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ABSTRACT 
The ubiquity of time series data across almost all 
human endeavors has produced a great interest in time 
series data mining in the last decade. While there is a 
plethora of classification algorithms that can be applied 
to time series, all of the current empirical evidence 
suggests that simple nearest neighbor classification is 
exceptionally difficult to beat. The choice of distance 
measure used by the nearest neighbor algorithm 
depends on the invariances required by the domain. 
For example, motion capture data typically requires 
invariance to warping.  
In this work we make a surprising claim. There is an 
invariance that the community has missed, complexity 
invariance. Intuitively, the problem is that in many 
domains the different classes may have different 
complexities, and pairs of complex objects, even those 
which subjectively may seem very similar to the 
human eye, tend to be further apart under current 
distance measures than pairs of simple objects. This 
fact introduces errors in nearest neighbor classification, 
where complex objects are incorrectly assigned to a 
simpler class.  
We introduce the first complexity-invariant distance 
measure for time series, and show that it generally 
produces significant improvements in classification 
accuracy. We further show that this improvement does 
not compromise efficiency, since we can lower bound 
the measure and use a modification of triangular 
inequality, thus making use of most existing indexing 
and data mining algorithms. We evaluate our ideas 
with the largest and most comprehensive set of time 
series classification experiments ever attempted, and 
show that complexity-invariant distance measures can 
produce improvements in accuracy in the vast majority 
of cases. 
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1. INTRODUCTION 
Time series data occur in almost all domains, and this 
fact has created a great interest in time series data 
mining. There is a plethora of classification algorithms 
that can be applied to time series; however, all of the 
current empirical evidence suggests that simple nearest 
neighbor classification is very difficult to beat [5][14]. 

This only leaves open the question of which distance 
measure to use. The choice of distance measure 
depends on the domain. In particular, it depends on the 
invariances required by the domain. For example, 
motion capture data typically requires invariance to 
“warping” (local non-linear accelerations) [13], and 
gene expression data typically requires invariance to 
uniform scaling (linear “stretching”) [11]. With this in 
mind, the last decade has seen the introduction of 
hundreds of techniques designed to efficiently measure 
the similarity between time series with invariance to 
(various combinations of) the distortions of warping 
[13], uniform scaling [11], offset [7], amplitude 
scaling, phase [13], occlusions, uncertainty and  
wandering baseline.  
Surprisingly, there is an invariance that the community 
has missed, complexity invariance. We defer a detailed 
discussion of complexity until later in this work, but 
for the moment the reader’s intuitive idea of “having 
more peaks, valleys and features” will suffice.  
The problem lies in the fact that in many domains the 
different classes may have different complexities, and 
pairs of complex objects, even those which 
subjectively may seem very similar, tend to be further 
apart under current distance measures than pairs of 
simple objects. This fact introduces errors in nearest 
neighbor classification, because complex objects are 
assigned to a simpler class.  
In this work we introduce the first complexity-
invariant distance measure for time series, and show 
that it generally produces significant improvements in 
classification accuracy. Our complexity-invariant 
distance measure is simple, parameter-free, and 
increases the time complexity only by a barely 
perceptible amount. 
We further show that this improvement does not 
compromise the efficiency of algorithms that make 
frequent calls to a distance measure (classification [5], 
clustering [6], motif discovery [17] and outlier 
detection [20][21]), since we can lower bound the 
measure and use a minor modification of triangular 
inequality, and  thus avail of all existing indexing and 
data mining techniques.  
It is critical to note that the problem we have observed 
is not solved or mitigated by generalizing from one 
nearest neighbor to k-nearest neighbors, or by 
smoothing the data, or using DTW, etc. We will 



present extensive empirical evidence that our 
improvements in accuracy are valid, significant and 
result from the reason we claim.  
The rest of this paper is organized as follows. In 
Section 2 we review the current set of known 
invariances, and more general related work. In Section 
3 we present a distance measure that is invariant to the 
complexity of time series. In Section 4 we evaluate our 
ideas with a large and comprehensive set of time series 
classification experiments and show that complexity-
invariant distance measures can produce improvements 
in accuracy in the vast majority of cases. In Section 5 
we discuss some important properties of our proposed 
distance that allow it to be indexed by virtually all 
existing indexing schemes based on lower bounding 
and triangular inequality. Finally, in Section 6 we offer 
conclusions and suggest areas for future work.  

2. BACKGROUND / RELATED WORK 
We begin by introducing Euclidean distance, and use 
this as a starting point to consider other distance 
measures in the next section. 
Suppose we have two time series, Q and C, of length n. ܳ = ,ଵݍ ,ଶݍ … , ,ݍ … , ܥ ݍ = ܿଵ, ܿଶ, … , ܿ, … , ܿ 
If we wish to compare two time series, we can use the 
ubiquitous Euclidean distance: 

,ܳ)ܦܧ (ܥ ≡ ඩ(ݍ − ܿ)ଶ
ୀଵ

మ
 

This distance measure is visualized in Figure 1. 

 
Figure 1: The Euclidean distance between two time 
series can be visualized as the square root of the sum 
of the squared length of the vertical hatch lines 

While Euclidean distance is a simple measure, it is 
competitive for many problems [5]. Nevertheless, in 
many domains the data is distorted in some way, and 
either the distortion must be removed before using 
Euclidean distance, or a more robust measure must be 
used1. We will now review all known distortions and 
the techniques for achieving invariance to them.   

                                                           
1 In practice these two options can be logically equivalent. For 

example, DTW can be seen as a more robust distance measure, or 
it can be seen as using the Euclidean distance after a dynamic 
programming algorithm has removed the warping.  

