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ABSTRACT 
Classification of time series data is an important problem with 

applications in virtually every scientific endeavor. The large 

research community working on time series classification has 

typically used the UCR Archive to test their algorithms. In this 

work we argue that the availability of this resource has isolated 

much of the research community from the following reality, 

labeled time series data is often very difficult to obtain.  

The obvious solution to this problem is the application of semi-

supervised learning; however, as we shall show, direct 

applications of off-the-shelf semi-supervised learning algorithms 

do not typically work well for time series. In this work we explain 

why semi-supervised learning algorithms typically fail for time 

series problems, and we introduce a simple but very effective fix. 

We demonstrate our ideas on diverse real word problems.  

Categories and Subject Descriptors 

H.3.3 [Information Systems]: Information Search and Retrieval 

– Information filtering, Selection process 

Keywords 
Time Series, Semi-Supervised Learning, Classification 

1. INTRODUCTION 
There has been an enormous interest in time series classification 

in the last two decades [2][6][10]. Two related conclusions have 

begun to emerge as a consensus in the community. First, while 

there is a plethora of classification algorithms in the literature, the 

nearest neighbor algorithm seems particularly suited to the unique 

structure of time series, and virtually all competitive attempts at 

time series classification use it [33]. Second, while there is also a 

surfeit of possible distance measures for time series, Dynamic 

Time Warping (DTW), a technique from the dawn of computing, 

is exceptionally difficult to beat [6]. In particular, a recent paper 

tested the most cited distance measures on 47 different datasets, 

and no method consistently outperforms DTW. Thus recent 

papers that claim improvements over DTW must resort to very 

powerful statistical tests to demonstrate tiny improvements in 

accuracy.  

In the last decade, virtually all of the community has used the 

UCR Archive to test their algorithms [11]. We believe that the 

availability of this (admittedly very useful) resource has isolated 

much of the research community from the following reality, 

labeled time series data is often very difficult to obtain. For 

example, in many situations, from medicine [20] to astronomy 

[22], obtaining labeled data requires the time and attention of a 

busy domain expert.  

The obvious solution to this problem may appear to be the 

application of semi-supervised learning; however, direct 

applications of off-the-shelf semi-supervised learning algorithms 

do not typically work well for time series. In this work we make 

two related contributions. We explain why semi-supervised 

learning algorithms typically fail for time series problems, and we 

introduce a simple but very effective fix. While we defer a 

detailed explanation of both until Section 4, we offer a simple 

three sentence preview here: 

Under certain assumptions, unlabeled members of a 

circumscribed positive class may be closer to some unlabeled 

members of a diverse negative class than to the labeled positive 

data. This is true even under DTW. Nevertheless, unlabeled 

positive data tend to benefit more from using DTW than unlabeled 

negative examples. The amount of benefit from using DTW over 

Euclidean Distance (ED) is a meta-feature that can be exploited.  

We illustrate this in Figure 1 where we show the hierarchical 

clustering of five objects under various measures. Two of the five 

objects are randomly chosen examples (red/bold) from class 3 of 

the Trace dataset [11]. The other three objects are simply random-

walk time series (blue/light). 
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Figure 1: A complete linkage hierarchical clustering of two 
items from the Trace dataset with three random walks. From 
left to right, Euclidean distance (ED), Dynamic Time Warping 
(DTW) and Dynamic Time Warping-Delta (DTW-D), our 
proposed technique. 

As we can see, Euclidean Distance does poorly here. This is not 

surprising, since the Trace dataset is known to have classes that 

contain exemplars that are time-warped versions of a prototypical 

shape. Indeed, we see that DTW does manage to do better, 

reducing the distance between Trace-1 and Trace-2. However, this 

reduction is not enough; random-walk-3 is still closer to Trace-1 

than Trace-2 is.  

Our key observation is that moving from ED to DTW seems to 

help the true class data more than the random unstructured data. 

We can encode this difference/delta that DTW makes with DTW-

D, the ratio of DTW over ED. And as we see in Figure 1.right, 

this does produce the correct clustering, at least in this example. 

Imagine that we had been doing semi-supervised learning in this 

dataset using just Trace-1 as our sole positive example. For both 

ED and DTW, the very first item we added to the positive set 

would have been a false positive, and it would be very difficult for 

any algorithm to recover from this. In contrast, DTW-D would 

have correctly suggested Trace-2 as the next item to add, and 
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assuming only that we had good stopping criterion, we would 

have done very well.    

2. RELATED WORK  
In the past two decades, there has been an enormous interest in 

time series classification. Most research efforts leverage off the 

assumption that there are large amounts of labeled training data 

[24][29]. In reality, the high cost of labeling the data may render 

such an assumption invalid. For example, it requires the time and 

expertise of a cardiologist to annotate individual heartbeats in an 

ECG data trace [3], but a single polysomnography (sleep study) 

test may produce up to 40,000 such heartbeats. Given that the 

acquisition of unlabeled data is trivial, there is abundance of 

unlabeled data readily available. For instance, PhysioBank 

contains over 36,000 recordings of digitized polysomnographic 

and other physiologic signals, only a tiny fraction of which are 

labeled [7]; likewise there are tens of millions of books, images, 

maps and historical manuscripts available on the internet [9], 

many of which could be fruitfully mined in the time series space 

[26][32], if only we had more labeled data (cf. Section 6.2). 

