
Semi-Supervision Dramatically Improves Time Series
Clustering under Dynamic Time Warping

Hoang Anh Dau Nurjahan Begum Eamonn Keogh
University of California, Riverside

{hdau001, nbegu001, eamonn}@cs.ucr.edu

ABSTRACT

The research community seems to have converged in agreement

that for time series classification problems, Dynamic Time

Warping (DTW), based nearest-neighbor classifiers are

exceptionally hard to beat. Obtaining the best performance from

DTW requires setting its only parameter, the warping window

width (w). This is typically set by cross validation in the training

stage. However, for clustering, by definition we do not have access

to such labeled data. This issue seems to have been largely ignored

in the literature, with many practitioners simply assuming that “the

larger the better” for the value of w, and using as large a value of

w as computational resources permit. In this work we show that this

is a naive approach which in most circumstances produces inferior

clusterings. To address this problem, we introduce a novel semi-

supervised technique that allows us to set the best value of w.

Unlike virtually all other semi-supervised techniques, our ideas are

completely independent of the clustering algorithm used, and can

be utilized to improve time series clustering under partitional,

hierarchical, spectral or density-based clustering. Our approach

requires very little human intervention; moreover, we show that in

many cases, true human annotation efforts can be replaced with

automatically-generated “pseudo” supervision information. We

demonstrate our technique by testing with more than one hundred

publicly available datasets.

Keywords
Dynamic Time Warping, Time Series, Semi-Supervised Learning.

1. INTRODUCTION
A fundamental task in time series data mining is clustering.

Clustering may be useful in its own right as an exploratory tool, and

it is a subroutine in many higher-level algorithms such as rule-

finding, semantic segmentation, anomaly detection, visualization

and data editing [16]. Most research efforts to improve time series

clustering have either proposed new algorithms

[4][11][12][28][30], or new distance measures [15]. The latter is

somewhat surprising, since the community seems to have long ago

converged on the belief that the Dynamic Time Warping (DTW)

distance measure is very hard to beat for classification [8][17], and

it is not clear why its superiority would not extend to clustering.

We believe that the main reason DTW is not considered the “go-

to” solution for clustering is because its single parameter, the

amount of allowable warping (w), critically affects the quality of

the returned clusters, regardless of the clustering algorithm used.

This is not an issue for classification, where the best value for w

can be learned by cross validation. This sensitivity to w for

clustering is illustrated in Figure 1, which shows how changing the

warping window width (w) affects the quality of clustering on three

randomly chosen datasets.

Figure 1: The Rand-Index vs. the warping window width for

three datasets, using density-based clustering [21].

The figure shows that changing w can affect different datasets in

radically different ways. For the Two Patterns dataset, increasing

the amount of warping steadily improves the quality of the

clustering until it converges at a perfect clustering with w = 9. In

contrast, for Swedish Leaf, increasing w reduces the quality of

clustering from a very impressive (for a 15-class problem) Rand-

Index of 0.87 to a stunningly low score of 0.32 at w = 10%. This is

all the more surprising given that allowing some warping slightly

improves the classification accuracy in this dataset [8].

These results tell us that a practitioner who blindly uses Euclidean

distance (i.e. w = 0%) will do very badly on some datasets.

Likewise, another practitioner, perhaps motivated by the

observation that DTW generally helps in classification problems,

and who simply clusters with a hard-coded value of w set at 10%,

will do very poorly on some datasets [15].

The Coffee dataset is unusual in being virtually unaffected by the

value of w (in Figure 1 it is 0.48 when w = 0 and 0.49 everywhere

else) but even here is it possible to make a poor decision. The time

taken to compute DTW with a w = 0% (denoted hereafter as

cDTW0) is perhaps four orders of magnitude less than the time to

compute cDTW100. Thus unnecessary large values of w have a huge

computational burden that produces no improvement.

Given these observations, we are now in a position to state the

problem we wish to solve:

Problem Statement: Given an unlabeled time series dataset D;

find the value of w that maximizes the clustering quality. Where

ties exist, report the smallest such w.

200 5 10 15

0.4

0.6

0.8

1 Two Patterns

Swedish Leaf

Coffee
R

an
d

 I
n
d

ex

Warping Window Width (as % of time series length)

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
CIKM’16 , Oct 24 - 28, 2016, Indianapolis, IN, USA.
© 2016 ACM. ISBN 978-1-4503-3664-2/15/08 ...$15.00.

There are many measures of clustering quality; however, measures

based on sum-of-squares residual error do not allow meaningful

comparisons between clusterings with different values of w. Here

we wish to optimize the objective “correctness” of the clustering.

Normally we will never have access to this ground-truth (by

definition); however, for the datasets we consider in this work, we

do have class labels that allow us to do a post-hoc analysis.

