
A Complexity-Invariant Distance Measure for Time Series
Gustavo E.A.P.A. Batista1,2 Xiaoyue Wang1 Eamonn J. Keogh1

1University of California, Riverside 2University of São Paulo - USP

gbatista@icmc.usp.br xwang@cs.ucr.edu eamonn@cs.ucr.edu

ABSTRACT
The ubiquity of time series data across almost all
human endeavors has produced a great interest in time
series data mining in the last decade. While there is a
plethora of classification algorithms that can be applied
to time series, all of the current empirical evidence
suggests that simple nearest neighbor classification is
exceptionally difficult to beat. The choice of distance
measure used by the nearest neighbor algorithm
depends on the invariances required by the domain.
For example, motion capture data typically requires
invariance to warping.
In this work we make a surprising claim. There is an
invariance that the community has missed, complexity
invariance. Intuitively, the problem is that in many
domains the different classes may have different
complexities, and pairs of complex objects, even those
which subjectively may seem very similar to the
human eye, tend to be further apart under current
distance measures than pairs of simple objects. This
fact introduces errors in nearest neighbor classification,
where complex objects are incorrectly assigned to a
simpler class.
We introduce the first complexity-invariant distance
measure for time series, and show that it generally
produces significant improvements in classification
accuracy. We further show that this improvement does
not compromise efficiency, since we can lower bound
the measure and use a modification of triangular
inequality, thus making use of most existing indexing
and data mining algorithms. We evaluate our ideas
with the largest and most comprehensive set of time
series classification experiments ever attempted, and
show that complexity-invariant distance measures can
produce improvements in accuracy in the vast majority
of cases.

Keywords
Time Series, Classification, Similarity Measures,
Complexity

1. INTRODUCTION
Time series data occur in almost all domains, and this
fact has created a great interest in time series data
mining. There is a plethora of classification algorithms
that can be applied to time series; however, all of the
current empirical evidence suggests that simple nearest
neighbor classification is very difficult to beat [5][14].

This only leaves open the question of which distance
measure to use. The choice of distance measure
depends on the domain. In particular, it depends on the
invariances required by the domain. For example,
motion capture data typically requires invariance to
“warping” (local non-linear accelerations) [13], and
gene expression data typically requires invariance to
uniform scaling (linear “stretching”) [11]. With this in
mind, the last decade has seen the introduction of
hundreds of techniques designed to efficiently measure
the similarity between time series with invariance to
(various combinations of) the distortions of warping
[13], uniform scaling [11], offset [7], amplitude
scaling, phase [13], occlusions, uncertainty and
wandering baseline.
Surprisingly, there is an invariance that the community
has missed, complexity invariance. We defer a detailed
discussion of complexity until later in this work, but
for the moment the reader’s intuitive idea of “having
more peaks, valleys and features” will suffice.
The problem lies in the fact that in many domains the
different classes may have different complexities, and
pairs of complex objects, even those which
subjectively may seem very similar, tend to be further
apart under current distance measures than pairs of
simple objects. This fact introduces errors in nearest
neighbor classification, because complex objects are
assigned to a simpler class.
In this work we introduce the first complexity-
invariant distance measure for time series, and show
that it generally produces significant improvements in
classification accuracy. Our complexity-invariant
distance measure is simple, parameter-free, and
increases the time complexity only by a barely
perceptible amount.
We further show that this improvement does not
compromise the efficiency of algorithms that make
frequent calls to a distance measure (classification [5],
clustering [6], motif discovery [17] and outlier
detection [20][21]), since we can lower bound the
measure and use a minor modification of triangular
inequality, and thus avail of all existing indexing and
data mining techniques.
It is critical to note that the problem we have observed
is not solved or mitigated by generalizing from one
nearest neighbor to k-nearest neighbors, or by
smoothing the data, or using DTW, etc. We will

present extensive empirical evidence that our
improvements in accuracy are valid, significant and
result from the reason we claim.
The rest of this paper is organized as follows. In
Section 2 we review the current set of known
invariances, and more general related work. In Section
3 we present a distance measure that is invariant to the
complexity of time series. In Section 4 we evaluate our
ideas with a large and comprehensive set of time series
classification experiments and show that complexity-
invariant distance measures can produce improvements
in accuracy in the vast majority of cases. In Section 5
we discuss some important properties of our proposed
distance that allow it to be indexed by virtually all
existing indexing schemes based on lower bounding
and triangular inequality. Finally, in Section 6 we offer
conclusions and suggest areas for future work.

2. BACKGROUND / RELATED WORK
We begin by introducing Euclidean distance, and use
this as a starting point to consider other distance
measures in the next section.
Suppose we have two time series, Q and C, of length n. ܳ = ,ଵݍ ,ଶݍ … , ,ݍ … , ܥ ݍ = ܿଵ, ܿଶ, … , ܿ, … , ܿ
If we wish to compare two time series, we can use the
ubiquitous Euclidean distance:

,ܳ)ܦܧ (ܥ ≡ ඩ(ݍ − ܿ)ଶ
ୀଵ

మ

This distance measure is visualized in Figure 1.

Figure 1: The Euclidean distance between two time
series can be visualized as the square root of the sum
of the squared length of the vertical hatch lines

While Euclidean distance is a simple measure, it is
competitive for many problems [5]. Nevertheless, in
many domains the data is distorted in some way, and
either the distortion must be removed before using
Euclidean distance, or a more robust measure must be
used1. We will now review all known distortions and
the techniques for achieving invariance to them.

1 In practice these two options can be logically equivalent. For

example, DTW can be seen as a more robust distance measure, or
it can be seen as using the Euclidean distance after a dynamic
programming algorithm has removed the warping.

2.1 A Review of All Known Invariances
For any given domain the set of required invariances is
domain dependent, and include:

Amplitude Invariance/Offset Invariance: If we try to
compare two time series measured on different scales,
say Celsius and Fahrenheit, they will not match well,
even if they have similar shapes. To measures the true
underlying similarity we must first make their
amplitudes the same. As shown in Figure 2.left, the
example of Euclidean distance shown in Figure 1
already had this normalization, and the original data
has a significant difference in amplitude.