Semi-supervised learning (SSL) is a learning paradigm useful in 

application domains in which labeled data are limited, but 

unlabeled data are plentiful [23][8][4]. The literature offers a 

plethora of SSL methods, among which, self-training is perhaps 

the most commonly-used [17][27][5][34]. Self-training is a 

general framework with very few underlying assumptions. In self-

training, a classifier is first trained with a small number of labeled 

data. It is then used to classify the unlabeled data, and adds the 

most confidently classified object into the labeled set. The 

classifier re-trains itself using the new labeled set and the 

procedure repeated until adding new objects to the labeled set 

does not increase the accuracy of the classifier or some other 

stopping criteria is met. This general review of SSL is necessarily 

brief; we refer the readers to [34] and the references therein for 

more details.  

   Recently, some SSL techniques explicitly designed for time 

series have been proposed. To our best knowledge, thus far there 

are only three approaches [16][25][19]. The first paper [16] 

proposed to iteratively expand the labeled set by adding the 

closest object that is classified as positive to the labeled set. The 

classifier considers all unlabeled data as negative, and uses the 

Euclidean Distance. As we shall show, and as has been noted 

elsewhere [6][33], the inferiority of Euclidean Distance to DTW is 

mitigated by large training set sizes. Conversely Euclidean 

Distance is much more brittle a measure than DTW for tiny 

datasets, which is of course exactly the situation we face here. 

Thus [25] proposed to build a SSL classifier using DTW distance. 

Although moving from ED to DTW helps to improve the accuracy 

of the classifier, the algorithm is still not accurate enough in most 

real applications (cf. Section 6.1). 

   More recently, the authors of [19] introduced a SSL technique 

that interleaves exemplar selection with feature selection, using 

the work of [16] as a starting point. The method of [19] improves 

the SSL algorithm, but still uses standard distance measures 

(Euclidean Distance). As such it is orthogonal to our contribution, 

which demonstrates that a subtle change in the distance measure 

dwarfs all possible changes in the algorithms. 

  In retrospect, only three research efforts on SSL for time series is 

a surprisingly small number, given that both SSL and time series 

classification are very popular research topics. In this work we 

venture to claim that we understand why progress in this area has 

been so slow. In brief, our claim is that there is little utility in 

tweaking the architecture of the SSL algorithms for time series, as 

they are all condemned to perform poorly if they use DTW or 

Euclidean Distance. The contribution of this work is to show a 

simple but effective fix that will allow the existing SSL methods 

to work very well for time series. It is important to recognize that 

we are not claiming a contribution to SSL algorithms per se. 

Rather we will show that changing the distance function used in 

SSL algorithms can produce a remarkable improvement for time 

series.  

3. DEFINITIONS AND NOTATIONS 
We begin by introducing all necessary notation and definitions. 

Although the algorithm presented in this work is applicable to all 

SSL methods, for ease of exposition, we present just the notations 

for Positive Unlabeled learning (PU learning), which is a 

collection of SSL methods that trains a classifier based on the 

positive (labeled) dataset and the unlabeled dataset only.  

Definition 1: P is the set of training data, including all 

positively labeled objects.  

P initially contains only a small number of labeled objects from 

the positive class, perhaps as few as one. As learning proceeds, 

the size of P increases as some of the previously unlabeled objects 

in U are labeled as positive and moved to P. Thus, P eventually 

contains both the original labeled objects, as well as the objects 

chosen by the classifier from the unlabeled dataset. 

Definition 2:  U is the set of unlabeled data.  

Objects in dataset U can be from the positive class or the 

negative class. It is generally expected that the vast majority of U 

is from the negative class [34]. The goal of SSL is to map all the 

objects in U to the correct class so that the classifier is accurately 

trained with the classified objects. We denote individual time 

series objects from these two sets with subscripts, thus the ith time 

series object in P is denoted Pi.  

Rather than making a onetime explicit decision as to which 

objects from U should be added to P, most algorithms simply 

iteratively add the next most likely candidate [27][18][34]. This 

means that we must also specify a stopping criterion for the 

algorithm to predict that it has added all the unlabeled positive 

objects [34]. The problem of finding a good stopping criteria is an 

open problem, with tentative solutions based on MDL, Bayesian 

information criterion, bootstrapping [28][34], etc. As this issue is 

somewhat orthogonal to our contribution, we simply gloss over it 

here. However, note that as we shall show in the empirical 

section, the difference our algorithm makes completely dwarfs 

any considerations of the optimal stopping criteria. That is to say, 

even if we did a post-hoc discovery of the optimal stopping 

criteria for the state-for-art rival, our method would have much 

higher accuracy for a huge range of “sub-optimal” stopping 

values. 

For brevity, we do not explicitly define time series, Euclidean 

distance or Dynamic Time Warping, which in any case are rather 

well known. Instead we use the notation from [6], a heavily cited 

survey paper on these topics. We do note however the following 

useful fact, that the ED is an upper bound to the DTW. That is to 

say, for all x, y, we have DTW(x,y) ≤ ED(x,y). 

4. DTW-D 
To explain our observations and our key insight, we consider a 

concrete example. Let us imagine that we have target class of 

objects that are defined by having three periods of a sine wave. 

The instances may be corrupted by warping, different dampening 

rates, noise, minor changes to the starting phases etc, but as shown 

in Figure 2 they are unambiguously recognizable to the human 

eye. 



  

In this example the negative class consists of just a constant line 

with the same mean as the positive class
1
, corrupted by some 

noise. 
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Figure 2: top) A labeled dataset P that consists of a single 
object P1. bottom) The unlabeled dataset consist of a single 
true negative U1 and a single true positive U2.  