How can we choose the best value w in the absence of class labels?

One possibility is to use semi-supervised clustering

[1][2][3][7][26]. Here we ask the user to annotate a fraction of the

data (typically in the form of must-link/cannot-link constraints),

and we attempt to exploit these annotations to guide the clustering

algorithm.

One reason why semi-supervised clustering has not had a large

impact is its inefficiency. Suppose we have a mere 1,415 items to

cluster. This gives us just over one million pairs of time series we

could ask the user to annotate. However, it may be that the vast

majority of such annotations will be irrelevant, since all the

clusterings in the search space agree (or all disagree) with a

particular user annotation. Thus, in order to be sure that we get

enough actionable annotations to guide the search in the clustering

space, we must ask the user to annotate many hundreds or

thousands of objects. This is clearly undesirable as the user may be

unwilling or unable to provide such effort.

In this work we introduce a novel semi-supervised clustering

method for time series that does all the clustering up-front and only

then asks for user input. This allows us to ask the user to annotate

only informative pairs. Our proposed method offers the following

advantages:

 Our approach is completely independent of the clustering

algorithm. We are only learning the best w for a particular

dataset; therefore, we can produce the final clustering using

essentially1 any partitional, hierarchical, spectral or density-

based clustering.

 The annotations are solicited after the clustering has been

performed. This means that we only ask the user to annotate

pairs that matter. In contrast, almost all other semi-supervised

clustering algorithms require the labels up-front, often asking

the user to annotate pairs that will make no difference in all

the clusterings considered. Our algorithm is maximally

respectful of the cost of human effort.

 Because of the above, our approach requires very few

annotations; in many cases, sixteen or fewer.

 While we mostly envisage asking a human for annotation, at

least in some situations these annotations may be gleaned by

examining side-information or statistical tests. Our framework

can exploit such information.

 Our approach works for both single and multi-dimensional

time series.

 Finally, as we shall demonstrate, our approach is very

accurate, and robust to mistakes made by the annotator.

The rest of the paper is organized as follows. In Section 2 we review

background and related work, before introducing our algorithm in

Section 3. In Section 4 we carry out an extensive empirical

evaluation with more than 100 time series datasets before offering

conclusions and directions for future work in Section 5.

1 “essentially” because some clustering algorithms are not defined (or loose

certain guarantees) for non-metric distance measures.

2. BACKGROUND AND RELATED WORK
We begin by reviewing background material on DTW, then

background material on semi-supervised learning, before

discussing the most closely-related work.

2.1 Dynamic Time Warping
DTW is a distance measure that originated from within the speech

recognition community. Recent work strongly suggests that DTW

is the best distance measure for many data mining problems [8]. In

[17], authors state: “after an exhaustive literature search of more

than 800 papers, we are not aware of any distance measure that

has been shown to outperform DTW by a statistically significant

amount,” and very recent independent work has empirically

confirmed this with exhaustive experiments [15].

As illustrated in Figure 2.left, DTW allows a one-to-many mapping

between data points, thus enabling meaningful comparison between

two time series that have similar shapes but are locally out of phase.

To find the warping path W, we construct the distance matrix

between the two time series Q and C. Each element (i, j) in this

matrix is the Euclidean distance between the point 𝑖𝑡ℎ of Q and 𝑗𝑡ℎ

of C. The warping path W is a set of contiguous matrix elements

that defines the alignment between Q and C. The 𝑘𝑡ℎ element of W

is defined as 𝑤𝑘= (𝑖,𝑗)𝑘
.

The warping path is subject to several conditions: to start and finish

in diagonally opposite corner cells of the matrix, the subsequent

steps must be in the adjacent cells, and all the cells in the warping

path must be monotonically spaced in time. This DTW is called

unconstrained DTW. Among all the warping paths possible, we are

only interested in the path that minimizes the differences between

the two time series.

𝐷𝑇𝑊(𝑄, 𝐶) = 𝑚𝑖𝑛 {√∑ 𝑤𝑘.

𝐾

𝑘=1

Constrained DTW is a variant that imposes a limit on how much

the warping path can deviate from the diagonal. This limit is known

as the warping window width (w). For example, in Figure 2.right

the warping path cannot visit the grayed out cells.

Figure 2: left) The unconstrained warping path for time series

Q and C. Such warping paths are allowed to pass through any

cell of the matrix. right) We can choose to constrain the

warping path to avoid passing through cells that are far from

the diagonal.

r

L

w= r/L
Q

C

DTW or cDTW100 cDTWw = cDTW25

Constrained DTW helps to avoid pathological mappings between

two time series, when one point in a first time series is mapped to

too many points in the other time series. For example, DTW should

be able to map a short heartbeat to a longer heartbeat, but it would

never make sense to map a single heartbeat to ten heartbeats. In

addition, the constraints have the beneficial side effect of reducing

the computation cost by narrowing down the search for qualified

paths. A typical constraint is the Sakoe-Chiba Band, which

expresses w as a percentage the time series length. We denote DTW

with a constraint of w as cDTWw.

