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Abstract — Poultry farms are an important contributor to the 
human food chain. Worldwide, humankind keeps an enormous 
number of domesticated birds (e.g. chickens) for their eggs and 
their meat, providing rich sources of low-fat protein. However, 
around the world, there have been growing concerns about the 
quality of life for the livestock in poultry farms; and increasingly 
vocal demands for improved standards of animal welfare. Recent 
advances in sensing technologies and machine learning allow the 
possibility of automatically assessing the health of some individual 
birds, and employing the lessons learned to improve the welfare 
for all birds. This task superficially appears to be easy, given the 
dramatic progress in recent years in classifying human behaviors, 
and given that human behaviors are presumably more complex. 
However, as we shall demonstrate, classifying chicken behaviors 
poses several unique challenges, chief among which is creating a 
generalizable “dictionary” of behaviors from sparse and noisy 
data. In this work we introduce a novel time series dictionary 
learning algorithm that can robustly learn from weakly labeled 
data sources.  

Keywords—Similarity Search, Classification, Motif Discovery, 
Chicken Behavior, Animal Welfare. 

I. INTRODUCTION 

Domesticated birds, e.g. chickens, are a major source of food 
for humans; people have been keeping birds for their eggs 
(laying chickens) and for their meat (broiler chickens) for 
thousands of years [1]. Poultry farms are a major source of 
high-protein and low-fat food. 

Given the ever-increasing population of the world, the 
demand for such food sources has been steadily growing. 
According to Food and Agriculture Organization of the United 
Nations (FAO), poultry meat consumption around the world 
has climbed from 11 kg/person in 2000 to 14.1 kg/person in 
2011 [2]; and it is predicted to continue for the foreseeable 
future [3]. In developed countries, there are growing concerns 
about the ethical treatment of these animals; among which are 
housing conditions and how the animals are managed and 
treated [4]. 

Ectoparasites are a group of arthropods that reside on the 
surface of the body of chickens, causing stress to the host, and 
potentially spreading to nearby chickens or other animal hosts 
[37][39]. Many of these ectoparasites, such as the northern fowl 
mite, adversely affect productivity (e.g. laying eggs) and health 
of the chickens [14]. They may also impact poultry behavior and 
welfare [4][19]. Understanding how ectoparasites affect chicken 
behavior can help producers determine when flocks are infested, 
to better deploy control methods [15][39]. Traditional behavior 
studies have relied on direct or video observation of subjects. 
However, this is time consuming, error-prone and subjective. 

 
 

Figure 1: (left) A chicken with an Axivity AX3 accelerometer worn inside 
a ‘backpack’ on the back of chicken (right) A seven-second snippet of 
chicken time series data collected from the accelerometer. 

We argue that the use of on-animal sensors can help to 
increase richness and density of observations [20]. Additionally, 
sensors can be used to greatly increase the number of individuals 
that can be tracked, while also expanding the tracking period, in 
some cases to 24/7 monitoring. In recent years, there have been 
enormous technological advances in sensor technology, and 
consequently sensor prices have decreased dramatically; this in 
turn has made sensor-driven data collection a practical option. 
Recently, there have been various studies on using sensors for 
collecting data in the context of livestock and poultry 
[5][6][18][20], even flying insects have not escaped the efforts 
at digitally sensed monitoring [7]. 

Such collected sensor data is typically extracted in the form 
of time series data; which can be examined offline with data 
mining techniques to summarize the behaviors of the animals 
under study. Time series data is widely used in many domains 
and is of significant interest in data mining [22]-[26]. In recent 
years researchers have proposed various algorithms for the 
efficient processing of time series datasets [10][17][27][28][32], 
even in case of noisy data [38]. In this study, we use on-animal 
sensors to quantify specific behaviors performed by chickens. 
These behaviors, e.g. dustbathing, are known or suspected to 
correlate with animal well-being [4]. 

Before moving on, we will take the time to ward off a 
possible misunderstanding. We are not proposing that all 
chickens be monitored, that is clearly unfeasible. Our system is 
designed as a tool to allow researchers to assess the effects of 
various conditions on chicken health, and then use the lessons 
learned on the entire brood. Our particular motivating example 
initiated with a study at UC Riverside to assess the effects of 
ectoparasites on chickens. However, our methods can be used to 
determine the effects of any change in the bird’s environment or 
diet. Our only assumption is that the change will manifest in 
changes in the frequency or timing of the bird’s behavior(s). 