Similarly, even if two time series have identical
amplitudes, they may have different offsets (different
mean values). As shown in Figure 2.right, even a small
change in offset rapidly dominates the Euclidean
distance, leading to false negatives; i.e., missed
heartbeats by a heartbeat detector.

Figure 2: left) If compared before amplitude scaling,
these two time series appear very different. right)
When matching a heartbeat query against a stream,
the first two match well, but subsequently the drifting
offset means the remaining heartbeats are not
discovered

A classic example of where these invariances are
critical is gait recognition from video, where zoom and
pan/tilt correspond to amplitude and offset,
respectively. Both these invariances can be trivially
achieved by z-normalizing the data [7].

Local Scaling (“warping”) Invariance: This
invariance is necessary in almost all biological signals,
including gait, motion capture, handwriting and ECGs.
Figure 3 shows an example of two insect behaviors
which match only when one is locally warped to align
with the other [1].

Figure 3: Two time series of insect behavior matched
with invariance to warping. The alignment was
calculated by the DTW algorithm

0 20 40 60 80 100

Q

C

0 20 40 60 80 100

Q

C -5

-3

-1

1

3

0 100-5

-3

-1

1

3 Query

Unnormalized distance
to the query

0 500
0

120

Threshold = 30

0 60 120 180 240 300 360

Given the ubiquity of the domains in which this
invariance is required, there are hundreds of papers on
the topic. However, recent empirical evidence strongly
suggests that a forty-year-old technique, Dynamic
Time Warping (DTW), works exceptionally well [5].
Uniform Scaling Invariance: In contrast to the
localized scaling that DTW deals with, in many data
sets we must also deal with global scaling. For
example, Figure 4 shows two yeast cell-cycle gene
expression time series which are known to be related
[16]. If we try to match the shorter one against the
prefix of the longer one, it matches poorly. However, if
we globally stretch it by a factor of 1.41, it becomes a
much better match.

Figure 4: (I) A full gene expression, CDC28, matches
poorly to the prefix of a related gene, CDC15. (II) If
we rescale it by a factor of 1.41, it matches CDC15
much more closely (III)

The main difficulty in creating uniform scaling
invariance is that we typically do not know the scaling
factor ahead of time, and are thus condemned to testing
all possibilities within a given range [11].

Phase Invariance: This form of invariance is
important when matching periodic time series such as
star-light curves [13], gait, heartbeats, etc. It is also
important when matching two-dimensional shapes
which have been converted to one-dimensional “time”
series, a representational trick which has gained
popularity in recent years (cf. Figure 6) [13].

Figure 5: top) Two star light curves are obviously out
of phase. bottom) By holding one time series fixed,
and testing all circular shifts of the other, we can
achieve phase invariance

Several authors have suggested achieving this
invariance by finding a cardinal alignment to which all
time series are aligned. However, recent evidence
suggests that this may be very brittle [23], and the only
currently known way to guarantee phase invariance is
to test all possible alignments, as show in Figure 5.

Occlusion Invariance: This form of invariance occurs
in domains where a small subsequence of a time series
may be missing. As a simple example, imagine that we
want to build a robust index for sign language motion
capture data, such that the query “one small step for a
man” will find “one small step for man,” in spite of the
fact that one sequence is missing the “a.” Figure 6
shows a more visually intuitive example.

Figure 6: Occlusion invariance can be achieved by
selectively declining to match subsections of a time
series. In this case it is robust to the missing nose
region of the ancient skull (bottom)

2.2 On Multiple Invariances
We conclude with a simple experiment to demonstrate
what the reader will have surely anticipated: that some
problems require multiple invariances.
We created a 3-class star light curve data set with a test
set of 128 examples (two of which are shown in Figure
5), and a training set of 1024 objects2.
While the original light curves have periods that range
from hours to weeks, they are normalized to have a
standard length of 1,024 to give them uniform scaling
invariance. Furthermore, since it is the relative, not
absolute, changes in apparent brightness that matter,
the data is z-normalized to adjust the amplitude and
offset. The data is then universally phased using a
state-of-the-art domain aware algorithm to achieve
phase invariance [20].
We measured the accuracy of this data set using 1-
nearest neighbor classifier with Euclidean distance,
achieving a respectable 80.47%. We then checked to
see if using DTW to achieve local scaling invariance

2 This experiment, like all others in this work, is 100% reproducible;

see Section 4 for our experimental philosophy.

CDC28

CDC15

CDC28

CDC15

CDC28
Rescaled
By 1.41

CDC28*1.41
(I)

(II)

(III)

0 200 400 600 800 1000

OGLE052401.70-691638.3

OGLE052357.02-694427.3

0 1000

OGLE052357.02-694427.3

OGLE052401.70-691638.3

would help, and indeed our accuracy jumped to
86.72%.
However, rather than stopping here, we decided to test
the universal phasing assumption. Suppose we ignored
it and tested DTW for all possible alignments/shifts.
After testing the phase-invariant version of DTW [13],
we found that the accuracy increased to an impressive
91.4%. Clearly, the current universal phasing
algorithm does not produce perfect alignments.
Finally, we note the obvious, that in some cases
invariances can decrease accuracy. An obvious
example is in the classification of shapes converted to
time series (as in Figure 6). If we wanted to
discriminate between the shapes 'p' and 'd', this would
be trivial, but adding phase (rotation) invariance would
make it impossible.
The complexity invariance that we are proposing in
this work is not a special case of any of the above or
any combination of the above, but rather a new
invariance whose need has escaped the attention of the
community.

3. COMPLEXITY-INVARIANT
DISTANCE FOR TIME SERIES
We are finally in a position to introduce the core
contribution of this work. As we have seen, the
research community has proposed a diverse set of
invariances for time series in the last two decades.
However, there is one invariance that has been missed,
complexity invariance (for the moment, the reader's
natural intuition of complex as having many peaks and
values will suffice.) In many (perhaps most) domains,
different classes may have widely varying
complexities. We can most readily see this on time
series derived from shapes (as in Figure 6). For
example, as we show in Figure 7, leaves range in
complexity from a simple pointed ellipse (ovate),
shown bottom right, to a jagged-edged familiar maple
leaf (palmate), shown bottom left.