The Euclidean distance between the two time series is the special

case of DTW when the w is set to 0, enforcing a one-to-one

mapping between data points. It is denoted as cDTW0.

Unconstrained DTW is denoted as cDTW100. This review is

necessarily brief; we refer the interested reader to [8][22] and the

references therein for more details.

2.2 Correcting a Common Misunderstanding
Before proceeding we must ward off a possible misunderstanding,

and make an original and important observation. To help us do so

we will create a synthetic dataset which we will call Single Plateau

(SP). This dataset (like all others in this paper) is available at [31].

Each item in the dataset consists of a vector of 500 random numbers

taken from a standard Gaussian. In addition, to each exemplar we

add a “plateau” of height 100 and with a length randomly chosen

in the range five to twenty. If the plateau’s location is between 1 to

200 it is in class A, if it is between 300 and 500 it is in class B. The

plateau never appears in the middle of the time series; Figure 3

shows some examples from each class.

If we cluster this dataset with cDTW0, we obtain the random

clustering shown in Figure 3.left. This is not surprising, as this is

clearly a dataset that needs a warping-invariant distance measure.

If we re-cluster using cDTW10 we obtain a clustering that correctly

separates the two classes (in Figure 3.center). Thus far, these

observations agree with the community’s intuition. However, what

happens when we cluster using cDTW100? We again obtain a

clustering that appears random (Figure 3.right).

Figure 3: Hierarchical clustering result for the SP dataset.

Exemplars in Class A are numbered 1 to 5 and shown in red.

Exemplars in Class B are numbered 6 to 10 and shown in blue.

left) Clustering with cDTW0 middle) Clustering with cDTW10

right) Clustering with cDTW100 .

This idea, that “a little warping is a good thing, but too much

warping is a bad thing” is known (although perhaps

underappreciated [20]) for time series classification [6]; however,

we believe that this is the first explicit demonstration of the effect

for clustering (Figures 7, 12 and 13 show examples for real

datasets). Note that for classification, the luxury of labeled training

data suggests a way to learn the appropriate amount of warping, a

possibility we are denied in the unsupervised case of clustering that

is the focus of this research.

This observation prevents us from considering a simple (although

computationally expensive) solution to the task at hand: simply

performing clustering under completely unconstrained warping.

It might also be imagined that we could discover the best warping

window width for a given data type, and simply use that setting for

all future datasets from the domain. For example, we might imagine

that for gesture recognition cDTW5 is generally best, but for

heartbeat classification cDTW13 is generally best.

However, we can dash such a hope with the following observation:

the best value for w also depends on the size of the dataset being

clustered. To see this, we can cluster increasing large instances of

the SP dataset. For each size, we search over all possible values of

w and record the value that maximizes the Rand-Index. Figure 4

shows the results, averaged over 1,000 runs.

Figure 4: The optimal value of w vs. the dataset size for Single

Plateau dataset.

The fact that the best value of w depends on both the data size and

the data structure bodes ill for any attempt to learn a fixed one-time

domain dependent value for it. Note that this size vs. best curve for

w is itself different for different datasets.

2.3 Semi-Supervised Learning
The semi-supervised learning (SSL) paradigm has drawn

significant attention in the data mining and machine learning

communities in the last decade, due to its demonstrated utility in

many practical applications [1][3][7][26]. Existing methods for

semi-supervised clustering are generally classified as constraint-

based or distance-based.

Constraint-based methods rely on user-provided constraints to

guide the algorithm towards a more accurate data partitioning. This

can be done in several (non-exclusive) ways:

 Enforcing constraints during the clustering process itself [26].

This requires modification of the clustering algorithm.

 Modifying the objective function for evaluating candidate

clusterings and rewarding solutions that satisfy the most

constraints. For example, [7] modifies the fitness function of

a genetic search algorithm that optimizes clusterings.

 Seeding the clustering using the labeled examples to provide

the initial seed clusters [3], mitigating the fact that some

clustering algorithms are sensitive to the initialization.

In distance-based approaches, an off-the-shelf clustering algorithm

is used; however, the underlying distance measure is trained to

satisfy the given constraints. For example, a weighted string-edit

distance measure could be given the constraint that the words

“bare” and “bore” must-link, but “bare” and “care” cannot-

1

2

3

4

8

9

10

5

6

7 1

3

2

4

5

6

7

8

9

10

1

3

7

2

5

4

6

8

9

10

4 40 80
2

4

6

8

10

12

B
e
s
t

W
a
rp

in
g
 W

in
d
o
w

Dataset size

link, allowing the algorithm to suitably weigh the substitution cost

in the edit distance lookup table to reflect the fact that while vowels

are often confused, consonants rarely are [5].