A. Why is studying chicken behaviors at scale hard? 

 There are hundreds of studies on quantifying human body 
behaviors with sensors. Such studies typically involve finding 

Seven seconds of X-axis chicken acceleration data



discrete well-defined classes of behaviors, and then monitoring 
data for future occurrences of behaviors. One example is “step-
counting” to measure compliance with a suggested exercise 
routine. However, the task of studying chicken behaviors is 
more difficult for the following reasons: 

 In case of humans, the sensors can be easily placed on the 
extremities of the limbs (i.e. smart-shoes or smartwatches); 
However, the placement of sensors on chickens has been 
primarily restricted to the back of the birds, see Figure 1 (left), 
due to sensor limitations and the welfare of animal. This 
provides only coarse information about the bird’s behaviors. 

 The variability of human behaviors is well-studied, and it is 
understood what fraction can be attributed to individual 
personality, mood and so forth, versus variability in sensor 
placement [30]. More importantly, it is known how to account 
for this variability.  However, it is less clear how much 
variability exists in birds and how we can best account for it. 

 Creating a dictionary for a human subject is relatively 
straight-forward. During an explicit training session, behaviors 
of interest can be acted out in a fixed order for a fixed duration 
of time. Perhaps the most studied human motion time series 
dataset is gun-point [11]. When recording that dataset, the 
actor’s behaviors were cued by a metronome. Chickens are 
clearly not as cooperative, and many hours/days of video 
recordings must be analyzed to create a behavior dictionary. 
Moreover, it is difficult, even for an experienced avian 
ethologist, to define precisely where a behavior begins and ends, 
thus we must be able to work with “weakly labeled” data. 

In this work, we introduce a novel dictionary learning 
algorithm which can take weakly labeled data in the format 
“there are a few pecks somewhere in this time period,” together 
with some mild constraints “a preening behavior probably lasts 
between 0.3 and 1.5 seconds” and automatically construct a 
dictionary of behaviors. As we shall show, this dictionary can 
then be used to classify unlabeled archives of bird behavior. 

The rest of this paper is organized as follows. In Section II 
we review related work and background material. Section III 
introduces our algorithm. An extensive empirical evaluation is 
conducted in Section IV. We provide a case study in Section V, 
before we offer conclusions and directions for future work in 
Section VI. 

II. RELATED WORK AND BACKGROUND 

In recent works [12][18], sensors were used for classification 
of sheep behaviors; with mounted sensors on ear/collar or leg of 
the sheep. Similar work has been performed for domestic 
bovines [5], and for various kinds of wild animals. In addition, 
there has been some work on poultry behaviors using both 
sensors and human monitoring [34][35]. However, this work is 
complementary to our efforts. They use statistical features of the 
accelerometer (mean, entropy, etc.) to quantify periods of 
general behaviors, such as sleep, stand, walk, etc. [35].  
In contrast, we use the shape of the time series to precisely 
annotate very specific and dynamic behaviors, such as 

individual instances of a single peck. By analogy with human 
studies, this is similar to recognizing the difference between 
when someone having lunch versus recognizing each individual 
bite. Both types of information can be useful for various tasks.  

We begin by providing definitions and notation to be used 
throughout the paper. 

A. Definitions and Notation 

Definition 1: A time series T is a sequence of real-valued 
numbers ti: T = [t1, t2, …, tn] where n is the length of T. 

We are typically not interested in the global properties of 
time series, but in the similarity between local subsequences: 

Definition 2: A subsequence Ti,m of a time series T is a 
continuous subset of the values from T of length m starting 
at position i. Ti,m = [ti, ti+1, …, ti+m-1] where 1 ≤ i ≤ n – m + 1 

 We can take any subsequences and calculate its distance to 
all subsequences in a time series. An ordered vector of such 
distances is called a distance profile: 

Definition 3: A distance profile D is a vector of Euclidean 
distances between a given query and each subsequence in the 
time series. 

 Figure 2 illustrates calculating distance profile (D). It is 
assumed that the distance is measured using the Euclidean 
distance between Z-normalized subsequences [11][27][28]. In 
Figure 2, the query Q is extracted from time series T. As can be 
seen, distance profile has low values at the location of 
subsequences which are highly similar to the query Q. In case 
the query Q is taken from the time series itself, then the value 
for the distance profile at the location of query should be zero, 
and close to zero just before and just after. To avoid such trivial 
matches an exclusion zone with the length of (m/2) is placed to 
the left and right of the query location [27][28]. 

