a subset of the

UCR archive datasets, with one class acting as P and another class

acting as U. This is in sharp contrast to our more relaxed

assumption that only positive class objects are similar to each

other. We make no such assumptions about the negative class.

Our initial attempts to test their algorithm with our assumptions

(the authors generously donated their code), yielded very poor

results, but in fairness, the authors made no claims about the

utility of their ideas for our problem statement/assumptions.

The comparison results shown in Figure 15 are generally true

for all experiments done here. For brevity, we omit these results

for the following applications, but archive them in [36] for

interested readers.

6.2 Historical Manuscript Mining
We can apply “time series” SSL to detect particular image

patches in historical manuscripts [32]. These manuscripts often

are hand colored over years, thus some warping is needed to

detect the similarity of the (“drifting”) color distributions, as

shown in Figure 16.

The task in this application is to detect examples of the Fugger of

the Deer heraldic shield from a huge manuscript [35]. Data used in

this experiment includes 67 positive Fugger shields and 828

negative patches selected from the same manuscript [35]. Each

image patch is converted to a RGB color histogram, which is

normalized using sum-to-one normalization to eliminate the

variability of image size. Figure 16.right shows two examples of

the converted color histograms.

Red Green Blue

Figure 16: left) A page from a 16th century text [35] shows
three heraldic shields including that of Fugger vom Reh
(Fugger of the Deer) granted to Andreas Fugger in 1464.
right) Two additional examples of the shield from the same
text have been converted to RGB color histograms and
compared using DTW.

Again, we first divide the data into two datasets: a learning

dataset with 16 positive objects and 207 negative ones, and a

holdout dataset with 51 positive objects and 621 negative ones.

We repeat the SSL process 16 times, each time starting from a

different training seed. Figure 17 shows the averaged holdout

accuracy of the three classifiers for different sizes of P.

0 2 4 6 8 10 12 14 16

0.5

0.6

0.7

0.8

0.9

1

ED

DTW

DTW-D

Number of labeled objects in P

A
c

c
u

ra
c

y
 o

f c
la

ss
if

ie
r

Figure 17: The average accuracy of the three classifiers for
different size of P, evaluated using the holdout dataset.

The default holdout accuracy is 51/672, which is about 7.6%.

With DTW-D, we can achieve more than 90% accuracy. The

performance of the DTW classifier is much better than the ED

classifier, which is not surprising since, as we noted before, there

is clearly some warping in the color distributions of objects

belonging to a same class.

Note that in Figure 17, there is a rapid decrease in the accuracy

of the ED classifier when the size of P reaches 12. With

inspection we find this decrease is caused by the first false

positive that is added into P at the point (on average). This false

positive object in P corrupts the concept of the positive class,

resulting in more negative objects added to P, and thus,

decreasing the classifier’s accuracy. Although the DTW

classifier’s invariance to warping enables it to have a higher

accuracy as well as to keep improving for a longer time, it too

experiences a rapid decrease when the size of P reaches 14, where

it (on average) mistakenly accepts its first true negative.

6.3 Activity Recognition
We finally consider a widely studied benchmark dataset that

contains data of 18 different activities, such as running, rope-

jumping, ironing, vacuum-cleaning, performed by 9

subjects wearing 3 inertial measurement units (IMUs) [21]. We

randomly pick one such activity as the positive class and treat the

rest as negative.

Figure 18 shows the results for an example experiment where

vacuum cleaning is considered as the positive activity. We

randomly select 400 positive segments and 1,600 negative ones

from the dataset, and divide the selected data into two datasets,

the learning dataset with 100 positive objects and 400 negative

objects, and the holdout dataset with 300 positive objects and

1,200 negatives. The SSL process is repeated 100 times, each time

starting from a different training seed. The results show that the

DTW-D classifier both starts from a higher baseline and continues

to improve over the entire range of values. In contrast, both ED

and DTW start from a lower baseline and eventually get worse.

We remind the reader that as with all experiments in this work,

the three lines in this figure are based on identical data, identical

conditions and identical algorithms. The only difference is the

distance measure used, thus we can safely attribute all

improvement observed to DTW-D.

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

ED

DTW

DTW-D

Number of labeled objects in P

A
c

c
u

ra
c

y
 o

f c
la

ss
if
ie

r

Figure 18: The average accuracy of the three classifiers for
different size of P, evaluated using the holdout dataset.

7. CONCLUSION AND FUTURE WORK
We have introduced a simple idea that dramatically improves

the quality of SSL in time series domains. We have conducted our

experiments such that all improvements observed can be only

attributed to the use of DTW-D.

Our work has the following advantages: It is completely

parameter-free, and thus requires no tuning/tweaking. It allows the

use of existing state-of-the-art indexing methods and fast

similarity search methods [6]. The time and space overhead are

inconsequential, as is the coding effort; requiring only a single

line of code to be changed. While we choose the simplest SSL

method to demonstrate our ideas, they can trivially be used with

any SSL algorithm.

Future work includes revisiting the stopping criteria issue in

light of DTW-D, and considering other avenues where DTW-D

may be useful.

ACKNOWLEDGEMENTS
We gratefully acknowledge funding from NSF IIS-1161997,

Vodafone, FAPESP-2012/07295-3, and all the data donors.

8. REFERENCES
[1] G. Batista, E. J. Keogh, A. Mafra-Neto, E. Rowton, SIGKDD demo:

Sensors and Software to allow Computational Entomology, an
Emerging Application of Data Mining. KDD'11: 761-764, 2011.