Our proposed algorithm does not fit neatly into any category above.

First, our approach is completely agnostic to the clustering

algorithm used. Second, we do not specify the constraints before

the clusterings are performed, but only after the fact. This provides

our approach with a significant advantage. If we ask the user to

provide constraints before clustering, either by her choices, or our

randomly choosing pairs to be labeled, she may label objects of no

utility. That is to say, she may label objects as must-link that would

have been linked by any clustering in our search space in any case.

Conversely, she may label objects as cannot-link, which would

have never been linked by any clustering that our search algorithm

would have considered. By waiting until after all the clustering

have been performed, we can ensure that annotations we ask the

user for are truly informative.

2.4 Related Work
Zhou et al. recently introduced a paper entitled “Enhancing time

series clustering by incorporating multiple distance measures with

semi-supervised learning” [30]. However, the method is perhaps

better seen as ensemble-based method for time series clustering.

The method has many parameters (at least four: α, β,p,w), and it is

not clear how they affect the performance. They only test on twelve

of the datasets we consider here, but in every case do not perform

as well as our proposed approach. For example, for Trace they

obtain a best Normalized Mutual Information (NMI) score of 0.813

whereas, as we will show in Section 4, we can easily obtain a near-

perfect NMI of 0.97, without any human annotation.

Beyond this effort, we are not aware of any other work similar to

our approach for semi-supervised learning for time series

clustering. The general field of semi-supervised time series

clustering is vast; we refer the reader to [19] and the references

therein. We further briefly review some of the most recent, high-

visibility efforts in time series clustering in Section 4.4, before

direct empirical comparisons to our proposed algorithm.

3. OUR APPROACH
Without loss of generality we will use Rand-Index in this work,

both as the internal scoring function we optimize, and for the

external post-hoc analysis of the effectiveness of our ideas. The

Rand-Index penalizes both false positive and false negative

decisions during clustering, and is thus impossible to optimize in a

trivial way. There are some proposed variants including the

Adjusted Rand-Index [24]; however, the classic Rand-Index [18] is

widely accepted and used. Moreover, at least internally, we are only

interested in relative improvements in clustering quality.

3.1 Clustering Algorithm
At the risk of redundancy we again emphasize that we are not

proposing a clustering algorithm in this work. We are proposing a

post-hoc measure that will allow us to score candidate clusterings

created with different DTW parameters. Nevertheless, we must use

some clustering algorithm. Without loss of generality we use the

TADpole algorithm of [4], which is a specialization of the Density

Peaks algorithm of [21] for DTW. This algorithm is suited to DTW

because it does not require metric properties, and is particularly

amenable to optimization by exploiting both upper and lower

bounds to DTW [4].

However, it is important to note that TADpole is just the clustering

algorithm we use to predict w. Having done so, we could, in

principle, use any clustering algorithm (Partitional, hierarchical,

spectral or density-based clustering) with the newly-learned w. As

it happens, the results using the TADpole algorithm are so good we

do not consider this option below for simplicity.

3.2 Choosing Constraints
As we noted above, the fact that we only need to see the constraints

after the clusterings have been performed gives us a unique

opportunity to optimize the precious resource of user time and

attention.

For every possible pair of time series in our dataset, we can build a

constraint vector based on whether the pair are correctly clustered

or not. A candidate constraint can be seen as a binary vector C

whose length is the number of values of w we are considering. A

‘0’ at the ith position in C indicates the pair of time series was not

correctly clustered under DTWi, whereas a ‘1’ indicates it was

correctly clustered.

In Figure 5 we can see four candidate constraints. Constraint (A) is

vacillating, and is probably of little use to us. We can interpret it as

“voting” for a w value of 2 or 3 or 6 or 8, etc. Such constraints are

very rare and probably indicate a “hybrid” object just on the cusp

of two distinct clusters.

Constraints (B) and (C) are always/never satisfied respectively. It

is easy to see that it is pointless to show such constraints to the user,

as they “vote” equally for all values of w. In most datasets we

consider, the majority (often the vast majority) of constraints are

these two types. With a little introspection, it is comforting that

most constraints are non-volatile, as it suggests that the most of the

objects being clustered are really in stable clusters. If all constraints

were highly volatile, it is hard to imagine any clustering we could

select is meaningful in any sense.

In contrast to the above, constraint (D) seems like an ideal

constraint. It can be interpreted as: “A value for w that is between

zero to six is not enough, but anything seven or above works.”