 

Figure 2: Distance profile D obtained by searching for query Q (here the 
query is extracted from the time series itself) in time series T. 

The distance profile can be computed very efficiently using 
the MASS algorithm [8]. 

III. DICTIONARY OF CHICKEN BEHAVIORS 

A. Collecting and Preparing Chicken Data 

All chickens were housed and cared for in accordance with 
UC Riverside Institutional Animal Care and Use Protocol A-
20150009. Data is collected from chickens by placing the sensor 
on bird’s back, as shown in Figure 1 (left). The sensor is placed 
on back of the bird to allow for high-quality recording of various 



types of typical chicken behaviors, with the minimum 
interference and discomfort. The Axivity AX3 sensor used in 
our study, weighs about 11 grams and is configured with 100 Hz 
sampling frequency and +/- 8g sensitivity which allows for two 
weeks of continuous data collection with the battery fully 
charged. 

From literature reviews [19][35][36], and conversations with 
poultry experts, we expect that the following behaviors correlate 
with poultry health: 

 Feeding/pecking: bringing the beak to the ground; 
striking at the ground. 

 Preening: preening/grooming of the feathers by the 
beak; feathers may be drawn or nibbled by the beak 
[21]. 

 Dustbathing: bird is in a sitting or lying position with 
feathers raised in a vertical wing-shake [21]. 

Figure 3 (top left) shows the Axivity AX3 sensor secured 
inside a plastic backpack with a rubber band wrist to allow 
placing the backpacks on the back of chickens (right) shows 
placement of sensor on the back of the chicken. 

  

 
 

 

Figure 3: (top left) Axivity AX3 sensor secured inside a plastic backpack 
with a rubber band wrist (bottom left) Chickens wearing backpacks on their 
back (center) Axivity AX3 axis alignment (right) positioning of AX3 sensor 
on the back of chicken. 

For some fraction of the time series data collected, a video 
camera also recorded the chicken activity (~ 30 minutes). This 
provides ground truth to act as training data. The sensor data was 
carefully annotated [13], based on the video-recorded chicken 
activities by team member A.C. M; it must be noted that even 
the most careful human labeling of chicken behaviors can 
contain errors, especially false negatives. 

More importantly, due to technical limitations it is difficult 
to synchronize the two data sources to anything less than one-
second variable lag, which is a long time relative to a chicken 
peck (~ ¼ of a second). Thus, as shown in Figure 4, the 
annotations take the form of a categorical vector (shown in 
green) that indicate that in the corresponding region one or more 
examples of the corresponding behavior were observed. Such 
data is often called “weakly labeled” data. 

To reiterate, inspecting this video is very time consuming for 
a technician; we do not propose to inspect all data this way, this 
is simply a one-time ground truthing operation performed for a 
tiny fraction of the data collected. 

 
Figure 4: Three-dimensional chicken time series (the top/blue time series 
is X-axis; middle/red time series is Y-axis and bottom/orange time series is 
Z-axis time series). The green lines represent annotations of observed 
chicken behaviors captured on video; the height of each annotated region 
represents a distinct behavior. 

B. Creating a Dictionary of Behaviors 

Given that we have training/test data in the format shown in 
Figure 4, we are in a position to attempt to automatically 
construct a dictionary of behaviors or query-templates. 

A dictionary is a list of query-templates (behaviors) in the 
form of {s1, s2, …, si}; each query has a class (s1.class), a 
threshold value (s1.threshold) and axis (s1.axis) properties, 
along with the query data points.  

In principle, a single behavior could have two or more 
possible instantiations; just like the number four has two written 
versions, closed ‘4’ and open ‘4’, which are semantically 
identical. Such a dictionary is called a polymorphic dictionary. 
Given our observations of chicken behaviors, in this work we 
assume that there is a single way to perform a behavior. 
However, generalizing the code to a polymorphic dictionary is 
trivial and omitted for brevity here. 