Figure 7: Examples of objects from a single
domain, which have different shape complexities

The reason why this matters is that pairs of complex
objects, even those which subjectively may seem very
similar to the human eye, tend to be further apart under
current distance measures than pairs of simple objects.
This fact introduces errors in nearest neighbor
classification, because complex objects are incorrectly
assigned to a simpler class.
We first illustrate the necessity for a complexity-
invariant distance for time series using a synthetic data
set of figures with different shape complexities. Note
that our use of synthetic data here is for clarity; as we
hinted at in Figure 7 and will show later, the
complexity problem occurs in many real data sets.
Figure 8 presents some geometric figures with
increasing shape complexity. Each figure is labeled
with its number of edges for reference. As in Figure 6,
the two-dimensional shapes are converted to a single-
dimensional “time” series by calculating the distance
between the central point and the figure contour.
Figure 8 also presents the z-normalized time series
created for each figure.

Figure 8: A set of geometric figures with increasing
shape complexity and the respective “time” series
extracted by calculating the distance between the
central point and its contour

We calculated distances between every pair of time
series in Figure 8 using Euclidean distance and present
the results in Table 1.

Table 1: Euclidean distance matrix for the
geometric figures data set

 4 5 6 7 10 12 24 32

4 1.000 1.122 1.231 1.181 1.048 1.155 1.170
5 1.318 1.068 1.103 1.153 1.165 1.180
6 1.088 1.097 1.103 1.186 1.200
7 1.217 1.199 1.198 1.191
10 1.263 1.195 1.214
12 1.135 1.199
24 1.191
32

We can use the numbers in Table 1 (and the
dendrogram created from them, as shown in Figure
10.left) to explore the most similar shapes according

4 5 6 7

10 12 24 32

Euclidean distance. Considering the figures with
simple shapes, the results are intuitive: The 4-edge star
is the most similar object to the 5-edge star and vice-
versa; the 7-edge figure is the most similar to the 6-
edge star, etc. However, when we consider figures with
complex shapes, the results are not so clear. The
simplest figure, the 4-edge star, is the most similar to
the 32-edge and the 12-edge figures. For the 24-edge
figure, even though the 12-edge is the nearest one, the
second and third most similar objects are the 4 and 5-
edges stars, respectively.
This example illustrates a phenomenon that can be
summarized in a simple statement: the distance
between pairs of complex time series is frequently
greater than the distance between pairs of simple time
series. In fact, complex time series are commonly
considered more similar to simple time series than to
other complex time series they look like.

3.1 CID
Complexity invariance uses information about
complexity differences between two time series as a
correction factor for existing distance measures. In this
section we restrict our discussion to Euclidean
distance, and we consider the use of complexity
invariance in other distance measures in Section 4.3.
The Euclidean distance, ED(Q,C), between two time
series Q and C, can be made complexity-invariant by
introducing a correction factor: ܦܫܥ(ܳ, (ܥ = ,ܳ)ܦܧ (ܥ × ,ܳ)ܨܥ (ܥ
Where CF is a complexity correction factor defined as: ܨܥ(ܳ, (ܥ = max (ܧܥ(ܳ), ,(ܳ)ܧܥ) min((ܥ)ܧܥ ((ܥ)ܧܥ

And CE(T) is a complexity estimate of a time series T.
Before discussing how CE can be implemented, it is
worth noticing that CF accounts for differences in the
complexities of the time series being compared. CF
forces time series with very different complexities to
be further apart. In the case that all time series have the
same complexity, CID simply degenerates to
Euclidean distance.
This formulation leaves only the question of how to
measure the complexity. The complexity of a time
series can be estimated by a multitude of different
approaches, such as Kolmogorov complexity [15],
many variants of entropy [1][2], the number of zero
crossings, etc.
We can consider the desirable properties any such
complexity measure should have:
• It should have low time and space complexity;
• It should have few parameters, ideally none;
• It should be intuitive and interpretable.
Given these above desideratum, we now present one
possible complexity measure. It has O(1) space and
O(n) time complexity, is completely parameter-free,
and has a natural interpretation. It also was empirically

the best on average of the dozen or so possible
measures we tried3. Nevertheless, we emphasize that
we are not claiming this is the optimal measure (if such
a thing is even well defined). Recall that the
contribution of this work is to point out the complexity
invariance problem, and to show an existence proof of
a method to mitigate it.
Our approach to estimate the complexity of a time
series is very simple. It is based on the physical
intuition that if we could “stretch” a time series until it
becomes a straight line, a complex time series would
result in a longer line than a simple time series. Figure
9 illustrates this idea with some examples.

Figure 9: left) Three time series can have their
complexity measured by stretching them and
measuring the length of the resulting lines (right)

Our complexity estimate can be computed as follows:

(ܳ)ܧܥ = ඩ(ݍ − ାଵ)ଶିଵݍ
ୀଵ

మ

The CID approach for complexity estimation can be
easily implemented in any programming language. In
order to reinforce this statement, Table 2 lists not the
pseudo-code algorithm, but the entire Matlab code to
compute CID.

Table 2: Matlab code for Complexity Invariance
Distance

1

2

3

4

5

function d = CID(Q, C)

 CE_Q = sqrt(sum(diff(Q).^2));

 CE_C = sqrt(sum(diff(C).^2));

 d = sqrt(sum((Q - C).^2)) * …

 (max(CE_Q,CE_C)/min(CE_Q,CE_C));

The code in Table 2 is computationally efficient since
computing the complexity estimates is O(n).
Therefore, the time complexity of the entire code is
O(n). However, we can make this code a little more
efficient if the complexity estimates are pre-computed
and stored in a table. For example, in an exhaustive k-
nearest neighbor search, each query must be compared
to the entire database. Complexity estimates for the
query and all time series in the database can be pre-
computed and stored with negligible overhead. In this
case, lines 2 and 3 in Table 2 can be replaced by a
simple table lookup.

3 We direct the interested reader to the paper's website for a detailed

discussion of other complexity estimation functions [3].