Figure 5: Four representative constraints. (A) represents a

vacillating constraint, (B) an always satisfied constraint, (C) a

never satisfied constraint, (D) an ideal constraint.

These observations inform our algorithm design. Constant

constraints (types (B) and (C)) should be discarded. Of the

remainders, “simple” constraints are most likely to be informative.

We can measure their simplicity by counting the number of sign

changes as we “slide” across the vector. For constraint (A) this

yields a value of 12, but for (D) the simplicity score is just 1.

0 5 10 15 20

Not Satisfied

Satisfied

0

1

0

1

0

1

0

1

Value of w

(A)

(B)

(D)

(C)

Simplicity(𝐶) = ∑ 0, if C𝑘 = C𝑘+1, else 1

(max 𝑤) −1

𝑘=0

Our algorithm for finding the set of constraints we will ask the user

to evaluate is presented in Table 1.

Table 1: Algorithm for Finding the Constraint Set

 Input: set of candidate constraints, max number of

constraints to get annotated

Output: UA, the set of user annotations

1

2

3

4

5

6

7

8

9

10

11

constraints sort_by(constraints, simplicity)

index 1

while empty(Constraints) AND loopCount < max

 UAindex get_user_annotation(Constraints(index))

 ans get_user_willingness(‘Do Another? Y or N’)

 if ans = ‘Y’

 index index + 1

 else

 index infinity // break out of loop

 end

end

We begin in line 1 by sorting the constraints, simplest first

(breaking ties randomly). At this point, we enter a loop, and while

we have some constraints left to annotate, and we have not reached

our preset maximum limit, and the user is willing, we will show the

two relevant time series to the user and get her must-link/cannot-

link annotation.

Figure 6 shows some examples of time series from the Trace dataset

that are shown to the user. We hope to avail of the user’s domain

knowledge, intuitions and pattern recognition ability. For Figure

6.left the user may realize that while the two time series are

superficially different, most of the difference can be explained by

warping the time axis. We would therefore expect the user would

annotate this as “must-link.”

In contrast, for Figure 6.right, we hope the user would recognize

that in spite of similarity of the two time series (they have a

relatively small Euclidean distance), one time series is missing the

short peak that seem to characterize the other sequence.

Figure 6: Examples of pairs of time series presented to user for

annotation. left) Here the correct label is must-link. right) Here

the user should ideally choose cannot-link.

Naturally, we desire that our algorithm is insensitive to occasional

annotation mistakes. We consider this issue in Section 4.2. One

helpful idea would be to add a third option “skip this annotation”

to the list of possibilities offered. For simplicity we ignore this

possibility in this work.

We can see the “anytime” nature of the algorithm by examining the

predictions we make for w as we obtain increasing numbers of user

annotations. Figure 7 show such an example for several datasets.

Note that in both cases the “shape” of our prediction vector seems

to converge to the shape of the ground truth Rand-Index curve after

just sixteen user annotations. However it is important to note that

this is not necessary for our algorithm to be successful. All we

actually require is that the prediction of the best setting for w agrees

with the ground truth. Recall that this prediction is the location of

the maximum value, ties broken by choosing the smallest value.

Figure 7: For two datasets HandOutlines and MoteStrain: The

ground truth Rand-Index (colored/bold line). The prediction

vectors (light/gray lines) learned after 1 to 16 user annotations

allow us to estimate w (arrows). The shapes of the prediction

vectors reflects the ratio of constraints satisfied (correctly

linked or not linked) at each w.

3.3 Pseudo User Annotation
As the results in Figure 7 suggest, and we will later confirm with

an extensive empirical analysis, we can typically learn a good value

for w with just a handful of user-interactions. Nevertheless, one

might imagine that there are occasions where user annotations may

be essentially impossible or especially expensive to obtain. Can we

do anything in such situations?

A similar problem arises in information retrieval, where user

feedback is known to improve the effectiveness of search, yet users

are reluctant to give explicit feedback. The information retrieval

community has addressed this by creating algorithms to give

automatically generated pseudo-relevance feedback [14].

The ambition of these approaches is limited. No one claims that

pseudo-relevance feedback is as useful as real human feedback (if

it was, the community would abandon any effort to elicit expensive

human feedback). It suffices that it is significantly better than doing

nothing. In this spirit, we present a technique to learn w from

pseudo annotations.

The basic idea is simple. Before we perform any clusterings, we

randomly sample objects from the dataset. For each object O, we

create a copy of it that we denote Ō. We add some warping to Ō,

and place it into the dataset with the (pseudo) constraint must-

link(O, Ō). The intuition is that because we know that object Ō is

just a minor variant of O, we can safely assume that had Ō occurred

naturally, it would have been in the same cluster as O, and our must-

link constraint was warranted. At this point the list of “user

annotations” is just like those produced by Table 1.