Suppose we ask any SSL algorithm to choose one object from U 

to add to P using the Euclidean distance. As we can see in Figure 

3, U1 is much closer to P1 than U2 is, thus our SSL algorithm 

would do poorly here. 
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Figure 3： The Euclidean distance between two time series is 

proportional to the length of the gray hatch lines. It is easy to 
see that ED(P1,U2) > ED(P1,U1) .  

In retrospect this is not surprising. The brittleness of Euclidean 

distance to even small amounts of warping is well known, and 

explains the ubiquity of DTW in most research efforts [13][6][26]. 

By finding the optimal “peak-to-peak/valley-to-valley” alignment 

between two time series before calculating the distances, DTW is 

largely invariant to warping, as shown in Figure 4. 
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Figure 4: The DTW distance between two time series is 
proportional to the y-axis length of the gray lines. 

Unfortunately, while DTW helps significantly, as shown in 

Table 1, it is not enough:  U1 is still closer to P1 than U2 is, and 

the SSL algorithm would still pick the wrong object to move from 

U to P. Why did DTW not solve our problem? While DTW is 

invariant to warping, there are other differences between P1 and 

U2, including the fact that the first and last peaks have different 

heights. DTW cannot mitigate this. 

Table 1: The Distance Matrices for the Three Objects in 
[P,U], under both the ED and DTW Distances 

 ED  DTW 

 P1 U1 U2  P1 U1 U2 

P1 0 6.2 11  0 5.8 6.1 

U1  0 6.8   0 6.5 

U2   0    0 

Moreover, the problem is compounded by the fact that U1 is a 

“simple” shape. As pointed out in a recent paper, simple shapes 

tend to be “close to everything” [2]. Figure 3 gives a hint as to 

why this is true. The flat shape of U1 means that no part of it is 

more than 0.5 away from any part of P1. In contrast where P1 and 

                                                                 

1 In Figure 2 the objects are shown to the same scale. They are not 

normalized for visual clarity. However, our analysis can be 

demonstrated for z-normalization, min/max normalization etc. 

U2 are out of phase, and the Euclidean distance is forced to match 

a peak to a valley, the distance can be as much as 0.8.  This is why 

smooth, flat or least very slowly changing time series tend to be 

(subjectively) surprisingly close to other objects [2]. This is a 

grave disappointment  this seems to be a dataset for which DTW 

is ideally suited, yet DTW fails here. 

However, an examination of distance matrices shown in Table 1 

does reveal an interesting fact. Moving from ED to DTW barely 

changed the distance between P1 and U1, but it did greatly affect 

the distance between P1 and U2. We can codify this with the 

following observation:  

Observation 1: If a class is characterized by the existence of 

intra-class warping (possibly among other distortions [2]), then 

we should expect that moving from ED to DTW reduces distances 

more for intra-class comparisons than interclass comparisons. 

To see this more clearly, we can consider the ratio of distance 

under DTW and ED as shown in Table 2. 

Table 2: The Ratio of the ED and DTW Distances Shown 
in Table 1. This ratio is called DTW-D 

 DTW/ED  DTW-D = DTW/ED 

 P1 U1 U2  P1 U1 U2 

P1 0 5.8/6.2 6.1/11  0 0.93 0.55 

U1  0 6.5/6.8   0 0.95 

U2   0    0 

Note that if we consider the DTW-D ratios, we finally have P1 

and U2 appear closer than P1 and U1. Figure 5 visualizes all three 

distance matrices with a complete linkage clustering.  
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Figure 5: A visualization of the three distance matrices shown 
in Table 1 and Table 2 under complete linkage hierarchical 
clustering. 

Note that there is one minor special case we need to consider. If 

the ED is zero, then DTW-D would give a divide-by-zero error.  

We simply define this special case as having a value of zero. If the 

ED distance (and therefore also the DTW distance) between two 

objects is zero, it would be perverse to call them anything but the 

same class. This is a moot point, as we never expect observe 

perfect duplicates for real-values objects. 

We have now concretely seen the problem with using ED/DTW 

for SSL, and our suggested fix, on a toy problem. However, it is 

natural to ask when this phenomenon actually occurs in the real-

world, and would be amenable to our DTW-D solution.  In the 

next section, we explicitly discuss our assumptions about when 

our ideas can help.   

4.1 Two Key Assumptions  
We do not claim our ideas will help for all time series problems. 

In particular, we are making two explicit assumptions which we 

will enumerate and discuss below. We will later show that these 

assumptions are very often true in real world domains. 

Assumption 1: The positive class (the target concept) contains 

time warped versions of some platonic ideal (some prototypical 

shape), possibly with other types of noise/distortions. 

Note that this assumption was true of our toy example in Figure 

1. While all members of the Trace dataset have some noise, as 

shown in Figure 6, the most obvious variability between instances 



  

is in the timing of the onset of the “ramp-up” and the “oscillation” 

patterns. Dynamic time warping is able to compensate for and 

remove this variability.  
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Figure 6: The two examples from “Trace” shown in Figure 1 
compared under ED and DTW. In this plot, the distances are 
proportional to the variance of the y-axis lengths of the hatch 
lines. Thus the longer and shorter hatch lines in ED contribute 
to its large distance, whereas the y-axis lengths for DTW are 
almost the same, producing a small distance.  

This ability of DTW to compensate for the inherent warping in 

this class can produce a dramatic difference in classification 

accuracy. In the UCR Archive dataset the four-class Trace data is 

provided with a 100/100 train test split. The ED error rate on this 

dataset is 0.24, whereas DTW has an error-rate of 0.0. Since the 

exact same splits and classification algorithm (1NN) were used, 

and zero parameters are tuned for either approach, all of this 

difference can be attributed to the superiority of DTW over ED.   