[2] G. Batista, X. Wang, E. J. Keogh, A Complexity-Invariant Distance
Measure for Time Series, SDM'11: 699-710, 2011.

[3] P. Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of
heartbeats using ECG morphology and heartbeat interval features,
IEEE Trans Biomed Eng, 51: 1196–1206, 2004

[4] S. Cheng, Y. Shi, Q.Qin, Particle swarm optimization based semi-
supervised learning on Chinese text categorization, CEC: 1-8, 2012

[5] M. David, C. Eugene, Johnson. Mark, Effective Self-Training for
Parsing, HLT-NAACL: 152-159, 2006

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. Keogh,
Querying and mining of time series data: experimental comparison
of representations and distance measures, PVLDB 1(2): 1542-1552,
2008

[7] A. Goldberger, et al. PhysioBank, PhysioToolkit, and PhysioNet:
New Research Resource for Complex Physiologic Signals,
Circulation 101(23): 2000

[8] M. Guillaumin, J. Verbeek, C. Schmid, Multimodal semi-supervised
learning for image classification, CVPR: 902-909, 2010

[9] M. Herwig, Google's Total Library: Putting the World's Books on
the Web, 2007

[10] B. Hu, Y. Chen and E. Keogh, Time Series Classification under
More Realistic Assumption, SDM, 2013

[11] E. J. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, C. A.
Ratanamahatana, C. A. (2011). The UCR Time Series
Classification/Clustering Homepage

[12] E. J. Keogh, J. Lin, Clustering of time-series subsequences is
meaningless: implications for previous and future research. KAIS
8(2): 154-77, 2005

[13] E. J. Keogh, W. Li, X. Xi, S. Lee, M. Vlachos, LB_Keogh Supports
Exact Indexing of Shapes under Rotation Invariance with Arbitrary
Representations and Distance Measures, VLDB : 882–893, 2006

[14] S. Lenser, M. Veloso, Non-Parametric Time Series Classification,
ICRA: 3918-3923, 2005

[15] X. Li, B. Liu, Learning to classify text using positive and unlabeled
data, IJCAI:

 587-594, 2003

[16] W. Li, E. Keogh, Semi-supervised time series classification, ACM
SIGKDD: 2006

[17] A. Lomsadze, et al. Gene identification in novel eukaryotic genomes
by self-training algorithm, Nucleic Acids Res. 33: 6494–6506, 2005

[18] U. Maulik, D. Chakraborty, A self-trained ensemble with semi-
supervised SVM: An application to pixel classification of remote
sensing imagery, Pattern Recognition 44(3):615-623, 2011

[19] M. N. Nguyen, X. Li, S. Ng, Positive unlabeled learning for time
series classification, IJCAI (2) , 2011

[20] P. Ordóñez, et al., Visualization of Multivariate Time Series Data in
a Neonatal ICU, IBM Journal of Research and Development, 2012

[21] PAMAP, Physical Activity Monitoring for Aging People,
www.pamap.org/demo.html , retrieved 2012-05-12.

[22] D. Preston, P. Protopapas, C. E. Brodley, Discovering arbitrary event
types in time series. Statistical Analysis and Data Mining 2(5-6):
396-411, 2009

[23] M. A. Ranzato, M. Szummer, Semi-supervised learning of compact
document representations with deep networks, ICML: 792-799, 2008

[24] M. Raptis, K. Wnuk, S. Soatto, Flexible Dictionaries for Action
Recognition, MLVMA/ECCV, 2008

[25] C. A. Ratanamahatana., D. Wanichsan, Stopping Criterion Selection
for Efficient Semi-supervised Time Series Classification. SNPD
2012. 149: 1-14, 2008.

[26] T. M. Rath, R. Manmatha, Word Image Matching Using Dynamic
Time Warping, CVPR (2): 521-527, 2003

[27] C. Rosenberg, M. Hebert, H. Schneiderman, Semi-Supervised Self-
Training of Object Detection Models, WACV: 29-36, 2005

[28] A. Sun, R. Grishman, Semi-supervised Semantic Pattern Discovery
with Guidance from Unsupervised Pattern Clusters, COLING
(Posters): 1194-1202, 2010

[29] P. Sykacek, S.J. Roberts, Bayesian time series classification, NIPS
: 937-944, 2001

[30] D.M.J. Tax, One-class classification: Concept-learning in the
absence of counter-examples. 2001

[31] C. J. Van Rijsbergen, Information Retrieval, 2nd edition, London,
England: Butterworths, 1979

[32] X. Wang, L.Ye, E. J. Keogh, C. R. Shelton, Annotating Historical
Archives of Images, IJDLS 1(2): 59-80, 2010

[33] X. Xi, E. J. Keogh, C. R. Shelton, L. Wei, C. A. Ratanamahatana,
Fast time series classification using numerosity reduction, ICML:
1033-40, 2006

[34] X. Zhu, Semi-Supervised Learning Literature Survey, Technical
report, no. 1530, Computer Sciences, University of Wisconsin-
Madison, 2005

[35] Das Ehrenbuch der Fugger (The secret book of honour of the
Fugger) -BSB Cgm 9460, Augsburg, ca. 1545 - 1548 mit
Nachträgen aus späterer Zeit

[36] Supporting webpage: https://sites.google.com/site/yanping

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Batista:Gustavo_E=_A=_P=_A=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wang:Xiaoyue.html
http://www.bibsonomy.org/author/Maulik
http://www.bibsonomy.org/author/Chakraborty
http://www.ri.cmu.edu/person.html?person_id=109
http://www.ri.cmu.edu/person.html?person_id=270