This idea seems to have a tautological paradox to it. It seems that if

add w amount of warping to the dataset, we will discover w warping

in that dataset. However, this is not the case.

A good value for w depends not only on the intrinsic variability of

the time axis and on the size of the dataset, but on the time series

shapes themselves. We can illustrate the latter point with a simple

experiment. We created two near identical datasets, Slim Plateau

and Broad Plateau, which, as their names hint, differ only in the

width of the plateau. In both datasets, one class has a plateau in the

first half and the other class has a plateau in the second half. As we

look that the leftmost column of Figure 8 we can see that both

variants cluster well under cDTW0 (i.e. Euclidean distance). What

0 2750 275

Please Annotate

1) cannot-link

2) must-linkPlease Annotate

1) cannot-link

2) must-link

1

0.5

0 10 20

Rand-Index

HandOutlines

0 10 20

MoteStrain

Rand-Index
1

0.5Optimal w
Optimal w

After one user annotation

After two user annotations

After four user annotations
After four user annotations

After sixteen user annotations

After eight user annotations

After one user annotation

After eight user annotations

After two user annotations

After sixteen user annotations

Increasing values of w Increasing values of w

would happen if we added an identical amount of random warping

to both datasets and clustered again them using cDTW0?

Figure 8: Warping affects different datasets differently under

hierarchical clustering. top) The clustering of the Slim Plateau

dataset is very brittle to the presence of warping in the time

axis. bottom) In contrast, the Broad Plateau dataset is extremely

robust to identical levels of warping.

As we can see in the rightmost column of Figure 8, the clustering

of Slim Plateau becomes essentially random, whereas Broad

Plateau is basically unaffected.

The take-away message from this experiment is as follows. In this

pathological case we can measure exactly how much warping is in

a dataset, because we placed it there. But even in this case, we

cannot use the amount of warping added to guide the choice of w.

Even with a lot of warping in the time axis, the best value of w

could still be as low as zero, depending on the time series shapes

(and, on the dataset size, cf. Section 2.2).

Table 2 outlines algorithm for generating pseudo constraints.

Table 2: Algorithm for finding the pseudo constraint set

 Input: D, the dataset to be clustered

Input: M, the amount of warping to add

Output: Dnew, a new version of dataset D

Output: PA, the set of pseudo annotations for Dnew

1

2

3

4

5

Dnew random_shuffle(D)

for i = 1 in steps of 2 to numberOfInstances(Dnew)

 Dnewi+1 = add_random_warping(Di) // See Table 3

 PA(i+1)/2 = set_constraint(Dnewi+1,Dnewi,’must-link’)

end

In line 1 we ensure that the data does not have any arbitrary

structure in its ordering. In line 2 we enter a loop which replaces

every second data object with a warped version of the data object

that preceded it. Since these two objects differ only by the existence

of some warping, we annotate them as ‘must-link’. Note that this

algorithm produces a new dataset Dnew which is the same size as

D. This is important as the size of the dataset affects the best setting

for w (recall Figure 4). The algorithm also outputs PA, a set of

pseudo annotations for Dnew. PA is essentially identical to UA

produced in Table 1, except its annotations are produced without

human interventions. Figure 9 shows some examples of time series

with warping added, and for concreteness Table 3 contains the

actual Matlab code used to add warping. We call this variant of our

ideas the PUA (Pseudo User Annotation) algorithm.

Figure 9: From top to bottom: Increasingly warped versions of

a sine wave. The red/bold curve is the original and the blue/fine

curves are the ones with warping added.

Table 3: Code to add warping to a time series

function [warped_T] = add_warping_one_time_series(T,p)

 i = randperm(length(T));

 i = sort(i(1:end-floor(length(T) * p)));

 warped_T = smooth(resample(T(i),length(T),length(i)),1);

end

How well does this idea work, compared to using true human

annotations? The human annotations are constraints between two

real data objects, which is undoubtedly advantageous. However,

we typically only have a tiny fraction of D annotated this way. In

contrast, every item in Dnew has an annotation, which provides this

approach with an advantage, should we choose to use them all.

Figure 10 shows how this idea works with Trace and Two Patterns.

Here we use 64 out of 1,824 pseudo constraints available for Two

Patterns to reach the correct w = 8. Using all 27 constraints

available for Trace, we arrive at w = 15, which gives a Rand-Index

of 0.991 (the optimal is 1.0 at w = 7).

Figure 10: Trace and Two Patterns’ prediction vectors using

pseudo constraints provided by the PUA algorithm.