Assumption 2: The negative class may be very diverse, and 

occasionally by chance produces objects close to a member of 

the positive class, even under DTW. 

Empirically, negative classes do tend to be diverse [15][30]. For 

example, there are only a limited number of ways an audio snippet 

can sound like a mosquito, but there are infinite ways a sound can 

be a non-mosquito (c.f. Section 6.1). Once again, this assumption 

was illustrated by our toy example in Figure 1. The random walk 

class is naturally very diverse, and it can (and did) produce an 

instance that is closer to Trace-1 than the other member of the 

positive class (Trace-2). 

It is our central claim that if the two assumptions are true for a 

given problem, our novel scoring function DTW-D will be better 

than either ED or DTW. As these are the central assumptions, we 

will next consider when we might expect them to be true.  

4.2 Observations on our Key Assumptions  
In the following sections we consider the implications of our 

assumptions for the task at hand, and empirically investigate 

whether these assumptions are warranted.  

4.2.1 Assumption 1 is mitigated by large amounts of 
labeled data 

If we have a large enough set of labeled examples, we expect 

that simple DTW or even ED will work very well. Our noted 

weakness of semi-supervised learning happens when the nearest 

instance to a labeled positive exemplar is a negative instance. 

With more labeled positive instances this becomes less and less 

likely to happen.  To see this, we performed an experiment that 

generalizes the toy example in Figure 1. We created an unlabeled 

dataset U that contains just one exemplar from Class 3 of Trace, 

and 200 random walks. We then consider the question of what is 

the probability that the first object added to the labeled dataset P 

is that sole true positive in U, for various sizes of P from 1 to 10 

(i.e. P has 1 to 10 true members from Trace). To smooth out our 

estimate, we averaged over 1,000 runs. As we can see in Figure 7, 

this probability does indeed increase as |P| gets larger.  

This plot suggests that if we had a large enough P, then DTW-D 

would offer only a small advantage over ED, and a barely 

perceptible improvement over DTW.   However when P is small, 

DTW-D is dramatically better than both ED/DTW, supporting our 

assumption. 
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Figure 7: The probability that the first object added to P is a 
true positive as the number of labeled objects increases, for 
three distance measures. 

4.2.2 Assumption 2 is compounded by a large 

negative dataset 
In a sense this observation is a direct corollary of the above. If 

the negative class is random and/or diverse, then the larger the 

negative class is, the more likely it is that it will produce an 

instance that just happens to be close to a labeled positive item. 

To see this, we again perform an experiment that generalizes 

our toy example. We created a dataset P that contains just one 

exemplar from Class 3 of Trace. Once again U contains a single 

true positive, but this time we vary the number of random walks 

from 100 to 1,000. As before we measure the probability that the 

first object added to P is the true positive, averaged over 1,000 

runs. Figure 8 shows the results.  

In most semi-supervised settings, we expect |U| to be many 

orders of magnitude larger than the |P|, thus this assumption is 

almost always true in real settings. 
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Figure 8: The probability the first object added is a true 
positive as the number of true negatives in U increases. 

Again this figure strongly supports our assumption. When we 

have relatively few true negatives, all methods work well. 

However, as the number of true negatives in U increases, ED 

rapidly deteriorates. In contrast, DTW deteriorates more slowly. 

Remarkably, however, DTW-D is completely unaffected by a 

surfeit of true negatives, maintaining perfect accuracy. 

4.2.3 Assumption 2 is compounded by low complexity 

negative data 
Our final observation requires us to define what is meant by the 

“complexity” of a time series. Our remarks here are inspired by 

[2], which makes a similar observation, but in a very different 

context. As noted in [2], while a “complex” time series is hard to 

define, it is something we can intuitively understand. For our 

purposes, let us say that a complex time series is one that is not 

well approximated by few DFT coefficients or by a low degree 

polynomial. 

The problem caused by low complexity data is that it is “close 

to everything”, and as such, the chances that at least one instance 

from the negative class is closer to an exemplar from P than a true 



  

positive is much greater if some or all the negative data has low 

complexity. 

To see this we can repeat the experiment shown in Figure 1 

after replacing the random walk series by randomly generated 

third-degree polynomials.   
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Figure 9:  The experiment shown in Figure 1 after replacing 
the three random walks with three random third-degree 
polynomials. 

The results here are visually jarring. It is important to emphasize 

that this is not the result of an error, contriving of the data, or 

crippling the ED/DTW in any way. It is simply the case that low 

complexity time series have a tendency to have a small distance to 

all other objects. 

Apart from [2], other works have indirectly noted this 

phenomenon. For example, [12] notes that if we average all 

subsequences in a long time series, we will get a constant line, 

which is surely the least complex time series under any definition. 

Implicitly, this means that a constant line is the time series with 

minimal expected distance to any randomly chosen time series.   

Thus, if the negative class is complex, we should expect the 

DTW or even ED will work well for semi-supervised learning. To 

see this, we can repeat the experiment shown in Figure 1/Figure 9 

after replacing negative class with pure random vectors. Note that 

while we may consider random vectors as “noisy”, it is incidental 

to the point that they are complex.  
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Figure 10: The experiment shown in Figure 1/Figure 9 after 
replacing the negative class with random vectors. 

Figure 10 demonstrates that when the unlabeled data are 

complex, even ED has little trouble in grouping the positive class.   

Beyond the visual evidence shown in Figure 9 and Figure 10, 

we can test our observation with another simple experiment. Once 

more we perform an experiment that generalizes our toy example. 