2.1 A Review of All Known Invariances 
For any given domain the set of required invariances is 
domain dependent, and include: 

Amplitude Invariance/Offset Invariance: If we try to 
compare two time series measured on different scales, 
say Celsius and Fahrenheit, they will not match well, 
even if they have similar shapes. To measures the true 
underlying similarity we must first make their 
amplitudes the same. As shown in Figure 2.left, the 
example of Euclidean distance shown in Figure 1 
already had this normalization, and the original data 
has a significant difference in amplitude.  

Similarly, even if two time series have identical 
amplitudes, they may have different offsets (different 
mean values). As shown in Figure 2.right, even a small 
change in offset rapidly dominates the Euclidean 
distance, leading to false negatives; i.e., missed 
heartbeats by a heartbeat detector. 

 

Figure 2: left) If compared before amplitude scaling, 
these two time series appear very different. right) 
When matching a heartbeat query against a stream, 
the first two match well, but subsequently the drifting 
offset means the remaining heartbeats are not 
discovered 

A classic example of where these invariances are 
critical is gait recognition from video, where zoom and 
pan/tilt correspond to amplitude and offset, 
respectively. Both these invariances can be trivially 
achieved by z-normalizing the data [7]. 

Local Scaling (“warping”) Invariance:  This 
invariance is necessary in almost all biological signals, 
including gait, motion capture, handwriting and ECGs. 
Figure 3 shows an example of two insect behaviors 
which match only when one is locally warped to align 
with the other [1]. 

 

Figure 3: Two time series of insect behavior matched 
with invariance to warping. The alignment was 
calculated by the DTW algorithm 
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Given the ubiquity of the domains in which this 
invariance is required, there are hundreds of papers on 
the topic. However, recent empirical evidence strongly 
suggests that a forty-year-old technique, Dynamic 
Time Warping (DTW), works exceptionally well [5]. 
Uniform Scaling Invariance: In contrast to the 
localized scaling that DTW deals with, in many data 
sets we must also deal with global scaling.  For 
example, Figure 4 shows two yeast cell-cycle gene 
expression time series which are known to be related 
[16]. If we try to match the shorter one against the 
prefix of the longer one, it matches poorly. However, if 
we globally stretch it by a factor of 1.41, it becomes a 
much better match.  

 
Figure 4: (I) A full gene expression, CDC28, matches 
poorly to the prefix of a related gene, CDC15. (II) If 
we rescale it by a factor of 1.41, it matches CDC15 
much more closely (III) 

The main difficulty in creating uniform scaling 
invariance is that we typically do not know the scaling 
factor ahead of time, and are thus condemned to testing 
all possibilities within a given range [11]. 

Phase Invariance: This form of invariance is 
important when matching periodic time series such as 
star-light curves [13], gait, heartbeats, etc. It is also 
important when matching two-dimensional shapes 
which have been converted to one-dimensional “time” 
series, a representational trick which has gained 
popularity in recent years (cf. Figure 6) [13].  

 
Figure 5: top) Two star light curves are obviously out 
of phase. bottom) By holding one time series fixed, 
and testing all circular shifts of the other, we can 
achieve phase invariance 

Several authors have suggested achieving this 
invariance by finding a cardinal alignment to which all 
time series are aligned. However, recent evidence 
suggests that this may be very brittle [23], and the only 
currently known way to guarantee phase invariance is 
to test all possible alignments, as show in Figure 5. 

Occlusion Invariance: This form of invariance occurs 
in domains where a small subsequence of a time series 
may be missing. As a simple example, imagine that we 
want to build a robust index for sign language motion 
capture data, such that the query “one small step for a 
man” will find “one small step for man,” in spite of the 
fact that one sequence is missing the “a.” Figure 6 
shows a more visually intuitive example. 

 
Figure 6: Occlusion invariance can be achieved by 
selectively declining to match subsections of a time 
series. In this case it is robust to the missing nose 
region of the ancient skull (bottom)  

2.2 On Multiple Invariances 
We conclude with a simple experiment to demonstrate 
what the reader will have surely anticipated: that some 
problems require multiple invariances.  
We created a 3-class star light curve data set with a test 
set of 128 examples (two of which are shown in Figure 
5), and a training set of 1024 objects2.  
While the original light curves have periods that range 
from hours to weeks, they are normalized to have a 
standard length of 1,024 to give them uniform scaling 
invariance. Furthermore, since it is the relative, not 
absolute, changes in apparent brightness that matter, 
the data is z-normalized to adjust the amplitude and 
offset. The data is then universally phased using a 
state-of-the-art domain aware algorithm to achieve 
phase invariance [20].   
We measured the accuracy of this data set using 1-
nearest neighbor classifier with Euclidean distance, 
achieving a respectable 80.47%. We then checked to 
see if using DTW to achieve local scaling invariance 

                                                           
2 This experiment, like all others in this work, is 100% reproducible; 

see Section 4 for our experimental philosophy.  
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would help, and indeed our accuracy jumped to 
86.72%. 
However, rather than stopping here, we decided to test 
the universal phasing assumption. Suppose we ignored 
it and tested DTW for all possible alignments/shifts. 
After testing the phase-invariant version of DTW [13], 
we found that the accuracy increased to an impressive 
91.4%. Clearly, the current universal phasing 
algorithm does not produce perfect alignments. 
Finally, we note the obvious, that in some cases 
invariances can decrease accuracy. An obvious 
example is in the classification of shapes converted to 
time series (as in Figure 6). If we wanted to 
discriminate between the shapes 'p' and 'd', this would 
be trivial, but adding phase (rotation) invariance would 
make it impossible.  
The complexity invariance that we are proposing in 
this work is not a special case of any of the above or 
any combination of the above, but rather a new 
invariance whose need has escaped the attention of the 
community. 