C. Algorithms for Building the Chicken Behavior Dictionary 

Our algorithm for building a dictionary of chicken behaviors 
works by searching within annotated regions for highly 
conserved sequences (i.e. motifs [27][28]). To give an intuition 
for this, consider the analogue problem in the discrete string 
space. Imagine we are given this data snippet, and we are told 
that the green region is a weak label for pecking.  

dbehiorhfbesoqhebesoweqhfebesopwehfuwbeibe 
_____|

⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺⸺
|___________ 

Further suppose we are told that the length of the behavior is 
between 2 and 5 symbols. If we looked for conserved behavior 
of length 2, we would find that ‘be’ happens six times. 
However, three of those occurrences are outside the annotated 
region, so this cannot be a good predictor of the class. If we 
looked for conserved behavior of length 3, we would find that 
‘bes’ happens three times, and all of the occurrences happen 
within the labeled region. This seems like a better predictor of 
the class. However, note that if we expand to conserved pattern 
of length 4, ‘beso’ also happens three times within the labeled 
region. Since we might expect that the longer pattern is more 
specific to the class, we prefer it. Note that if we continue the 
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search to patterns of length five, there are no highly conserved 
patterns of this length. 

In addition to time series T and the annotation labels Label, 
the algorithm takes a range of lengths Len (equivalent to the 
values 2 to 5 in the example above). TABLE I. presents the 
pseudo-code for building a dictionary of behaviors. 

In Line 1 the range of query-template lengths to be tested is 
specified. Line 2 iterates over the annotated regions. In Line 3, 
a sliding window is initiated inside the selected region from Line 
2 with the specified length from Line 1. The selected query-
template, time series, label data are provided to the nearest 
neighbor similarity search subroutine algorithm (TABLE II. ). 
The output result for the selected query-template is added to the 
current list of query-templates (QueryList) in Line 6. 

TABLE I.  ALGORITHM FOR BUILDING DICTIONARY 

Procedure DictionaryBuilder (T, Label, Len) 
Input: Time Series (T), researcher labels (Label) and length range (Len) 
Output: List of query-templates (QueryList) 
1 for QLen = Len 
2   for LblRegion = 1:length(Label) 
3     for Q = Label (LblRegion, 1): Label (LblRegion, 2) 
4       [K, dist, TP, FP] =  
5           NN (TTrain, TTrain(Q:Q + QLen - 1), Label) 
6       QueryList = [QueryList; Q, K, dist, TP, FP] 
7     end 
8   end 
9 end 
10 return QueryList 

 TABLE II. is a subroutine, which given the candidate query-
template, time series and label data calculates the similarity 
between the query-template and all subsequence in the time 
series. 

TABLE II.  NEAREST NEIGHBOR SIMILARITY SEARCH ALGORITHM 

Procedure NN (T, Q, Label) 
Input: Time Series (T), a query (Q), and entomologist labels (Label) 
Output: No. of True Positives (TP), No. of False Positives (FP) and 
Distance value (dist) 
1 D ← MASS (T, Q) // see [8] 
2 [Ds, Didx] ← sort (D) // sorts ascendingly and returns indices 
3 Idx = 1,   TP = 0,   FP = 0, dist = 0; 
4 if (Label (Didx(Idx)) == True) 
5    TP = TP + 1 
6    dist = Ds(Idx) 
7 else 
8    FP = FP + 1 
9 end 
10 if (FP == 0) 
11    Idx = Idx + 1 
12 else 
13    return 
14 end 

 In Line 1, the candidate query-template and time series data 
are passed to the MASS algorithm. MASS computes the 
similarity between query-template (Q) and every subsequence 
in time series (T); and returns a distance profile D [8]. The 
distance profile D is sorted in ascending order (Ds) and the 
indices of sorted values are stored in Didx in Line 2. 

In Lines 4 - 9, at each iteration, the algorithm takes a value 
from (Didx(Idx)) and examines the corresponding value of 

Label(Didx(Idx)) to see if it is marked as a targeted behavior. If it 
is marked as a behavior of interest, then the subsequence is a 
true positive (TP) match and TP is increased by one (Line 5), 
otherwise, it is treated as a false positive (FP) match and FP is 
increased by one (Line 8). We are interested in candidate query-
templates which yield the highest number of true positive 
matches with no false positive matches. Therefore, in Lines 10 - 
14, we continue the search as long as no false positive (FP) 
match is observed. It is worth noting that the distance (dist) 
mentioned in Line 6 of TABLE II is the same as query-template 
threshold value in the behavior dictionary. The threshold value 
serves as a measure of similarity when searching in unlabeled 
data streams. In the case, a subsequence in the unlabeled data 
has a similarity value with the query-template lower than the 
threshold it is classified as a matching subsequence. 