We created a labeled dataset P that contains just one exemplar 

from Class 3 of Trace. This time U contains one true positive and 

200 random time series that are approximated by k non-zero DFT 

coefficients, with k ranging from 5 to 20. Figure 11 shows some 

examples of time series that are approximated by 5 and 20 non-

zero DFT coefficients respectively.   
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Figure 11:  left) Two time series examples that are created 
using 5 non-zero DFT coefficients.  right) Two time series 
examples that are created using 20 non-zero DFT coefficients. 
Clearly the latter are more complex. 

As before we measure the probability that the first object added to 

P is a true positive, averaged over 1,000 runs. Figure 12 shows the 

results.  

Once again this experiment strongly supports our hypothesis.  

Low complexity items in the negative class make SSL more 

difficult for all distance measures, but using DTW-D does greatly 

mitigate the problem.  
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Figure 12: The probability the first object added is true 
negative as the negative objects increase in complexity.  

4.2.4 Implications of observations/assumptions 
The observations and experiments in the previous sections tell us 

when we should expect the DTW-D method to help. We should 

not expect DTW-D to help with the classic time series 

classification problems as exemplified by the UCR archive [11]. 

These datasets typically do have a relatively large set of label 

positive data (at least dozens), and typically do not have one class 

with much lower complexity and/or much higher diversity than 

the other classes. 

In contrast, it is easy to see that all our assumptions mesh 

perfectly with most SSL assumptions [28][27][23]: 

 We do have very small (as few as one) positive examples (cf. 

Section 4.2.1). 

 We do have relatively large amounts of negative data. For 

example, when trying to learn the vacuum-cleaning 

concept. (cf. Section 6.3), we must expect that most people 

spend less than 0.01% of their time vacuuming.  Likewise, if 

we monitor audio streams, most sounds we hear are not 

insects (cf. Section 6.1) etc. 

 We do have at least some low complexity negative instances 

(cf. Section 4.2.3). This is true because the negative class is 

usually highly variable. For human activity monitoring, there 

are likely moments when a person is sitting still, producing 

very low complexity data (cf. Section 6.3) 

As we shall show in Section 6, SSL problems in very diverse 

domains fit into our assumptions.  

5. ALGORITHM DETAILS 
   While we believe that our ideas can be applied to essentially any 

time series SSL learning framework, simply by replacing the ED 

or DTW distance calculations with DTW-D. However, for 

concreteness, in this section we will explicitly define the exact 

SSL algorithm used in our experiments. Note that we took pains 

to choose a simple SSL algorithm here, because as we noted 

before, we are not claiming a contribution to SSL per se. Rather, 

our contribution is a simple but effective fix to a problem that will 

otherwise plague any attempt at SSL for time series. Our focus in 

this work is to demonstrate the effectiveness of our ideas, even 

with a simple SSL algorithm.  

Note that we are assuming that whatever “flavor” of SSL is, the 

underlying classification algorithm will use Nearest Neighbor 

(NN) [6]. This is because, in spite of two decades of 

experimentation with neural networks, decision trees, Bayesian 

methods [29] etc., there is strong empirical evidence that nearest 

neighbor algorithms are the best approach for time series (see [33], 

and the references therein and thereof). 

5.1 DTW-D Algorithm 
As hinted in Section 4, our proposed distance measure DTW-D 

is accomplished with a simple equation: 



  

 

-
 

(1)  

Where  is an extremely small positive quantity used to avoid 

divide-by-zero error. We reiterate that  is not parameter of our 

system, it is device to enable a terser definition.  

As shown in Table 3, the computation of DTW-D can be 

achieved on two series x  and y  using one line of matlab code: 

Table 3:  Our Proposed Distance Measure 

function       distance = DTW-D(x, y) 

      distance = DTW(x,y) / (ED(x,y) + eps); 

5.2 Training the Classifier  
The classifier used is a one-class classifier [30]. The training 

dataset contains only the objects from the positive class. The goal 

of the classifier is to accurately extract all the positive class 

objects from the unlabeled dataset [15]. 

The data used to train the classifier includes a labeled dataset P 

and an unlabeled dataset U. In the beginning, there is as few as 

one labeled object in P. As shown in Table 4, the classifier trains 

itself through the following steps: 

Step 1: The classifier is trained on the initial labeled dataset, 

which contains as few as only one object from the positive class. 

Note that the labeled dataset is augmented gradually during the 

training process. 

 Step 2:  For each object in the unlabeled dataset U, we compute 

its distance to the labeled dataset using DTW-D (Line 10 to Line 

13). An object’s distance to the labeled dataset is the distance of 

the object to its nearest neighbor in the labeled dataset.  

Step 3: Among all the unlabeled objects, the one we can most 

confidently classify as positive is the object that is closest to the 

labeled dataset (Line 3). The object is added into the labeled 

dataset (Line 4) and removed from the unlabeled dataset (Line 5). 

With the labeled dataset being adjusted, we return to Step 1 to re-

train the classifier. The procedure repeated until some stopping 

criterion is met.  

The intuition behind the algorithm is straightforward. The 

labeled dataset defines the concept space for the positive objects. 

The object closest to the labeled dataset is deemed to have the 

highest probability to belong to the positive class.  