0 20 40 0 20 40 60

T1

T2

T3

CE(T1)

CE(T2)

CE(T3)

In order to provive consistent complexity estimates
across an entire data set, CE requires that the time
series under comparison should have the same number
of observations, the same sampling rate and
normalized amplitudes.
We can get our first hint of the utility of CID by
considering the shape data set of the previous section.
Table 3 presents the pairwise CID distances. Note that
CID distances tend to be small between time series
with similar complexities and increase as we compare
time series with different complexities.

Table 3: CID matrix for the geometric figures

 4 5 6 7 10 12 24 32

4 1.000 1.061 1.229 1.707 1.839 3.843 5.042
5 1.307 1.138 1.700 2.159 4.135 5.422
6 1.096 1.599 1.953 3.982 5.214
7 1.651 1.977 3.744 4.819
10 1.439 2.580 3.396
12 2.018 2.761
24 1.446
32

We also clustered this data set using hierarchical
clustering with average linkage. Figure 10 presents the
results for Euclidean distance (left) and CID (right).

Figure 10: Hierarchical clustering of geometric
figures data set using Euclidean distance (left) and
CID (right)

Here the results for Euclidean distance are
counterintuitive, with complex figures linked directly
to clusters formed by simpler figures.

3.2 CID on a Natural Problem
The skeptical reader may wonder if the need for a
complexity-invariant distance is restricted to our
contrived synthetic example. Before applying CID to a
large set of classification data sets, we present in this
section one example of CID applied to natural data.
This example consists of images of leaves that have
been converted to time series. The classification of
leaves is an important problem in agriculture and in

understanding biodiversity, and has attracted
significant recent interest [9].
Pairs of leaf images with different shape complexity
were randomly selected and clustered with Euclidean
distance and CID using average linkage. Figure 11
illustrates the results that were obtained.

Figure 11: Hierarchical clustering of leaf images with
Euclidean distance (left) and CID (right)

Even though all the pairs of leaves are quite similar to
the human eye, Euclidean distance can only correctly
identify two clusters (marked by heavy lines in Figure
11.left). Not surprisingly, these two clusters are formed
by the two pairs of leaves with the simplest shapes.
Complex leaves do not form their own clusters and are
attached directly to clusters formed by simpler leaves.
In contrast, CID was able to identify clusters of pairs
of leaves with complex shapes, as shown in Figure
11.right.
We can use the time series extracted from leaf images
to better illustrate why Euclidean distance frequently
considers complex time series to be more similar to
simple time series than to other complex (but
apparently similar) time series. Figure 12 presents a
comparison of three leaves.

Figure 12: top) A comparison of a simple-shaped leaf
(Boehmeria cylindrical) and a complex-shaped leaf
(Ambrosia artemisiifolia) that results in smaller
Euclidean distance than when two complex-shaped
leaves (Ambrosia artemisiifolia) are compared to each
other (bottom)

Boehmeria cylindrica

25000 500 1000 1500 2000

25000 500 1000 1500 2000

Ambrosia artemisiifolia

Ambrosia artemisiifolia

Ambrosia artemisiifolia

Figure 12 presents a comparison of a leaf with a simple
shape, Boehmeria cylindrical, and a leaf of complex
shape, Ambrosia artemisiifolia (top); and a comparison
of two exemplars of Ambrosia artemisiifolia (bottom).
According to Euclidean distance, the distance between
Boehmeria cylindrical and Ambrosia artemisiifolia
(the distance between the top two time series) is
smaller than the distance between the two exemplars
Ambrosia artemisiifolia (the two bottom time series).
The intuition behind this unintuitive result is that
simple time series frequently present an “average”
pattern that helps to minimize the Euclidean distance.
In contrast, complex time series have a large number
of peaks, in different quantities, amplitudes and
durations. It is very unlikely that all these features
match, even to another similar time series, thus the
many minor local differences rapidly accumulate to
produce a large global Euclidean distance.

4. EMPIRICAL EVALUATION
We begin by stating our experimental philosophy. We
have designed all experiments such that they are not
only reproducible, but easily reproducible. For
example, if a reader wishes to reproduce any figure in
this paper, they can simply run the script we provide to
do so. The scripts are designed to be easily expandable
in order to include new data sets or distance measures,
for example.
To this end, we have built a webpage which contains
all data sets and code used in this work, together with
spreadsheets which contain the raw numbers displayed
in all of the figures. In addition, this webpage contains
many additional experiments which we could not fit
into this work; however, we note that this paper is
completely self-contained. We have made the script
available in Matlab, since this is essentially free for
anyone in academia, and a completely free clone
version (Octave) is available.
Finally, we note that in this paper we are testing every
publicly available class-labeled time series data set in
the world. Twenty of these data sets have been
available for five years at [14], and used in more than
one hundred papers. The remainder will be publicly
released with the publication of this paper.

4.1 Basic Accuracy
We performed our evaluation using the largest set of
time series classification data sets ever attempted. In
total, the evaluation includes 43 data sets from
different domains, including medicine, entomology,
engineering, astronomy, signal processing, and many
others. A detailed description of the data sets is
available at the paper website [3].
We tested the accuracy of both Euclidean distance and
CID using the five-year-old predefined splits for 20 of
the data sets that came from [14], and defined similar
splits for the remaining 23 data sets. We emphasize

that in the latter case, we split the data just once, before
testing any accuracy results.
Recall that neither distance measure has any
parameters to be learned in the training stage. Our
experimental results are visually summarized in Figure
13; the raw numbers are available at [3].

Figure 13: CID compared with Euclidean distance
using 1-Nearest Neighbor classifier accuracy. Each
point represents one data set, with its X-axis value
being its Euclidean distance accuracy, and its Y-axis
value being its CID accuracy

We believe that the results speak for themselves.
However, notice that we are publishing results for all
classification benchmark data sets we have at hand,
and not for a subset of any kind. Nevertheless, CID
improved classification accuracy in 32 of the 43 data
sets, had the same performance as Euclidean distance
in 3 data sets and decreased the accuracy in only 8.
We conclude this section by observing that CID
improves accuracy because of the reasons we claim;
i.e., CID avoids considering overly simple objects as
similar to complex objects. In order to verify this
hypothesis we performed a simple experiment: we
collected data on all time series (from all data sets) that
were misclassified by Euclidean distance and correctly
classified by CID, and compared the complexity of the
nearest neighbors provided by each distance measure.
In 87.54% of the cases, CID assigned a more complex
nearest neighbor than Euclidean distance did. It is
reasonable to assume that, if CID could improve
accuracy for any other (unknown) reason, we would
expect that only approximately 50% of the CID nearest
neighbors would be more complex than the Euclidean
distance nearest neighbors.