3. COMPLEXITY-INVARIANT 
DISTANCE FOR TIME SERIES 
We are finally in a position to introduce the core 
contribution of this work. As we have seen, the 
research community has proposed a diverse set of 
invariances for time series in the last two decades. 
However, there is one invariance that has been missed, 
complexity invariance (for the moment, the reader's 
natural intuition of complex as having many peaks and 
values will suffice.) In many (perhaps most) domains, 
different classes may have widely varying 
complexities. We can most readily see this on time 
series derived from shapes (as in Figure 6). For 
example, as we show in Figure 7, leaves range in 
complexity from a simple pointed ellipse (ovate), 
shown bottom right, to a jagged-edged familiar maple 
leaf (palmate), shown bottom left.  

 
Figure 7: Examples of objects from a single 
domain, which have different shape complexities 

The reason why this matters is that pairs of complex 
objects, even those which subjectively may seem very 
similar to the human eye, tend to be further apart under 
current distance measures than pairs of simple objects. 
This fact introduces errors in nearest neighbor 
classification, because complex objects are incorrectly 
assigned to a simpler class.  
We first illustrate the necessity for a complexity-
invariant distance for time series using a synthetic data 
set of figures with different shape complexities. Note 
that our use of synthetic data here is for clarity; as we 
hinted at in Figure 7 and will show later, the 
complexity problem occurs in many real data sets.  
Figure 8 presents some geometric figures with 
increasing shape complexity. Each figure is labeled 
with its number of edges for reference. As in Figure 6, 
the two-dimensional shapes are converted to a single-
dimensional “time” series by calculating the distance 
between the central point and the figure contour. 
Figure 8 also presents the z-normalized time series 
created for each figure. 

 

Figure 8: A set of geometric figures with increasing 
shape complexity and the respective “time” series 
extracted by calculating the distance between the 
central point and its contour 

We calculated distances between every pair of time 
series in Figure 8 using Euclidean distance and present 
the results in Table 1. 

Table 1: Euclidean distance matrix for the 
geometric figures data set 

 4 5 6 7 10 12 24 32 

4  1.000 1.122 1.231 1.181 1.048 1.155 1.170 
5   1.318 1.068 1.103 1.153 1.165 1.180 
6    1.088 1.097 1.103 1.186 1.200 
7     1.217 1.199 1.198 1.191 
10      1.263 1.195 1.214 
12       1.135 1.199 
24        1.191 
32         

 
We can use the numbers in Table 1 (and the 
dendrogram created from them, as shown in Figure 
10.left) to explore the most similar shapes according 

4 5 6 7

10 12 24 32



Euclidean distance. Considering the figures with 
simple shapes, the results are intuitive: The 4-edge star 
is the most similar object to the 5-edge star and vice-
versa; the 7-edge figure is the most similar to the 6-
edge star, etc. However, when we consider figures with 
complex shapes, the results are not so clear. The 
simplest figure, the 4-edge star, is the most similar to 
the 32-edge and the 12-edge figures. For the 24-edge 
figure, even though the 12-edge is the nearest one, the 
second and third most similar objects are the 4 and 5-
edges stars, respectively. 
This example illustrates a phenomenon that can be 
summarized in a simple statement: the distance 
between pairs of complex time series is frequently 
greater than the distance between pairs of simple time 
series. In fact, complex time series are commonly 
considered more similar to simple time series than to 
other complex time series they look like.  

3.1 CID 
Complexity invariance uses information about 
complexity differences between two time series as a 
correction factor for existing distance measures. In this 
section we restrict our discussion to Euclidean 
distance, and we consider the use of complexity 
invariance in other distance measures in Section 4.3. 
The Euclidean distance, ED(Q,C), between two time 
series Q and C, can be made complexity-invariant by 
introducing a correction factor: ܦܫܥ(ܳ, (ܥ = ,ܳ)ܦܧ  (ܥ  × ,ܳ)ܨܥ   (ܥ
Where CF is a complexity correction factor defined as: ܨܥ(ܳ, (ܥ =  max (ܧܥ(ܳ), ,(ܳ)ܧܥ) min((ܥ)ܧܥ  ((ܥ)ܧܥ

And CE(T) is a complexity estimate of a time series T.  
Before discussing how CE can be implemented, it is 
worth noticing that CF accounts for differences in the 
complexities of the time series being compared. CF 
forces time series with very different complexities to 
be further apart. In the case that all time series have the 
same complexity, CID simply degenerates to 
Euclidean distance. 
This formulation leaves only the question of how to 
measure the complexity. The complexity of a time 
series can be estimated by a multitude of different 
approaches, such as Kolmogorov complexity [15], 
many variants of entropy [1][2], the number of zero 
crossings, etc.  
We can consider the desirable properties any such 
complexity measure should have: 
• It should have low time and space complexity; 
• It should have few parameters, ideally none; 
• It should be intuitive and interpretable. 
Given these above desideratum, we now present one 
possible complexity measure. It has O(1) space and 
O(n) time complexity, is completely parameter-free, 
and has a natural interpretation. It also was empirically 

the best on average of the dozen or so possible 
measures we tried3. Nevertheless, we emphasize that 
we are not claiming this is the optimal measure (if such 
a thing is even well defined). Recall that the 
contribution of this work is to point out the complexity 
invariance problem, and to show an existence proof of 
a method to mitigate it.  
Our approach to estimate the complexity of a time 
series is very simple. It is based on the physical 
intuition that if we could “stretch” a time series until it 
becomes a straight line, a complex time series would 
result in a longer line than a simple time series. Figure 
9 illustrates this idea with some examples. 