Table 4: Time Series Semi-supervised Learning Algorithm 

Function  P  =  Train_Classifier (P, U, distance, N) 
Input:          P, the initial training dataset with a single training object 

                   U, the unlabeled dataset  

                   distance, the distance function  

                   N, the number of objects to be moved from U  to P 

Output:       a trained classifier (for a NN classifier, it is the learned P) 

1 
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4 
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13 
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16 

17 

function P  =  Train_Classifier ( P, U, distance, N) 

    for iterations = 1 : N 

           NNObject = findUnlabeledNN( P, U, distance);    

           P  = [P, NNObject];       // update P 

           U = U - NNObject ;       // update U            

end 

return P; 

end 

function NNObject = findUnlabeledNN ( P, U, distance) 

    Dist = zeros(1, |U|); 

    for  i  =  1 :  |U| 

        Dist (i) = minj = 1,…|P| distance(Ui,Pj);  

    end 

    [~, NN_index] = min(Dist);   // closest to P 

NNObject = UNN_index ; 

   return NNObject; 

end 

At the first blush, our algorithm to train the classifier seems 

quite similar to the algorithm used in [16]. However, a more 

careful introspection would reveal that they are fundamentally 

different. The classifier used in [16] is a binary classifier, with all 

the unlabeled objects regarded as training examples from the 

negative class, whereas our classifier is a one-class classifier with 

no training examples from the negative class. The advantage of 

our classifier is that it makes much more realistic assumptions 

about how SSL work in practice. As noted elsewhere, the negative 

class is typically not a single well-defined concept as [16] and 

others assume, rather it tends to be an extremely heterogeneous 

class. To give an example in a domain we consider, there are very 

limited ways humans can perform vacuum cleaning, but 

there are an infinite number of possible human activities that are 

not vacuum cleaning.  

As noted above, in this work we gloss over the orthogonal 

problem of finding a good stopping criterion. In our experimental 

section, the training process stops when the unlabeled dataset U is 

exhausted of true positives by DTW-D. 

5.3 Evaluating the Classifier  
To evaluate the accuracy of all classifiers, we test the classifier 

using data that is “hidden” during the training stage. The test 

(holdout) dataset contains some positive class objects and many 

other objects. The goal of the classifier is to accurately extract all 

the positive class objects from the test dataset. We use the classic 

notion of precision and recall [31] to measure the performance of 

the classifier. If an instance in the test dataset is top K closest to 

the labeled dataset, the instance is classified as positive, otherwise 

it is negative. K is the number of positive objects in the test 

dataset. Thus we can count the number of true positives out of K 

classifications. 

Note that with this evaluation method, the value of recall equals 

to the value of precision (because the number of false negatives is 

the same as the number of false positives). For brevity, we report 

only the precision here. The computation of precision is shown in 

Equation (2), where Npositive denotes the number of true positives 

among the top K closest instances.  

positiveN
precision

K
  (2)  

6. EXPERIMENTAL EVALUATION  
We begin by noting that all experiments (including all the 

figures above) are completely reproducible. All experimental code 

and data (and additional experiments omitted for brevity) are 

archived in perpetuity at [36]. 

For all experiments, we divide the data into two mutually 

exclusive datasets: the learning dataset and the holdout dataset. 

 Learning dataset: The learning dataset is used in the SSL 

process to train the classifier. It is divided into the labeled 

dataset P and the unlabeled dataset U. The labeled dataset 

includes a single positive example, which is a randomly 

selected true positive object from the learning dataset. The 

rest of objects in the learning dataset are regarded as 

unlabeled objects and are included in U. 

 Holdout dataset: The holdout dataset is used to test the 

accuracy of the learned classifier. Objects in the holdout 

dataset are hidden from the SSL process.  

The performance of the trained classifier can be sensitive to the 

initial training (labeled) example. To mitigate this sensitivity, for 

each experiment, we repeat the training process by each time 

starting from a different training example. In particular, we allow 

each positive object in the learning dataset to be used as the initial 



  

training example once, and average the accuracy of the classifier 

over all runs.      

To show the changes in the performance of the classifier as the 

labeled dataset P is gradually augmented, we show the average 

accuracy for each size of P. That is, we evaluate the classifier 

using the holdout dataset each time an unlabeled object is added 

to P. Thus all figures shown below show the holdout accuracy. 

For each experiment, we compare the performance of three 

different classifiers, the classifier using ED, the classifier using 

DTW, and the classifier using DTW-D. All three classifiers are 

trained using the same SSL algorithm as shown in Table 4. The 

only difference among them is the distance function used. As we 

shall show, by simply changing the distance function from ED or 

DTW to DTW-D, we can improve the performance of SSL 

algorithms for time series by a significant amount. 

In all our experiments, DTW-D learns from a single positive 

example. There is nothing about our technique that requires this. 

We simply wish to show we can learn under the most hostile 

assumptions.  

We also compare our idea with rival time series SSL approaches 

[16][25]. In order to be scrupulously fair to the rival approaches, 

we allow them to “cheat” by starting with more training examples. 

As we shall show, even given this severe disadvantage, our 

algorithm still significantly outperforms the rival approaches.   

6.1 Insect Wingbeat Sound Detection 
In this experiment, we would like to detect insect wing-beat 

sounds from unstructured audio streams. The insect used in this 

experiment is Culex quinquefasciatus female. The wingbeat 

sounds are acquired using the sensors described in [1], and the 

data stream also contains diverse negative data, including 

speech/music etc.  

For this experiment, we randomly select 1,000 insect sounds 

and 4,200 non-insect segments. The length of each sound snippet 

is 0.1 second. All the sound data are first converted into “time 

series” using DFT [1]. Based on entomological advice, we 

preserve only the coefficients corresponding to the frequency 

range between 200 and 2,000, because all other coefficients are 

unlikely to be the result of insect activity.  