The reader may wonder how much warping we should use to obtain

good pseudo constraints. The good news is that it makes almost no

difference. In this particular case, we tried all warping amounts

from 5% to 90% in 5% intervals. We found that for Two Patterns,

any warping amount in the range 5 – 65% allows us to estimate the

correct w.

3.4 Further Reducing Human Effort
There are a handful of techniques we could use to reduce the

number of annotations given by the user, many such ideas can be

borrowed directly from the information retrieval community [14].

For example, suppose the user decides {7,11} must-link, and that

{11,27} must-link, then there is little point in asking her opinion on

{7,27} since she will surely also label this pair as must-link (by

transitivity). We do not consider such optimizations here for

1

2

3

4

5

6

1

4

5

2

3

6

1

2

3

4

5

6

1

2

3

4

5

6

(Before) Warping Added (After)

(Before) Warping Added (After)

Slim Plateau

Broad Plateau

-1

0

1
10% warping

20% warping

40% warping

0 100 200

80% warping

Rand-Index
Optimal w

Using 1 pseudo constraint

Using 4 pseudo constraints

Using 16 pseudo constraints

Using 27 pseudo constraints

Trace 1

0.5

155 10 20

Increasing values of w

0 155 10 20

Rand-Index

Using 1 pseudo constraint

Using 4 pseudo constraints

After 16 pseudo constraints

After 64 pseudo constraints

Two Patterns

0

Optimal w

1

0.5

Increasing values of w

brevity, and because, as we will demonstrate, the simplest version

of our ideas is already very competitive.

4. EMPIRICAL EVALUATION
In order to ensure that our experiments are reproducible, we have

built a website which contains all data/code/raw spreadsheets for

the results, in addition to many experiments that are omitted here

for brevity. Because we are testing on so many datasets, including

all 85 available at [27] plus several more that we introducing with

this work, we do not have the space to list all their names and

characteristics. We have placed such a summary at [31].

At the risk of redundancy we restate that we are not introducing a

new clustering algorithm, merely proposing a technique to choose

among candidate clusterings that differ in the value of w used to

create them. Nevertheless, in Section 4.4 we explicitly compare

TADpole using learned warping window to five recent state-of-the-

art clustering algorithms.

4.1 Preliminary Tests
We denote our algorithm as cDTWss (DTW Semi-Supervised). We

compare to two rivals, clustering with cDTW0 (Euclidean distance),

and clustering with cDTW10. These two rival methods account for

virtually the entire literature, for example [9] uses cDTW0 and [15]

uses cDTW10. A surprisingly large number of papers neglect to

explicitly state what value of w was used.

It is important to state that the only difference between our approach

and the two rival methods is the access to the labeled constraints.

Otherwise the underlying clustering algorithm, TADpole [4], is

identical for all approaches, and completely deterministic [21].

Thus, any improvements obtained can be completely attributed

solely to our ideas.

We can measure success as follows. For each dataset we compute

the maximum Rand-Index obtainable under any setting of w from

0 to 20% (as our result shows, and in agreement with the literature,

most datasets do not require w greater than 10% [20]). For example,

in Figure 1 the maximum Rand-Index is 1.0 for Two Patterns and

0.89 for Swedish Leaf. We can then compute a score, the ratio of

the Rand-Index achieved by an approach over this optimal

achievable value. The closer this ratio is to 1.0 the better; we call

an approach a success if its score is 0.99 or higher.

We begin by considering the utility of our approach if given just

sixteen labels; this is about the amount a person can annotate in one

minute. With sixteen labeled constraints we achieve success of 46

out of 102 datasets, with cDTW0 and cDTW10 achieving 34 and 31

respectively. If we double the number of constraints to thirty-two,

we extend our success to 50 datasets. Recall that thirty-two

annotations requires only a few minutes of user effort, and typically

represents less than 0.0001% of the labeled pairs.

In spite of this significant improvement over the state-of-the-art, it

is natural to wonder about the cases we did not score within 0.99 of

optimal. In some cases we just missed out. For example, using

thirty-two constraints on the TwoLeadECG, Cricket_Y,

NonInvasiveFatalECG_2, and 50words datasets, we got within at

least 0.98 of optimal.

However, in some cases we do achieve significantly worse than

optimal. Essentially, all such cases can be attributed to very small

datasets (or small, relative to the number of clusters). As shown in

Figure 11, this tends to result in clusterings that are very unstable

to small changes in w. The fact that small datasets have poor

stability when clustered is well known [25], and the issue is

orthogonal to our contributions. In essence, we feel that if the best

value of w is poorly defined and unstable, it may be impossible for

any algorithm to learn w. Nevertheless, even in such datasets we do

not do worse than the lower scoring of out two rivals

Figure 11: The Rand-Index vs. the warping window width for

three small datasets. Contrast the variability of the curves with

the relatively smooth curves shown in Figure 1.