 
Figure 9: left) Three time series can have their 
complexity measured by stretching them and 
measuring the length of the resulting lines (right) 

Our complexity estimate can be computed as follows: 

(ܳ)ܧܥ = ඩ(ݍ − ାଵ)ଶିଵݍ
ୀଵ

మ
 

The CID approach for complexity estimation can be 
easily implemented in any programming language. In 
order to reinforce this statement, Table 2 lists not the 
pseudo-code algorithm, but the entire Matlab code to 
compute CID. 

Table 2: Matlab code for Complexity Invariance 
Distance 

1 

2 

3 

4 

5 

function d = CID(Q, C) 

   CE_Q = sqrt(sum(diff(Q).^2)); 

   CE_C = sqrt(sum(diff(C).^2)); 

   d = sqrt(sum((Q - C).^2)) * … 

      (max(CE_Q,CE_C)/min(CE_Q,CE_C)); 

The code in Table 2 is computationally efficient since 
computing the complexity estimates is O(n). 
Therefore, the time complexity of the entire code is 
O(n). However, we can make this code a little more 
efficient if the complexity estimates are pre-computed 
and stored in a table. For example, in an exhaustive k-
nearest neighbor search, each query must be compared 
to the entire database. Complexity estimates for the 
query and all time series in the database can be pre-
computed and stored with negligible overhead. In this 
case, lines 2 and 3 in Table 2 can be replaced by a 
simple table lookup. 

                                                           
3 We direct the interested reader to the paper's website for a detailed 

discussion of other complexity estimation functions [3]. 
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In order to provive consistent complexity estimates 
across an entire data set, CE requires that the time 
series under comparison should have the same number 
of observations, the same sampling rate and 
normalized amplitudes. 
We can get our first hint of the utility of CID by 
considering the shape data set of the previous section. 
Table 3 presents the pairwise CID distances. Note that 
CID distances tend to be small between time series 
with similar complexities and increase as we compare 
time series with different complexities. 

Table 3: CID matrix for the geometric figures  

 4 5 6 7 10 12 24 32 

4  1.000 1.061 1.229 1.707 1.839 3.843 5.042 
5   1.307 1.138 1.700 2.159 4.135 5.422 
6    1.096 1.599 1.953 3.982 5.214 
7     1.651 1.977 3.744 4.819 
10      1.439 2.580 3.396 
12       2.018 2.761 
24        1.446 
32         

We also clustered this data set using hierarchical 
clustering with average linkage. Figure 10 presents the 
results for Euclidean distance (left) and CID (right).  

 

Figure 10: Hierarchical clustering of geometric 
figures data set using Euclidean distance (left) and 
CID (right) 

Here the results for Euclidean distance are 
counterintuitive, with complex figures linked directly 
to clusters formed by simpler figures. 

3.2 CID on a Natural Problem 
The skeptical reader may wonder if the need for a 
complexity-invariant distance is restricted to our 
contrived synthetic example. Before applying CID to a 
large set of classification data sets, we present in this 
section one example of CID applied to natural data. 
This example consists of images of leaves that have 
been converted to time series. The classification of 
leaves is an important problem in agriculture and in 

understanding biodiversity, and has attracted 
significant recent interest [9].    
Pairs of leaf images with different shape complexity 
were randomly selected and clustered with Euclidean 
distance and CID using average linkage. Figure 11 
illustrates the results that were obtained. 

 
Figure 11: Hierarchical clustering of leaf images with 
Euclidean distance (left) and CID (right) 

Even though all the pairs of leaves are quite similar to 
the human eye, Euclidean distance can only correctly 
identify two clusters (marked by heavy lines in Figure 
11.left). Not surprisingly, these two clusters are formed 
by the two pairs of leaves with the simplest shapes. 
Complex leaves do not form their own clusters and are 
attached directly to clusters formed by simpler leaves. 
In contrast, CID was able to identify clusters of pairs 
of leaves with complex shapes, as shown in Figure 
11.right. 
We can use the time series extracted from leaf images 
to better illustrate why Euclidean distance frequently 
considers complex time series to be more similar to 
simple time series than to other complex (but 
apparently similar) time series. Figure 12 presents a 
comparison of three leaves. 

 
Figure 12: top) A comparison of a simple-shaped leaf 
(Boehmeria cylindrical) and a complex-shaped leaf 
(Ambrosia artemisiifolia) that results in smaller 
Euclidean distance than when two complex-shaped 
leaves (Ambrosia artemisiifolia) are compared to each 
other (bottom) 
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Figure 12 presents a comparison of a leaf with a simple 
shape, Boehmeria cylindrical, and a leaf of complex 
shape, Ambrosia artemisiifolia (top); and a comparison 
of two exemplars of Ambrosia artemisiifolia (bottom). 
According to Euclidean distance, the distance between 
Boehmeria cylindrical and Ambrosia artemisiifolia 
(the distance between the top two time series) is 
smaller than the distance between the two exemplars 
Ambrosia artemisiifolia (the two bottom time series).  
The intuition behind this unintuitive result is that 
simple time series frequently present an “average” 
pattern that helps to minimize the Euclidean distance. 
In contrast, complex time series have a large number 
of peaks, in different quantities, amplitudes and 
durations. It is very unlikely that all these features 
match, even to another similar time series, thus the 
many minor local differences rapidly accumulate to 
produce a large global Euclidean distance. 