We divide the time series dataset into two parts: a learning 

dataset with 500 insect sounds and 2000 non-insect sounds, and a 

holdout dataset with 500 insect sounds and 2,200 radio sounds.  

The SSL process is repeated 500 times, each time starting with a 

different training example. For each run, we trained three 

classifiers, the NN classifier using ED distance, the NN classifier 

using DTW and the NN classifier using DTW-D. The average 

performance of the three classifiers over 500 runs for each size of 

P is shown in Figure 13. 
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Figure 13: The average accuracy of the three classifiers for 
different size of P, evaluated using the holdout dataset. 

The results are impressive, given that the default accuracy is just 

20%. With DTW-D, we can converge on greater than 95% 

accuracy. The DTW-D classifier consistently outperforms the 

other two classifiers across the entire range of values for P. Note 

that, after the size of P reaches 150, the accuracy of the ED 

classifier begins to decrease. As we might expect, the DTW 

classifier’s invariance to warping allows it both to start from a 

higher baseline, and keep improving for a longer time. However it 

too is doomed to eventually add true negatives into P and begin a 

rapid decrease in performance.   

6.1.1  Why is DTW-D better? 
While DTW-D is clearly better than its rivals, Figure 13 does 

not tell us why. In particular we may ask if it is because: DTW-D 

generally selects better labeled objects during the SSL process, or 

because DTW-D selects better top K nearest neighbors from the 

holdout dataset in the classifier’s evaluation process (recall that K 

is the number of true positives in the holdout dataset). 

To answer this question, we conducted a combinatorial 

experiment in which we crippled DTW-D independently in each 

phase (training/evaluating).  

For example, to see if DTW-D selects better labeled objects 

than DTW, we train two NN classifiers, one using DTW-D and 

one using DTW. We then evaluate both classifiers using the same 

holdout dataset. In the evaluation process, we use the same 

distance function (DTW) to find the top K nearest neighbors for 

both classifiers. In this way, we ensure that the only difference 

between the two classifiers is the use of two different distance 

functions in the training process.  

The experiment to see if DTW-D is better at selecting the top K 

nearest neighbors during evaluation process is similar. This time, 

we train only one classifier, the NN classifier using DTW. In the 

evaluating process, we use two different distance functions, DTW 

and DTW-D, to find the top K nearest neighbors for this classifier. 

In this experiment, the labeled dataset learned from the training 

process is the same. The only difference is the use of different 

distance functions in the evaluation process. 

 Figure 14 shows the results of the combinatorial experiment for 

this dataset. 

0 100 200 300 400

0.2

0.6

1

DTW

DTW-D

Number of labeled objects in P

A
c
c
u
ra

c
y

DTW-D

ED

0 100 200 300 400

0

0.5

1

0 100 200 300 400

0.2

0.6

1

DTW

DTW-D

Number of labeled objects in P

A
c
c
u
ra

c
y

0 100 200 300 400

0

0.5

1 DTW-D

ED

 
Figure 14: top) Comparison of DTW-D with DTW / DTW-D 
with ED, to see if DTW-D helps the training process by 
selecting better exemplars. bottom) Comparison of DTW-D 
with DTW / DTW-D with ED, to see if DTW-D helps the 
evaluating process by selecting better top K nearest neighbors.  

The results show that DTW-D is superior to ED and DTW in 

both the training (exemplar choosing) and evaluation (the later 

classification) processes. The results shown in Figure 14 are 

generally true for all the experiments done in this work. For 

brevity, we omit these results for the following applications, but 

archive them in [36] for interested readers.  

6.1.2 Comparison to rival methods 
   We compare our algorithm with the widely-used rival 

approaches that are specially designed for time series [16][25]. In 

the comparison, we favor our rival approaches by offering them 

with fifty more initial labeled examples. That is, through the entire 

range of comparison, our rivals always have fifty more labeled 

objects in their labeled dataset than our method. Recall that our 



  

algorithm starts with a single labeled example, thus the rival 

methods have a fiftyfold advantage here. Figure 15 shows the 

results for this dataset.  
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Figure 15: Comparison of our SSL method using DTW-D with 
two rival methods in the literature. The curves show the 
average performance of classifiers over 100 runs 

   As we can see, our method was not as good as the rivals at the 

beginning. This is hardly surprise given that the rival methods had 

fifty times as many labeled objects. However, using DTW-D, our 

method intelligently selects objects from the unlabeled dataset U 

to expand the labeled set P. After adding just nine objects, we beat 

Wei’s method. This is very impressive because this happened 

when we have only ten labeled objects while our rivals have sixty. 

In other words, we evaluate our classifier with the holdout dataset 

with only ten labeled objects while our rivals have sixty labeled 

objects. We are doing better here because while both methods 

have added nine objects, DTW-D made better choices of what to 

add.  Ratana’s method is beaten after adding 21 objects.  

   In addition, as can be seen from Figure 15, our method 

continues to do better after we beat the rivals, which implies that 

whatever stopping criterion is used, we will always do better. In 

this example, Wei’s method stops after adding 103 objects. 

Ratana’s method stops after adding 62 objects. No matter if we 

stop at 62 or 103 or any other position greater than 21, we are 

always better than the rivals. 

It might be imagined that the two rival methods [16][25] do 

(eventually) make better decisions about which objects to add, but 

are crippled by too conservative a stopping criteria. However, to 

be clear, this is not the case. When the two algorithms terminate, 

they have labeled everything in the learning dataset. Thus, there 

are no actions (wise or unwise) left for them to perform.  