D. How to use the Chicken Behavior Dictionary? 

When monitoring the stream of time series data, we look for 
specific behaviors to count, classify, and time-stamp. The 
stream of data is processed through a sliding window. In case 
the similarity threshold is met for some query-template 
(behavior) in the dictionary, then the sequence is matched and 
time-stamped as an instance of that behavior. 

IV. EMPIRICAL EVALUATION 

To ensure that our experiments are reproducible, we have 
built a supporting website [31]; which contains all data, code 
and raw spreadsheets for the results, in addition to many 
experiments that are omitted here for brevity. 

We provide evaluation results for the feeding/pecking, 
preening, and dustbathing behaviors. The original 
dataset is split into mutually exclusive training and test datasets, 
as illustrated in Figure 4. The training dataset is used for 
building the dictionary of behaviors, while the test dataset is 
solely used for out-of-sample evaluation. As Figure 4 reminds 
us, the data is weakly labeled, meaning that every annotated 
region contains one or more of the specified behavior. In 
addition, there are almost certainly instances of the behavior 
outside the annotated regions which the annotator failed to 
label, perhaps because the chicken in question was occluded in 
the video. However, we believe that such false negatives are 
rare enough to be ignored. 

In addition, we do not know about the exact number of 
individual instances of a behavior inside a region, complicating 
the evaluation. To address this, we utilize the concept of 
Multiple Instance Learning (MIL) [29]; which assumes each 
annotated region as a “bag” containing one or more instances 
of a behavior. In this classification model, if at least a single 
instance of a behavior is matched inside a bag, it is treated as a 
true positive. However, in case that no instances of the behavior 
are detected inside the bag, then the entire bag is treated as a 
false negative. Furthermore, in case an instance of behavior is 
mismatched inside a bag corresponding to some other behavior, 
then it is treated as a false positive. Finally, if no mismatch 
occurs inside a bag of non-relevant behavior, then the entire bag 
is treated as a true negative. 



A. Feeding/Pecking Behavior 

 Feeding/pecking is perhaps the most familiar behavior in 
chickens. Figure 5 shows the query-template discovered by our 
dictionary building algorithm, along with matching 
subsequences in the training dataset. Recall that subsequences 
located within regions annotated as containing instances of 
feeding/pecking behavior are treated as true positives (TP), 
whereas matches outside of regions annotated for 
feeding/pecking behavior are treated as false positives (FP). 

 

Figure 5: Query-template for feeding/pecking behavior, (left) X-axis and 
(right) Z-axis matching subsequences in the training dataset. 

Figure 6 shows matching subsequences from the test dataset 
with true positives shown in green and false positives shown in 
red. The reader will appreciate that the false positives do look at 
lot like the true positives. As noted above, it is possible (and 
indeed likely) that they really are true positives that escaped the 
attention of the human annotator. 

 

Figure 6: The X-axis query-template and matching subsequences for 
feeding/pecking behavior in the test dataset, (left) true positives (right) false 
positives. Note that the false positives do appear to actually be true positives 
that were missed by the human annotator. 

Given the positioning of sensor on the back of chicken, as 
shown in Figure 3 (center) and (right), when the chicken 
approaches its head to the ground, X-axis and Z-axis are 
affected. As can be seen in Figure 5 (top), pecking behavior is 
manifested in the form of a “valley” on X-axis (i.e. negative X-
axis acceleration); at the same time as shown in Figure 5 
(bottom), the pecking behavior is manifested in the form of a 
peak on Z-axis (i.e. positive Z-axis acceleration). Further, note 
that Y-axis (i.e. lateral acceleration towards left or right) is not 
as influential as X and Z-axis, therefore we omit the Y-axis for 
this specific behavior. Figure 8 (top) shows the matching 
subsequences for running the feeding/pecking query-template 
against the test dataset.  TABLE III. provides the confusion 
matrix for the performance of feeding/pecking query-template. 