4. EMPIRICAL EVALUATION 
We begin by stating our experimental philosophy.  We 
have designed all experiments such that they are not 
only reproducible, but easily reproducible. For 
example, if a reader wishes to reproduce any figure in 
this paper, they can simply run the script we provide to 
do so. The scripts are designed to be easily expandable 
in order to include new data sets or distance measures, 
for example.  
To this end, we have built a webpage which contains 
all data sets and code used in this work, together with 
spreadsheets which contain the raw numbers displayed 
in all of the figures. In addition, this webpage contains 
many additional experiments which we could not fit 
into this work; however, we note that this paper is 
completely self-contained. We have made the script 
available in Matlab, since this is essentially free for 
anyone in academia, and a completely free clone 
version (Octave) is available. 
Finally, we note that in this paper we are testing every 
publicly available class-labeled time series data set in 
the world. Twenty of these data sets have been 
available for five years at [14], and used in more than 
one hundred papers. The remainder will be publicly 
released with the publication of this paper. 

4.1 Basic Accuracy 
We performed our evaluation using the largest set of 
time series classification data sets ever attempted. In 
total, the evaluation includes 43 data sets from 
different domains, including medicine, entomology, 
engineering, astronomy, signal processing, and many 
others. A detailed description of the data sets is 
available at the paper website [3]. 
We tested the accuracy of both Euclidean distance and 
CID using the five-year-old predefined splits for 20 of 
the data sets that came from [14], and defined similar 
splits for the remaining 23 data sets. We emphasize 

that in the latter case, we split the data just once, before 
testing any accuracy results.  
Recall that neither distance measure has any 
parameters to be learned in the training stage. Our 
experimental results are visually summarized in Figure 
13; the raw numbers are available at [3]. 

 

Figure 13: CID compared with Euclidean distance 
using 1-Nearest Neighbor classifier accuracy. Each 
point represents one data set, with its X-axis value 
being its Euclidean distance accuracy, and its Y-axis 
value being its CID accuracy 

We believe that the results speak for themselves. 
However, notice that we are publishing results for all 
classification benchmark data sets we have at hand, 
and not for a subset of any kind. Nevertheless, CID 
improved classification accuracy in 32 of the 43 data 
sets, had the same performance as Euclidean distance 
in 3 data sets and decreased the accuracy in only 8. 
We conclude this section by observing that CID 
improves accuracy because of the reasons we claim; 
i.e., CID avoids considering overly simple objects as 
similar to complex objects. In order to verify this 
hypothesis we performed a simple experiment: we 
collected data on all time series (from all data sets) that 
were misclassified by Euclidean distance and correctly 
classified by CID, and compared the complexity of the 
nearest neighbors provided by each distance measure. 
In 87.54% of the cases, CID assigned a more complex 
nearest neighbor than Euclidean distance did. It is 
reasonable to assume that, if CID could improve 
accuracy for any other (unknown) reason, we would 
expect that only approximately 50% of the CID nearest 
neighbors would be more complex than the Euclidean 
distance nearest neighbors. 

4.2 The Texas Sharpshooter Fallacy 
As impressive as these results are, we must be careful 
to avoid a simple logic error that seems pervasive in 
time series classification papers. Many papers in the 
last three or four years test their algorithm/distance 
measure on all 20 data sets in the UCR archive, and 
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note that their method wins on some, ties on many, and 
loses on some. They then claim “our method has better 
accuracy in some domains; therefore we could use it in 
those domains, and thus it has value.” However, it is 
not useful to have an algorithm that can be accurate on 
some problems unless you can tell in advance on which 
problems it will be more accurate (this is a subtle 
version of the Texas sharpshooter fallacy.) 
In order for the algorithm to be useful, we must show 
that we can predict ahead of time when our method 
will have superior accuracy. The obvious way (but not 
the only possible way) to do this is to test the accuracy 
of both Euclidean distance and CID looking only at the 
training data, and using these results to choose which 
algorithm to use to classify an object from the testing 
set. 
We measured the accuracy of Euclidean distance and 
CID on training data using leaving-one-out cross-
validation and calculated the expected accuracy gain 
as: ݃ܽ݅݊ =  ݈݊ܽ݁݀݅ܿݑܧ ݕܿܽݎݑܿܿܽܦܫܥ ݕܿܽݎݑܿܿܽ

Obviously, gain values greater than one indicate that 
we expect CID will outperform Euclidean distance on 
a given data set; and gain values lower than one 
indicate the opposite. We also measured the actual 
accuracy gain (or loss) using testing data. The results 
are shown in Figure 14. 

 

Figure 14: Expected accuracy gain calculated on 
training data versus actual accuracy gain on testing 
data 

Note that the figure is essentially a real-valued version 
of a contingency table, and we have labeled the four 
regions with the four familiar labels. Let us consider 
the four cases we observe in the order of the evidence 
of utility for CID: 
• TP) In this region we claimed ahead of time that 

CID would improve accuracy, and we were 

correct. Gratifyingly, the vast majority of data 
points are in this region; 

• TN) In this region we correctly claimed ahead of 
time that CID would decrease accuracy; 

• FN) In this region we claimed ahead of time that 
CID would decrease accuracy, but the accuracy 
actually increased. This represents a lost 
opportunity to improve, but note that we are no 
worse off than if we had not tried CID; 

• FP) This region is the only truly bad case for our 
method. Data points falling in this region represent 
cases where we thought we could improve 
accuracy, but did not. The good news is that only 
one case falls into this category, the Fish data set. 
For this data set we predicted an improvement of 
only 2% and obtained an accuracy reduction of 
0.7%. In general, all cases near point (1,1) are not 
of special interest, since they represent marginal 
increases/decreases in accuracy. 