   In addition to [16][25], there is only one other semi-supervised 

approach for time series that we are aware of. In [19], the authors 

introduce a technique that interleaves exemplar selection with 

feature selection. We do not compare to this work for the 

following reasons: The work assumes that the positive class 

objects are similar to each other, and the negative class objects are 

similar to each other. For this reason they test on a subset of the 

UCR archive datasets, with one class acting as P and another class 

acting as U. This is in sharp contrast to our more relaxed 

assumption that only positive class objects are similar to each 

other. We make no such assumptions about the negative class. 

Our initial attempts to test their algorithm with our assumptions 

(the authors generously donated their code), yielded very poor 

results, but in fairness, the authors made no claims about the 

utility of their ideas for our problem statement/assumptions. 

The comparison results shown in Figure 15 are generally true 

for all experiments done here. For brevity, we omit these results 

for the following applications, but archive them in [36] for 

interested readers. 

6.2 Historical Manuscript Mining 
We can apply “time series” SSL to detect particular image 

patches in historical manuscripts [32]. These manuscripts often 

are hand colored over years, thus some warping is needed to 

detect the similarity of the (“drifting”) color distributions, as 

shown in Figure 16. 

The task in this application is to detect examples of the Fugger of 

the Deer heraldic shield from a huge manuscript [35]. Data used in 

this experiment includes 67 positive Fugger shields and 828 

negative patches selected from the same manuscript [35]. Each 

image patch is converted to a RGB color histogram, which is 

normalized using sum-to-one normalization to eliminate the 

variability of image size. Figure 16.right shows two examples of 

the converted color histograms.  

Red Green Blue  

Figure 16: left) A page from a 16th century text [35] shows 
three heraldic shields including that of Fugger vom Reh 
(Fugger of the Deer) granted to Andreas Fugger in 1464.  
right)  Two additional examples of the shield from the same 
text have been converted to RGB color histograms and 
compared using DTW.  

Again, we first divide the data into two datasets: a learning 

dataset with 16 positive objects and 207 negative ones, and a 

holdout dataset with 51 positive objects and 621 negative ones. 

We repeat the SSL process 16 times, each time starting from a 

different training seed. Figure 17 shows the averaged holdout 

accuracy of the three classifiers for different sizes of P. 
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Figure 17: The average accuracy of the three classifiers for 
different size of P, evaluated using the holdout dataset. 

The default holdout accuracy is 51/672, which is about 7.6%. 

With DTW-D, we can achieve more than 90% accuracy. The 

performance of the DTW classifier is much better than the ED 

classifier, which is not surprising since, as we noted before, there 

is clearly some warping in the color distributions of objects 

belonging to a same class.  

Note that in Figure 17, there is a rapid decrease in the accuracy 

of the ED classifier when the size of P reaches 12. With 

inspection we find this decrease is caused by the first false 

positive that is added into P at the point (on average). This false 

positive object in P corrupts the concept of the positive class, 

resulting in more negative objects added to P, and thus, 

decreasing the classifier’s accuracy. Although the DTW 

classifier’s invariance to warping enables it to have a higher 

accuracy as well as to keep improving for a longer time, it too 

experiences a rapid decrease when the size of P reaches 14, where 

it (on average) mistakenly accepts its first true negative.  



  

6.3 Activity Recognition 
We finally consider a widely studied benchmark dataset that 

contains data of 18 different activities, such as running, rope-

jumping, ironing, vacuum-cleaning, performed by 9 

subjects wearing 3 inertial measurement units (IMUs) [21]. We 

randomly pick one such activity as the positive class and treat the 

rest as negative.  

Figure 18 shows the results for an example experiment where 

vacuum cleaning is considered as the positive activity. We 

randomly select 400 positive segments and 1,600 negative ones 

from the dataset, and divide the selected data into two datasets, 

the learning dataset with 100 positive objects and 400 negative 

objects, and the holdout dataset with 300 positive objects and 

1,200 negatives. The SSL process is repeated 100 times, each time 

starting from a different training seed. The results show that the 

DTW-D classifier both starts from a higher baseline and continues 

to improve over the entire range of values. In contrast, both ED 

and DTW start from a lower baseline and eventually get worse.  

We remind the reader that as with all experiments in this work, 

the three lines in this figure are based on identical data, identical 

conditions and identical algorithms. The only difference is the 

distance measure used, thus we can safely attribute all 

improvement observed to DTW-D.    

0 10 20 30 40 50 60 70 80 90 100

0.1

0.2

0.3

0.4

0.5

0.6

ED

DTW

DTW-D

Number of labeled objects in P

A
c

c
u

ra
c

y
 o

f c
la

ss
if
ie

r

 
Figure 18: The average accuracy of the three classifiers for 
different size of P, evaluated using the holdout dataset.  

7. CONCLUSION AND FUTURE WORK 
We have introduced a simple idea that dramatically improves 

the quality of SSL in time series domains. We have conducted our 

experiments such that all improvements observed can be only 

attributed to the use of DTW-D.  

Our work has the following advantages: It is completely 

parameter-free, and thus requires no tuning/tweaking. It allows the 

use of existing state-of-the-art indexing methods and fast 

similarity search methods [6]. The time and space overhead are 

inconsequential, as is the coding effort; requiring only a single 

line of code to be changed. While we choose the simplest SSL 

method to demonstrate our ideas, they can trivially be used with 

any SSL algorithm. 

Future work includes revisiting the stopping criteria issue in 

light of DTW-D, and considering other avenues where DTW-D 

may be useful. 
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