TABLE III.  CONFUSION MATRIX FOR FEEDING/PECKING BEHAVIOR 

  Actual Class 

  Feeding Non-Feeding 

Predicted 
Class 

Feeding 17 True Positives 7 False Positives 

Non-Feeding 4 False Negatives 43 True Negatives 

Precision (Feeding/Pecking) = 
��

�� � ��
 = 17 / 24 = 0.71 

Recall (Feeding/Pecking) = 
��

�� � ��
 = 17 / 21 = 0.81 

Accuracy (Feeding/Pecking) = 
�� � ��

�� � �� � �� � ��
 = 60 / 71 = 0.85 

 Given the results above, our classification model has a 0.71 
precision and 0.81 recall in matching instances of the 
feeding/pecking behavior. Overall, the classifier has 85% 
accuracy for the feeding/pecking behavior, which compares 
very favorably to 70% default rate (i.e., guessing every observed 
object as the majority class). 

B. Preening Behavior 

Preening is the act of cleaning feathers, which is an 
important part of a chicken’s daily activities. Preening is a 
grooming behavior that involves the use of the beak to position 
feathers, interlock feather barbules (informally, “zip up” the 
feathers) that have become separated, clean plumage, and 
remove ectoparasites [16]. Figure 7 shows the query-template 
for the preening behavior and the matching subsequences 
within the training dataset. Also, Figure 8 shows subsequences 
for running the query-template against a long test dataset. 

  
Figure 7: The Z-axis query-template corresponding to preening behavior 
along with matching subsequences in the training dataset. 

It is interesting to discuss the nature of the preening 
behavior before proceeding to evaluation results. One might 
imagine that a flat region in the data is uninformative, however 
a flat region directly after the pattern on the Figure 7 is 
informative. The bird uses its beak to realign the feathers, and 
as can be seen in Figure 7, the act of preening starts with 
moving the head (i.e. positive and negative Z-axis acceleration) 
and the rest of the pattern is relatively flat which might imply 
movement of feather through the beak for alignment purposes. 
Figure 8 (bottom) shows the matching subsequences for 
running the preening query-template against the test dataset.  
TABLE IV. provides the confusion matrix on the performance 
of preening query-template. 

TABLE IV.  CONFUSION MATRIX FOR PREENING BEHAVIOR 

  Actual Class 

  Preening Non-Preening 

Predicted 
Class 

Preening 10 True Positives 1 False Positives 

Non-Preening 4 False Negatives 56 True Negatives 

 
Precision (Preening) = 10 / 11 = 0.91 

Recall (Preening) = 10 / 14 = 0.71 

Accuracy (Preening) = 66 / 71 = 0.93 
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Figure 8: Matching subsequences in the test dataset for (top) feeding/pecking behavior on X and Z-axis (bottom) preening behavior only on Z-axis. 
KEY: green highlightings indicate true positives, and red highlightings indicate false positives. 
 

Given the evaluation results above our classification model 
has 0.91 precision in matching preening subsequences; and 0.71 
recall in matching relevant instances of the preening behavior. 
Finally, the model has 93% overall accuracy in matching 
preening subsequences compared to the 80% default rate (i.e., 
guessing every observed object as the majority class). 

C. Dustbathing Behavior 

Dustbathing is the act in which the chicken moves around 
in dust or sand to remove parasites from its feathers. This tends 
to be the least common activity in chickens. As shown in Figure 
9 and Figure 11, dustbathing tends to be the most difficult 
behavior to search for, since there were only two instances in 
the training dataset and only a single instance in the test dataset. 

 

Figure 9: Matching subsequence for dustbathing behavior in the test 
dataset, (top) X-axis (bottom) Z-axis. 

TABLE V. presents the confusion matrix for the dustbathing 
behavior. 

TABLE V.  CONFUSION MATRIX FOR PREENING BEHAVIOR 

  Actual Class 

  Dustbathing Non-Dustbathing 

Predicted 
Class 

Dustbathing 1 True Positives 0 False Positives 

Non-
Dustbathing 

0 False Negatives 70 True Negatives 

 

Precision (Dustbathing) = 1 / 1 = 1.00 
Recall (Dustbathing) = 1 / 1 = 1.00 

Accuracy (Dustbathing) = 71 / 71 = 1.00 

Given these evaluation results, our model has 1.00 precision 
in matching dustbathing subsequences and 1.00 recall in 
matching relevant instances of the dustbathing behavior. 
Finally, the model has 100% overall accuracy in matching 
dustbathing subsequences compared to 99% default rate (i.e., 
guessing every observed object as the majority class). Figure 11 
shows subsequences for running the dustbathing query-
template against the test dataset. 