4.3 Is There Some Other Way? 
The reader may wonder if the impressive results of 
CID are simply a reinterpretation of some other 
invariance. In particular, it might be imagined that 
DTW could mitigate some of the effects of differing 
complexities. In brief, the answer is no. Complexity 
invariance is not subsumed by any other known 
invariance. To see this we applied the correction factor 
of Section 3.1 to DTW, and named this new measure 
of CIDDTW. We then compared the classification 
accuracy of both DTW and CIDDTW using a one-
nearest neighbor classifier. Figure 15 presents the 
results we obtained. 

 

Figure 15: CIDDTW compared with DTW distance 
using one nearest neighbor classifier accuracy.  

For DTW, we searched for the best Sakoe-Chiba band 
size using the one-nearest neighbor classifier on 
training data only. For CIDDTW we did not search for 
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the best band size, and simply used the window sizes 
obtained for DTW. Therefore, the results in Figure 15 
might be pessimistic for CIDDTW. Nevertheless, 
CIDDTW outperformed DTW in 24 data sets, drew in 
7 and lost in 12. 
DTW is one of the most popular distance measures for 
time series due to its ability to align, in a non-linear 
manner, time series that are locally out of phase (cf. 
Figure 3)[5][10]. This feature can be used to partially 
deal with the complexity problem. Intuitively, DTW 
can be used to align peaks and valleys of complex time 
series, reducing the distance between them. However, 
complex time series frequently have different amounts 
of peaks and valleys and aligning some of them does 
not fully solve the problem. In Figure 16 we show that 
there are instances where DTW can be “fooled” by 
simple time series in several classification domains. 

 

Figure 16: Some examples misclassified by DTW with 
a one-nearest neighbor classifier, and correctly 
classified by CIDDTW. Data sets are SwedishLeaf 
(top) and FaceAll (bottom) 

5. USEFUL PROPERTIES OF CID 
As we are producing a new distance measure, the vast 
majority of our empirical evaluation has focused on 
questions of accuracy (cf. Sections 4.1 and 4.2). 
However, given that we have demonstrated that CID is 
an accurate measure, the next natural question to ask is 
about its efficiency. As the CID measure is only O(n), 
it is clearly efficient for simple main memory 
similarity search problems. In fact, the time difference 
between Euclidean distance and CID is only 
perceptible with very careful experiments. 
However, the issue is less clear for disk-resident 
problems, or for higher-level problems that require (at 
least in principle) a number of comparisons that are 
quadratic in the number of objects. Examples of such 
problems include motif discovery [17], some types of 
clustering and outlier detection [20][21].  
Essentially all algorithms in the literature that mitigate 
the potential intractability of disk-resident or higher-
level data mining use one (or both) of two well-known 
ideas, lower bounding and the triangular inequality. 
Many of the novel distance measures proposed for 
time series do not (or initially did not) allow leveraging 
off lower bounding and the triangular inequality [5]. 
For example, the rotation invariance that greatly 

improved the classification accuracy of star light 
curves in Section 2.2 does not allow triangular 
inequality acceleration [13], and DTW initially only 
allowed very weak lower bounds until the invention of 
envelope-based lower bounds [10]. In this section we 
consider each speedup technique with reference to 
CID. 

5.1 Lower Bounding of CID 
Since the introduction of the GEMINI framework [7] 
in 1994 the idea of lower bounding has been a 
cornerstone technique for speeding up the indexing and 
mining of time series (and many other kinds of data). 
The basic idea is to produce a low-dimensionality 
representation of the data and produce a distance 
measure defined by the reduced data such that: ܦௗ௨ௗ ௗ௧(ܣ, (ܤ ≤ ,ܣ) ௗ௧ܦ   (ܤ
Once this has been done, it is trivial to index the data 
with any off-the-shelf multidimensional index 
structure. While the details differ slightly for each 
index structure, the basic idea is always the same. The 
query is projected into the same reduced 
dimensionality space, and using Dreduced_data we search 
the approximate data (held in the main memory). We 
then proceed to load the most promising object from 
the disk and measure its distance to the query in the 
original dimensional space, updating the best-so-far 
variable. We continue to retrieve the most promising 
candidates, updating the best-so-far if appropriate, 
until the next most promising candidate has a value 
(measured in the Dreduced_data space) that is greater than 
the best-so-far. At this point we can admissibly 
abandon the search. 
Can we use lower bounding with CID? The answer is 
affirmative and general. We can use any of the dozens 
of lower bounding representations for time series [5] 
with CID by only changing a single line of code. The 
intuition behind this result is to note that CID can only 
be greater than or equal to ED. For example, the first 
paper in the GEMINI framework used the Fourier 
Transform (DFT) for lower bounding [7]: ܦி்(ܣ, (ܤ ≤ ,ܣ) ௗ௧ܦ   (ܤ
But CID is always greater than or equal to ED, hence: ܦி்(ܣ, (ܤ ≤ ,ܣ) ௗ௧ܦ  (ܤ ≤ ,ܣ)ூܦ   (ܤ
So we automatically inherit the lower bounding: ܦி்(ܣ, (ܤ ≤ ,ܣ)ூܦ   (ܤ
We must regard this news with some caution. It is 
always possible to create a lower bound to any distance 
measure by hard coding Dreduced_data to zero. In that 
case, the index structure degenerates to a brute force 
search. What we need is for the lower bound to be a 
tight estimate of the distance. We can see how we fare 
here with a simple experiment. We created a database 
of 1,000 random walk time series of length 128. We 
approximated the data with an eight-dimensional PAA 
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approximation4. We sorted the main-memory 
approximations of the candidates by listing the most 
promising first, producing the heavy (blue) line in 
Figure 17.  
The first item in this list has a smallest value of 16.8. 
This is not a particularly tight lower bound, as the true 
ED, plotted above it in medium (green) is 63.1, and the 
CID plotted above them, both in light (red), is 68.6. 