4.2 The Texas Sharpshooter Fallacy
As impressive as these results are, we must be careful
to avoid a simple logic error that seems pervasive in
time series classification papers. Many papers in the
last three or four years test their algorithm/distance
measure on all 20 data sets in the UCR archive, and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Euclidean distance accuracy

C
ID

 a
cc

ur
ac

y

In this area
CID is better

In this area
Euclidean distance
is better

note that their method wins on some, ties on many, and
loses on some. They then claim “our method has better
accuracy in some domains; therefore we could use it in
those domains, and thus it has value.” However, it is
not useful to have an algorithm that can be accurate on
some problems unless you can tell in advance on which
problems it will be more accurate (this is a subtle
version of the Texas sharpshooter fallacy.)
In order for the algorithm to be useful, we must show
that we can predict ahead of time when our method
will have superior accuracy. The obvious way (but not
the only possible way) to do this is to test the accuracy
of both Euclidean distance and CID looking only at the
training data, and using these results to choose which
algorithm to use to classify an object from the testing
set.
We measured the accuracy of Euclidean distance and
CID on training data using leaving-one-out cross-
validation and calculated the expected accuracy gain
as: ݃ܽ݅݊ = ݈݊ܽ݁݀݅ܿݑܧ ݕܿܽݎݑܿܿܽܦܫܥ ݕܿܽݎݑܿܿܽ

Obviously, gain values greater than one indicate that
we expect CID will outperform Euclidean distance on
a given data set; and gain values lower than one
indicate the opposite. We also measured the actual
accuracy gain (or loss) using testing data. The results
are shown in Figure 14.

Figure 14: Expected accuracy gain calculated on
training data versus actual accuracy gain on testing
data

Note that the figure is essentially a real-valued version
of a contingency table, and we have labeled the four
regions with the four familiar labels. Let us consider
the four cases we observe in the order of the evidence
of utility for CID:
• TP) In this region we claimed ahead of time that

CID would improve accuracy, and we were

correct. Gratifyingly, the vast majority of data
points are in this region;

• TN) In this region we correctly claimed ahead of
time that CID would decrease accuracy;

• FN) In this region we claimed ahead of time that
CID would decrease accuracy, but the accuracy
actually increased. This represents a lost
opportunity to improve, but note that we are no
worse off than if we had not tried CID;

• FP) This region is the only truly bad case for our
method. Data points falling in this region represent
cases where we thought we could improve
accuracy, but did not. The good news is that only
one case falls into this category, the Fish data set.
For this data set we predicted an improvement of
only 2% and obtained an accuracy reduction of
0.7%. In general, all cases near point (1,1) are not
of special interest, since they represent marginal
increases/decreases in accuracy.

4.3 Is There Some Other Way?
The reader may wonder if the impressive results of
CID are simply a reinterpretation of some other
invariance. In particular, it might be imagined that
DTW could mitigate some of the effects of differing
complexities. In brief, the answer is no. Complexity
invariance is not subsumed by any other known
invariance. To see this we applied the correction factor
of Section 3.1 to DTW, and named this new measure
of CIDDTW. We then compared the classification
accuracy of both DTW and CIDDTW using a one-
nearest neighbor classifier. Figure 15 presents the
results we obtained.

Figure 15: CIDDTW compared with DTW distance
using one nearest neighbor classifier accuracy.

For DTW, we searched for the best Sakoe-Chiba band
size using the one-nearest neighbor classifier on
training data only. For CIDDTW we did not search for

0.7 0.8 0.9 1 1.1 1.2
0.7

0.8

0.9

1

1.1

1.2

Expected accuracy gain

A
ct

ua
l a

cc
ur

ac
y

ga
in

FP

FN

TP

TN

Fish

0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

DTW accuracy

C
ID

D
T

W
 a

cc
ur

ac
y

In this area
CIDDTW is better

In this area
DTW is better

the best band size, and simply used the window sizes
obtained for DTW. Therefore, the results in Figure 15
might be pessimistic for CIDDTW. Nevertheless,
CIDDTW outperformed DTW in 24 data sets, drew in
7 and lost in 12.
DTW is one of the most popular distance measures for
time series due to its ability to align, in a non-linear
manner, time series that are locally out of phase (cf.
Figure 3)[5][10]. This feature can be used to partially
deal with the complexity problem. Intuitively, DTW
can be used to align peaks and valleys of complex time
series, reducing the distance between them. However,
complex time series frequently have different amounts
of peaks and valleys and aligning some of them does
not fully solve the problem. In Figure 16 we show that
there are instances where DTW can be “fooled” by
simple time series in several classification domains.

Figure 16: Some examples misclassified by DTW with
a one-nearest neighbor classifier, and correctly
classified by CIDDTW. Data sets are SwedishLeaf
(top) and FaceAll (bottom)

5. USEFUL PROPERTIES OF CID
As we are producing a new distance measure, the vast
majority of our empirical evaluation has focused on
questions of accuracy (cf. Sections 4.1 and 4.2).
However, given that we have demonstrated that CID is
an accurate measure, the next natural question to ask is
about its efficiency. As the CID measure is only O(n),
it is clearly efficient for simple main memory
similarity search problems. In fact, the time difference
between Euclidean distance and CID is only
perceptible with very careful experiments.
However, the issue is less clear for disk-resident
problems, or for higher-level problems that require (at
least in principle) a number of comparisons that are
quadratic in the number of objects. Examples of such
problems include motif discovery [17], some types of
clustering and outlier detection [20][21].
Essentially all algorithms in the literature that mitigate
the potential intractability of disk-resident or higher-
level data mining use one (or both) of two well-known
ideas, lower bounding and the triangular inequality.
Many of the novel distance measures proposed for
time series do not (or initially did not) allow leveraging
off lower bounding and the triangular inequality [5].
For example, the rotation invariance that greatly

improved the classification accuracy of star light
curves in Section 2.2 does not allow triangular
inequality acceleration [13], and DTW initially only
allowed very weak lower bounds until the invention of
envelope-based lower bounds [10]. In this section we
consider each speedup technique with reference to
CID.