Figure 10: Twenty-four hours time series chicken data. 

V. CASE STUDY: AN ENTIRE DAY WITH A CHICKEN 

In this section, we study the behavior of a chicken over the 
course of 24 hours and run our chicken behavior dictionary 
against the day-long dataset. The data corresponds to 
11/22/2017 from midnight to midnight. The dataset is shown in 
Figure 10; and is of size 8,665,227 x 3 datapoints. The gray 
shaded regions correspond to midnight to sunrise (i.e. 06:28 
AM) and the time artificial lights are turned off (i.e. 10:00 PM) 
to midnight. 

We ran the dictionary of chicken behaviors against the 
twenty-four hours chicken dataset. Figure 12, Figure 13, and 
Figure 14 present the matching subsequences for 
feeding/pecking, preening, and dustbathing query-template 
behaviors in the 24 hours chicken dataset.  

Starting with Figure 12, we show the matching 
subsequences in both the original and Z-normalized space to 
justify our choice of working with the Z-normalized 
representation [8][10]. Note that in the original space there are 
shifts in the mean that are inconsequential, yet which would 
dwarf the Euclidian distance calculations [9][11].       
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Figure 11: Matching subsequence in the test dataset for dustbathing behavior, while this behavior is much rare, our algorithm correctly found the instance. 
KEY: green highlightings indicate true positives, and red highlightings indicate false positives (we do not have any false positive matches here). 
 

 

 

Figure 12: The X-axis and Z-axis query-templates, along with matching 
subsequences for feeding/pecking behavior in the twenty-four hours
chicken dataset, (top) Z-Normalized and (bottom) Non-Z-Normalized 
matching subsequences. 

Looking at Figure 13 for the query-template and matching 
subsequences for the preening behavior, it can be seen that the 
matching subsequences have very high similarity with the 
query template at the beginning; however, we still see some 
dissimilarities along the rest of the query-template which may
correspond to nibbling of the feathers with the beak. 

 

 

Figure 13: The Z-axis query-template and matching subsequences for the 
preening behavior in the twenty-four hours chicken dataset, (top) Z-
Normalized matching subsequences and (bottom) Non-Z-Normalized. 

Finally in Figure 14 the matching subsequences for the 
dustbathing behavior are shown. The matching subsequences 
are fairly well conserved, however, not as well as the 
feeding/pecking and preening behaviors. This can be due to the 
fact that dustbathing is a relatively long (~1.74 s) and a rare 
behavior. 

 

 
Figure 14: The X-axis and Z-axis query-templates, along with matching 
subsequences for dustbathing behavior in the twenty-four hours chicken 
dataset (top) Z-Normalized (bottom) Non-Z-Normalized matching 
subsequences. 

Figure 15 shows the frequency of each behavior over the 
entire 24 hours, as computed with a one-hour long sliding 
window. As expected, the feeding/pecking behavior has the 
highest overall frequency; peaking between 11:00 AM and 
15:00 PM. An interesting finding is that the chicken seems to 
begin the day with a preening session starting just after dawn. 
A more unexpected finding is that there is a “dip” in feeding 
that happens just after noon, and it seems to be replaced with an 
uptick in dustbathing. In future work we will examine similar 
circadian traces to understand if this is typical of all birds or 
indicative of an individual with an ectoparasite infestation.  

Figure 15: Temporal frequency of chicken behaviors (feeding/pecking, 
preening and dustbating) for the twenty-four hour chicken dataset.  

VI. CONCULSION 

In this work, we introduced an algorithm to learn a 
dictionary of behaviors from weakly labeled time series data. 
We demonstrated, with an extensive empirical study, that our 
algorithm can robustly learn from real, noisy and complex 
datasets, and that the learned query-templates generalize to 
previously unseen data. While our study was motivated by a 
pressing problem in poultry welfare, it could clearly be used to 
study cattle [5][21], goats [34], non-human primates [33], or 
any other data source that presents itself as weakly labeled data. 
In future and ongoing work, we plan to examine much larger 
datasets; corresponding to several years of chicken data 
(recorded in parallel from multiple birds). 
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