 
Figure 17: top) A visual intuition of using lower 
bounding to accelerate disk-based search. bottom) A 
zoom-in of the above. For ED or CID we must keep 
retrieving objects from the disk until the smallest true 
distance calculated is less than the next candidate's 
lower-bound distance. For ED, this happens after we 
have seen 36 objects, and for CID after 47 objects 

Note that we can tell from this plot the best possible 
pruning for any indexing structure given our assumed 
parameters. We can prune off at most 964 objects 
under ED, and at most 953 objects under CID. For all 
intents and purposes, these numbers are the same: CID 
allows 98.9% of the pruning that ED allows. 
Furthermore, for larger data sets (recall this was a mere 
1,000 objects) this percentage grows ever closer to 
100%. 
In summary, CID can use the hundreds of indexing and 
mining algorithms that exploit ED lower bounding 
[5][7] with the most trivial coding effort and a 
negligible loss of efficiency.     

5.2 CID Obeys the ρ-relaxed Triangular 
Inequality 
There are literally dozens of indexing and data mining 
algorithms for metric spaces that rely on triangular 
inequality to prune distance calculations [4][6][18]. 
Although the details of how triangular inequality is 
employed vary for different algorithms, we consider a 
concrete technique to illustrate the general idea. 

5.2.1 A Brief Review of Orchard’s Algorithm 
One of the simplest indexing techniques known is 
Orchard’s algorithm [15]. The general idea behind it is 
to store a table with the distances between every pair 

                                                           
4 For data lengths/reduced dimensionality that are powers of two, 

PAA is exactly equivalent to Haar wavelets [5].  

of objects in a database5. In order to decide which 
database  instance is the nearest neighbor to a user-
given query Q, Orchard’s algorithm first calculates the 
distance D(Q,Ci) between Q and a randomly chosen 
database instance Ci. 
Using D(Q, Ci) and the triangular inequality property: ܣ)ܦ, (ܤ ≤ ,ܣ)ܦ (ܥ + ,ܥ)ܦ  (ܤ
We can safely prune some distance calculations 
between Q and other training instances. Suppose that 
we want to know if we can prune the distance 
calculation to a given instance Cj. Using triangular 
inequality: ܦ൫ܥ, ൯ܥ ≤ ,ܥ)ܦ ܳ) + ,ܳ)ܦ  (ܥ
Reordering the last equation to isolate the distance 
between the query object and the pruning candidate Cj, 
D(Q, Cj): ܦ൫ܳ, ൯ܥ ≥ ,ܥ൫ܦ ൯ܥ − ,ܥ)ܦ ܳ) 
Note that when we have: 
,ܥ൫ܦ                           ൯ܥ ≥ ,ܥ)ܦ 2 ܳ)                  (5.1) 
We can safely conclude that: ܦ൫ܳ, ൯ܥ ≥ ,ܥ)ܦ ܳ) 
Therefore, when the distance between the database 
instances Ci and Cj is at least twice the distance 
between Ci and Q, we can safely prune Cj, since it 
cannot be closer to the query object Q than Ci. Notice 
that no distance calculations were necessary at 
classification time, just constant time table lookups. 
This is because D(Ci, Cj) is a known quantity since 
Orchard’s algorithm stores a table with distances 
between all pairs of training instances. Figure 18 
illustrates this idea. 

 

Figure 18: left) Assume we know the pairwise 
distances between Ci, Cj and Ck. A newly arrived 
query Q must be answered. right) After calculating 
the distance D(Q, Ci) we can conclude that items with 
a distance to Ci less than or equal to 2 × D(Q, Ci) (i.e., 
the dark gray area) might be the  nearest neighbor of 
Q, but everything else, including Cj in this example, 
can be excluded from consideration 

When a distance calculation cannot be pruned, such as 
in the case of Ck in Figure 18, the distance D(Ck, Q) is 

                                                           
5 Therefore, Orchard’s algorithm requires O(m2) in space, where m is 

the number of database objects. However, [22] shows how to 
significantly reduce the space requirement, while producing nearly 
identical speedup.  
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calculated and if D(Ck, Q) < D(Ci, Q), Ck becomes the 
new nearest neighbor currently known (i.e., the best-
so-far), consequently reducing the pruning radius.  
Our interest in Orchard’s algorithm is due to the fact 
that this algorithm relies exclusively on the triangular 
inequality to improve search performance. However, 
many other indexing schemes are strongly related [8]. 