5.1 Lower Bounding of CID
Since the introduction of the GEMINI framework [7]
in 1994 the idea of lower bounding has been a
cornerstone technique for speeding up the indexing and
mining of time series (and many other kinds of data).
The basic idea is to produce a low-dimensionality
representation of the data and produce a distance
measure defined by the reduced data such that: ܦௗ௨ௗ ௗ௧(ܣ, (ܤ ≤ ,ܣ) ௗ௧ܦ (ܤ
Once this has been done, it is trivial to index the data
with any off-the-shelf multidimensional index
structure. While the details differ slightly for each
index structure, the basic idea is always the same. The
query is projected into the same reduced
dimensionality space, and using Dreduced_data we search
the approximate data (held in the main memory). We
then proceed to load the most promising object from
the disk and measure its distance to the query in the
original dimensional space, updating the best-so-far
variable. We continue to retrieve the most promising
candidates, updating the best-so-far if appropriate,
until the next most promising candidate has a value
(measured in the Dreduced_data space) that is greater than
the best-so-far. At this point we can admissibly
abandon the search.
Can we use lower bounding with CID? The answer is
affirmative and general. We can use any of the dozens
of lower bounding representations for time series [5]
with CID by only changing a single line of code. The
intuition behind this result is to note that CID can only
be greater than or equal to ED. For example, the first
paper in the GEMINI framework used the Fourier
Transform (DFT) for lower bounding [7]: ܦி்(ܣ, (ܤ ≤ ,ܣ) ௗ௧ܦ (ܤ
But CID is always greater than or equal to ED, hence: ܦி்(ܣ, (ܤ ≤ ,ܣ) ௗ௧ܦ (ܤ ≤ ,ܣ)ூܦ (ܤ
So we automatically inherit the lower bounding: ܦி்(ܣ, (ܤ ≤ ,ܣ)ூܦ (ܤ
We must regard this news with some caution. It is
always possible to create a lower bound to any distance
measure by hard coding Dreduced_data to zero. In that
case, the index structure degenerates to a brute force
search. What we need is for the lower bound to be a
tight estimate of the distance. We can see how we fare
here with a simple experiment. We created a database
of 1,000 random walk time series of length 128. We
approximated the data with an eight-dimensional PAA

0 20 40 60 80 100 120 140

0 20 40 60 80 100 120 140

DTW CIDDTW

DTW CIDDTW

approximation4. We sorted the main-memory
approximations of the candidates by listing the most
promising first, producing the heavy (blue) line in
Figure 17.
The first item in this list has a smallest value of 16.8.
This is not a particularly tight lower bound, as the true
ED, plotted above it in medium (green) is 63.1, and the
CID plotted above them, both in light (red), is 68.6.

Figure 17: top) A visual intuition of using lower
bounding to accelerate disk-based search. bottom) A
zoom-in of the above. For ED or CID we must keep
retrieving objects from the disk until the smallest true
distance calculated is less than the next candidate's
lower-bound distance. For ED, this happens after we
have seen 36 objects, and for CID after 47 objects

Note that we can tell from this plot the best possible
pruning for any indexing structure given our assumed
parameters. We can prune off at most 964 objects
under ED, and at most 953 objects under CID. For all
intents and purposes, these numbers are the same: CID
allows 98.9% of the pruning that ED allows.
Furthermore, for larger data sets (recall this was a mere
1,000 objects) this percentage grows ever closer to
100%.
In summary, CID can use the hundreds of indexing and
mining algorithms that exploit ED lower bounding
[5][7] with the most trivial coding effort and a
negligible loss of efficiency.

5.2 CID Obeys the ρ-relaxed Triangular
Inequality
There are literally dozens of indexing and data mining
algorithms for metric spaces that rely on triangular
inequality to prune distance calculations [4][6][18].
Although the details of how triangular inequality is
employed vary for different algorithms, we consider a
concrete technique to illustrate the general idea.

5.2.1 A Brief Review of Orchard’s Algorithm
One of the simplest indexing techniques known is
Orchard’s algorithm [15]. The general idea behind it is
to store a table with the distances between every pair

4 For data lengths/reduced dimensionality that are powers of two,

PAA is exactly equivalent to Haar wavelets [5].

of objects in a database5. In order to decide which
database instance is the nearest neighbor to a user-
given query Q, Orchard’s algorithm first calculates the
distance D(Q,Ci) between Q and a randomly chosen
database instance Ci.
Using D(Q, Ci) and the triangular inequality property: ܣ)ܦ, (ܤ ≤ ,ܣ)ܦ (ܥ + ,ܥ)ܦ (ܤ
We can safely prune some distance calculations
between Q and other training instances. Suppose that
we want to know if we can prune the distance
calculation to a given instance Cj. Using triangular
inequality: ܦ൫ܥ, ൯ܥ ≤ ,ܥ)ܦ ܳ) + ,ܳ)ܦ (ܥ
Reordering the last equation to isolate the distance
between the query object and the pruning candidate Cj,
D(Q, Cj): ܦ൫ܳ, ൯ܥ ≥ ,ܥ൫ܦ ൯ܥ − ,ܥ)ܦ ܳ)
Note that when we have:
,ܥ൫ܦ ൯ܥ ≥ ,ܥ)ܦ 2 ܳ) (5.1)
We can safely conclude that: ܦ൫ܳ, ൯ܥ ≥ ,ܥ)ܦ ܳ)
Therefore, when the distance between the database
instances Ci and Cj is at least twice the distance
between Ci and Q, we can safely prune Cj, since it
cannot be closer to the query object Q than Ci. Notice
that no distance calculations were necessary at
classification time, just constant time table lookups.
This is because D(Ci, Cj) is a known quantity since
Orchard’s algorithm stores a table with distances
between all pairs of training instances. Figure 18
illustrates this idea.

Figure 18: left) Assume we know the pairwise
distances between Ci, Cj and Ck. A newly arrived
query Q must be answered. right) After calculating
the distance D(Q, Ci) we can conclude that items with
a distance to Ci less than or equal to 2 × D(Q, Ci) (i.e.,
the dark gray area) might be the nearest neighbor of
Q, but everything else, including Cj in this example,
can be excluded from consideration

When a distance calculation cannot be pruned, such as
in the case of Ck in Figure 18, the distance D(Ck, Q) is

5 Therefore, Orchard’s algorithm requires O(m2) in space, where m is

the number of database objects. However, [22] shows how to
significantly reduce the space requirement, while producing nearly
identical speedup.

0 500 10000

200

400

600

800

0 20 400

100

200

Lower Bound

CID
Distance

Euclidean
Distance

Lower Bound

CID
Distance

Euclidean
Distance

Any index under CID must retrieve 47 objects from disk

Any index under Euclidean Dist must retrieve 36 objects from disk

Q
? ?

Ci

Cj
Ck

Ci

Cj
CkQ

calculated and if D(Ck, Q) < D(Ci, Q), Ck becomes the
new nearest neighbor currently known (i.e., the best-
so-far), consequently reducing the pruning radius.
Our interest in Orchard’s algorithm is due to the fact
that this algorithm relies exclusively on the triangular
inequality to improve search performance. However,
many other indexing schemes are strongly related [8].

5.2.2 The Relaxed Triangular Inequality
CID does not obey the triangular inequality; however,
it does obey a relaxed version of this property: ܦூ(ܣ, (ܤ ≤ ,ܣ)ூܦ) ߩ (ܥ ,ܥ)ூܦ + ((ܤ
With ρ = CF(A,B). We postpone a formal proof of this
property to Appendix A6.
The ρ-relaxed triangular inequality property implies
that we can search in CID space using the same
algorithms designed for metric spaces, after some
scaling [4]. In practice, all metric indexing techniques
can be adapted to CID by changing just a few lines of
source code. For concreteness we illustrate this with
Orchard’s algorithm.
Suppose we have calculated the distance DCID(Q, Ci),
and want to know if an instance Cj can be safely
pruned.
We start with the ρ-relaxed triangular inequality: ܦூ(ܥ, (ܥ ≤ ,ܥ)ூܦ)ߩ ܳ) + ,ܳ)ூܦ ((ܥ
And reorder to isolate DCID(Q, Cj) on the left-hand side
of the equation: ܦ ߩூ൫ܳ, ൯ܥ ≥ ,ܥூ൫ܦ ൯ܥ − ,ܥ)ூܦ ߩ ܳ)
This equation is equivalent to: ܦூ൫ܳ, ൯ܥ ≥ ,ܥூ൫ܦ ߩ1 ൯ܥ − ,ܥ)ூܦ ܳ)

Therefore, we require that:
,ܥூ൫ܦ ൯ܥ ≥ ,ܥ)ூܦ ߩ 2 ܳ) (5.2)
With ρ = CF(Ci,Cj) in order to safely prune the
calculation of D(Q, Cj).
Thus, to adapt Orchard’s algorithm to CID we just
need to make two simple modifications:
• We must use Equation 5.2 instead of Equation 5.1

when pruning database instances;
• We must store the complexity estimates, CE, of

each database instance. The space overhead for
storing the complexity estimates is O(m), where m
is the number of database objects, and thus is
small relative to the typical overhead for most
indexing data structures.

In order to illustrate that pruning with ρ-relaxed
triangular inequality under CID can be effective, we
ran a series of experiments using a database of random
walk time series indexed with Orchard’s algorithm.

6 Notice that ρ = CF(A,B) is not a bounded value; however, for

indexing purposes this fact has no major consequences. ρ-relaxed
triangular inequality implies 2ρ-inframetric inequality. This means
that the following property also holds: DCID (A,B) ≤ 2 ρ max (DCID (A,C), DCID (C,B))

Our experiment consisted of running paired tests; in
other words, the same database, queries and other
parameters were used to measure performance for both
CID and Euclidean distance. We used the mean
percentage of the database accessed in each query as
the main form to assess the performance of each
technique.
Figure 19 presents the results for database sizes
ranging from 500 up to 4,000 time series. For each
database size we ran a series of 1000 nearest neighbor
queries. We ran experiments with time series lengths
of 32, 64, 128, 256, 512 and 1024 observations. In
every experiment CID outperformed Euclidean
distance in the number of distance calculations pruned.
For brevity, we show in Figure 19 the results for time
series of 32 (top) and 1024 (bottom) observations.

Figure 19: A comparison of fraction of data accessed
with Euclidean distance and CID using random walk
time series with 32 (top) and 1024 (bottom)
observations indexed with Orchard's algorithm

To be clear, we are not claiming that CID outperforms
Euclidean distance for all indexing algorithms in
general or for every data set when using Orchard’s
algorithm. For brevity, we reserve a more detailed
performance analysis of indexing CID space for future
work.

6. CONCLUSION AND FUTURE WORK
In this work we have surveyed all the existing
invariances for time series similarity measures, and
demonstrated the previously unknown need for
complexity invariance. We have introduced CID, a
simple and parameter-free method to mitigate the
problem, and demonstrated its utility in improving
classification accuracy on dozens of data sets.
We have further shown that the use of CID need not
compromise efficiency, since it can be used with the
vast majority of indexing and mining algorithms with
only very minor changes. In future work we plan to
consider the utility of CID for the problem of motif
discovery [17] and outlier detection [20][21].