5.2.2 The Relaxed Triangular Inequality 
CID does not obey the triangular inequality; however, 
it does obey a relaxed version of this property: ܦூ(ܣ, (ܤ ≤ ,ܣ)ூܦ) ߩ  (ܥ ,ܥ)ூܦ +  ((ܤ
With ρ = CF(A,B). We postpone a formal proof of this 
property to Appendix A6. 
The ρ-relaxed triangular inequality property implies 
that we can search in CID space using the same 
algorithms designed for metric spaces, after some 
scaling [4]. In practice, all metric indexing techniques 
can be adapted to CID by changing just a few lines of 
source code. For concreteness we illustrate this with 
Orchard’s algorithm.  
Suppose we have calculated the distance DCID(Q, Ci), 
and want to know if an instance Cj can be safely 
pruned. 
We start with the ρ-relaxed triangular inequality: ܦூ(ܥ, (ܥ ≤ ,ܥ)ூܦ)ߩ  ܳ) + ,ܳ)ூܦ  ((ܥ
And reorder to isolate DCID(Q, Cj) on the left-hand side 
of the equation: ܦ ߩூ൫ܳ, ൯ܥ ≥ ,ܥூ൫ܦ ൯ܥ − ,ܥ)ூܦ ߩ  ܳ) 
This equation is equivalent to: ܦூ൫ܳ, ൯ܥ ≥ ,ܥூ൫ܦ ߩ1  ൯ܥ − ,ܥ)ூܦ ܳ) 

Therefore, we require that: 
,ܥூ൫ܦ                     ൯ܥ ≥ ,ܥ)ூܦ ߩ 2 ܳ)           (5.2) 
With ρ = CF(Ci,Cj) in order to safely prune the 
calculation of D(Q, Cj). 
Thus, to adapt Orchard’s algorithm to CID we just 
need to make two simple modifications:  
• We must use Equation 5.2 instead of Equation 5.1 

when pruning database instances; 
• We must store the complexity estimates, CE, of 

each database instance. The space overhead for 
storing the complexity estimates is O(m), where m 
is the number of database objects, and thus is 
small relative to the typical overhead for most 
indexing data structures. 

In order to illustrate that pruning with ρ-relaxed 
triangular inequality under CID can be effective, we 
ran a series of experiments using a database of random 
walk time series indexed with Orchard’s algorithm. 

                                                           
6 Notice that ρ = CF(A,B) is not a bounded value; however, for 

indexing purposes this fact has no major consequences.  ρ-relaxed 
triangular inequality implies 2ρ-inframetric inequality. This means 
that the following property also holds: DCID (A,B ) ≤ 2  ρ  max (DCID (A,C ), DCID (C,B )) 

Our experiment consisted of running paired tests; in 
other words, the same database, queries and other 
parameters were used to measure performance for both 
CID and Euclidean distance. We used the mean 
percentage of the database accessed in each query as 
the main form to assess the performance of each 
technique. 
Figure 19 presents the results for database sizes 
ranging from 500 up to 4,000 time series. For each 
database size we ran a series of 1000 nearest neighbor 
queries. We ran experiments with time series lengths 
of 32, 64, 128, 256, 512 and 1024 observations. In 
every experiment CID outperformed Euclidean 
distance in the number of distance calculations pruned. 
For brevity, we show in Figure 19 the results for time 
series of 32 (top) and 1024 (bottom) observations. 

 
Figure 19: A comparison of fraction of data accessed 
with Euclidean distance and CID using random walk 
time series with 32 (top) and 1024 (bottom) 
observations indexed with Orchard's algorithm 

To be clear, we are not claiming that CID outperforms 
Euclidean distance for all indexing algorithms in 
general or for every data set when using Orchard’s 
algorithm. For brevity, we reserve a more detailed 
performance analysis of indexing CID space for future 
work. 

6. CONCLUSION AND FUTURE WORK 
In this work we have surveyed all the existing 
invariances for time series similarity measures, and 
demonstrated the previously unknown need for 
complexity invariance. We have introduced CID, a 
simple and parameter-free method to mitigate the 
problem, and demonstrated its utility in improving 
classification accuracy on dozens of data sets. 
We have further shown that the use of CID need not 
compromise efficiency, since it can be used with the 
vast majority of indexing and mining algorithms with 
only very minor changes.  In future work we plan to 
consider the utility of CID for the problem of motif 
discovery [17] and outlier detection [20][21]. 
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APPENDIX A: ρ-RELAXED 
TRIANGULAR INEQUALITY PROOF 
In this section we prove that CID obeys the ρ-relaxed 
triangular inequality: ܦூ(ܣ, (ܤ ≤ ,ܣ)ூܦ൫ߩ (ܥ + ,ܥ)ூܦ  ൯(ܤ
We start our proof by stating the triangular inequality of 
Euclidean distance: ܣ)ܦܧ, (ܤ ≤ ,ܣ)ܦܧ (ܥ + ,ܥ)ܦܧ  (ܣ
Remember that the complexity correction factor CF is a 
quantity greater than or equal to one; therefore, we can 
multiply both sides of the inequality by CF(A,B): ܣ)ܦܧ, ,ܣ)ܨܥ(ܤ (ܤ ≤ ,ܣ)ܨܥ ,ܣ)ܦܧ൫(ܤ (ܥ + ,ܥ)ܦܧ  ൯(ܣ
The left-hand side of the inequality is our definition of CID; 
hence: ܦூ(ܣ, (ܤ ≤ ,ܣ)ܦܧ൫ߩ  (ܥ + ,ܥ)ܦܧ  ൯(ܣ
With ρ = CF(A,B).  
Finally, we can again use the fact that CF is greater than or 
equal to one to change Euclidean distances to CID on the 
right-hand side of the equation: ܦூ(ܣ, (ܤ ≤ ,ܣ)ܦܧ൫ߩ ,ܣ)ܨܥ(ܥ (ܥ + ,ܥ)ܦܧ ,ܥ)ܨܥ(ܣ  ൯(ܣ
And, therefore: ܦூ(ܣ, (ܤ ≤ ,ܣ)ூܦ൫ߩ (ܥ + ,ܥ)ூܦ ൯(ܣ
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