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

Database size

500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

Database size
Fr

ac
tio

n
of

da

ta
 a

cc
es

se
d

Fr
ac

tio
n

of

da
ta

 a
cc

es
se

d

Euclidean
Distance
CID
Distance

Euclidean
Distance
CID
Distance

7. ACKNOWLEDGMENTS
Thanks to Abdullah Mueen and Pavlos Protopapas for
their help with the star light curve experiments, to Bing
Hu and Yuan Hao for their help preparing some of the
datasets, and to Thanawin Rakthanmanon, Ronaldo C.
Prati and Edson T. Matsubara for their suggestions on
a draft version of this paper. This work was funded by
NSF awards 0803410 and 0808770, FAPESP award
2009/06349-0 and a gift from Microsoft.

8. REFERENCES
[1] S. L. G. Andino, et al, Measuring the complexity of time

series: an application to neurophysiological signals.
Human Brain Mapping, 11(1), pages 46-57, 2000.

[2] W. Aziz and M. Arif, Complexity analysis of stride
interval time series by threshold dependent symbolic
entropy, EJAP, 98 (1), pages 30-40, 2006.

[3] G.E.A.P.A. Batista, Website for this paper:
http://www.icmc.usp.br/~gbatista/cid, 2011.

[4] E. Chávez, G. Navarro, R. Baeza-yates, J. L. Marroquín,
Searching in metric spaces, ACM Computing Surveys,
33, pages 273-321, 1999.

[5] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang and
E. Keogh, Querying and mining of time series data:
experimental comparison of representations and
distance measures. VLDB, pages 1542-1552, 2008

[6] C. Elkan, Using the Triangle Inequality to Accelerate k-
Means, ICML, pages 147-153, 2003.

[7] C. Faloutsos, C., M. Ranganathan, Y. Manolopoulos,
Fast subsequence matching in time-series databases.
ACM SIGMOD Record 23(2), pages 419-429, 1994.

[8] G.R. Hjaltason, H. Samet, Index-driven similarity
search in metric spaces, ACM Transactions on
Database Systems, 28(4), pages 517-580, 2003.

[9] D.J. Hearn, Shape analysis for the automated
identification of plants from images of leaves. Taxon,
58(3), pages 934-954, 2009.

[10] E.J. Keogh, Exact indexing of dynamic time warping.
VLDB, pages 406-417, 2002.

[11] E. J. Keogh, Efficiently finding arbitrarily scaled
patterns in massive time series databases, PKDD, pages
253-265, 2003.

[12] E. J. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei,
S. Lee, J. Handley, Compression-based data mining of
sequential data, DMKD 14(1), pages 99-129, 2007.

[13] E. J. Keogh, L. Wei, X. Xi, M. Vlachos, S. Lee, P.
Protopapas, Supporting exact indexing of arbitrarily
rotated shapes and periodic time series under Euclidean
and warping distance measures, VLDB Journal 18(3),
pages 611-630, 2009.

[14] E. J. Keogh, X. Xi, L. Wei, C. Ratanamahatana, The
UCR time series classification/clustering homepage:
www.cs.ucr.edu/~eamonn/ time_series_data/, 2006.

[15] M. Li, P. Vitanyi, An introduction to Kolmogorov
complexity and its applications, Second Edition,
Springer Verlag, 1997.

[16] K. Li, M.,Yan, and S. Yuan, A simple statistical model
for depicting the CDC15-synchronized yeast cell-cycle
regulated gene expression data. Statististica Sinica 12,
pages 141-158, 2002

[17] A. Mueen, E.J. Keogh, N. B. Shamlo, Finding time
series motifs in disk-resident data. ICDM, pages 367-
376, 2009.

[18] A. Moore, The anchors hierarchy: using the triangle
inequality to survive high dimensional data. UAI, pages
397-405, 2000.

[19] M. T. Orchard, A fast nearest-neighbor search
algorithm. ICASSP, pages 2297- 2300, 1991.

[20] P. Protopapas , J. M. Giammarco, L. Faccioli, M. F.
Struble, R. Dave, C. Alcock, Finding outlier light
curves in catalogues of periodic variable stars. Monthly
Notices of the Royal Astronomical Society, 369(2),
pages 677-696, 2006.

[21] D.Yankov, E.J. Keogh, U.Rebbapragada, Disk aware
discord discovery: finding unusual time series in
terabyte sized datasets. KAIS, 17 pages 241-262, 2008.

[22] L. Ye, X. Wang, E. Keogh, A. Mafra-Neto,
Autocannibalistic and anyspace indexing algorithms
with applications to sensor data mining. SIAM SDM,
pages 85-96, 2009.

[23] J. Zunic, P. Rosin, L. Kopanja, Shape orientability.
ACCV, pages 11-20, 2006.

APPENDIX A: ρ-RELAXED
TRIANGULAR INEQUALITY PROOF
In this section we prove that CID obeys the ρ-relaxed
triangular inequality: ܦூ(ܣ, (ܤ ≤ ,ܣ)ூܦ൫ߩ (ܥ + ,ܥ)ூܦ ൯(ܤ
We start our proof by stating the triangular inequality of
Euclidean distance: ܣ)ܦܧ, (ܤ ≤ ,ܣ)ܦܧ (ܥ + ,ܥ)ܦܧ (ܣ
Remember that the complexity correction factor CF is a
quantity greater than or equal to one; therefore, we can
multiply both sides of the inequality by CF(A,B): ܣ)ܦܧ, ,ܣ)ܨܥ(ܤ (ܤ ≤ ,ܣ)ܨܥ ,ܣ)ܦܧ൫(ܤ (ܥ + ,ܥ)ܦܧ ൯(ܣ
The left-hand side of the inequality is our definition of CID;
hence: ܦூ(ܣ, (ܤ ≤ ,ܣ)ܦܧ൫ߩ (ܥ + ,ܥ)ܦܧ ൯(ܣ
With ρ = CF(A,B).
Finally, we can again use the fact that CF is greater than or
equal to one to change Euclidean distances to CID on the
right-hand side of the equation: ܦூ(ܣ, (ܤ ≤ ,ܣ)ܦܧ൫ߩ ,ܣ)ܨܥ(ܥ (ܥ + ,ܥ)ܦܧ ,ܥ)ܨܥ(ܣ ൯(ܣ
And, therefore: ܦூ(ܣ, (ܤ ≤ ,ܣ)ூܦ൫ߩ (ܥ + ,ܥ)ூܦ ൯(ܣ

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