4.2 Robustness to Incorrect Constraints
The experiments in the previous section assumed that all the

constraints the user gave are correct. However, this assumption

may be unwarranted in many circumstances. That is to say, our

annotator may indicate that two items cannot-link, when in fact they

are in the same class, and really must-link, or vice versa. To

investigate the robustness of our approach we revisit some of the

experiments above, this time randomly inverting some fraction of

the constraints to be incorrect.

As we can see in Figure 12, for at least ItalyPowerDemand and

MiddlePhalanxOutlineAgeGroup datasets, we can achieve near

perfect results even if a significant fraction of the constraints are

incorrect. Among the 16 pairs of time series chosen for annotation,

we single out the must-link pairs and randomly change the label of

some pairs from this list to cannot-link. We then observe the mean

best w predicted averaged over ten runs. We find it is consistently

0 for ItalyPowerDemand dataset and 1 for

MiddlePhalanxOutineAgeGroup, which agrees with the objective

ground truth.

Figure 12: Robustness to incorrect constraints. In each case, 16

pairs of time series are presented for annotation. The annotator

may wrongly label a pair that should have been must-link as

cannot-link and vice versa. Our algorithm is robust to these

mistakes.

As a practical matter, any system used to garner user feedback

should allow three choices (not just two) to the user, cannot-

link, must-link and I-don’t-know, which would further enhance

robustness by giving the user a chance to simply skip over difficult

or ambiguous cases.

4.3 Handling the Multi-Dimensional Case
Thus far we have only considered single dimensional time series;

however, the proliferation of sensors from sources such as wearable

Increasing values of w
0 5 10 15 20

Rand-Index
(the ground truth)

The three sequences

are dithered for

visual clarity. Only

their amplitude is

original, their offset

has no meaning.

1

0 Lighting2

MedicalImages

ScreenType

1

0.6

Optimal w Rand-Index

0 incorrect user annotations

2 incorrect user annotations

4 incorrect user annotations

6 incorrect user annotations

MiddlePhalanxOutlineAgeGroup

10 200

1

0

Optimal w

Rand-Index

0 incorrect user annotations

2 incorrect user annotations

4 incorrect user annotations

6 incorrect user annotations

ItalyPowerDemand

155 10 20

Increasing values of w
0

Increasing values of w

devices means that there is increasing interest in multi-dimensional

time series data [22]. Fortunately, there is nothing in our approach

that makes any assumption about dimensionality, so we can

immediately apply our ideas to the multi-dimensional case. A

recent paper notes that there are (at least) two ways that DTW can

be generalized to the multi-dimensional case, for simplicity we use

DTWI [22].

In Figure 13 we consider the 4,480 object, three-dimensional

UWave dataset [13] which has become something of a benchmark

for gesture recognition in the last five years. We also consider the

Handwriting Accelerometer using all three dimensions available.

Even though all dimensions are not necessary for this task (and in

fact can introduce noise to the clusters), we only wish to illustrate

that our algorithm can correctly predict a good value for w.

Figure 13: Three-dimensional uWave and Handwriting

Accelerometer datasets clustered with DTWI.

While there are just over one million possible pairwise constraints,

our algorithm can find the optimal w with just sixteen annotations.

Note that here the amount of warping is critical, with too much or

too little giving poor results. This fact might go some way to

explaining the puzzlingly diversity of accuracy claims made for this

dataset in the literature. Unfortunately, most papers do not

explicitly state the value of w used, but the three most common

settings, cDTW0 , cDTW10 and cDTW100, are all suboptimal to

widely differing degrees.

4.4 Comparisons to Rival Methods
In this section we have two related aims. The first is to satisfy our

obligation of comparing to other clustering methods in the literature

(in spite of the fact we are not introducing a new clustering

algorithm). Our second aim is higher-level. We wish to

demonstrate that finding a good value for w generally produces

improvements that dwarf all other choices, including the choice of

the clustering algorithm.

Concretely, in this section we offer some evidence to support the

following claim:

The effect of choosing the correct value of w is critical, and

generally dwarfs any effect of the choice of clustering algorithm.

This can also be stated as the essentially equivalent claim:

Any discussion of the “best” clustering algorithm for time series

is premature unless the best value of w has been decided.

This claim is important because some published research has

claimed improvements in creating a clustering algorithm, or in

designing an alternative distance measure, with only slight

improvements demonstrated in accuracy. We believe that in many

2 For conditional entropy, smaller is better, with 0.0 being perfect.

cases, a better (but not necessarily best) choice of w would have

radically changed the outcome in favor of DTW with any “off-the-

shelf” clustering algorithm. Our claim largely contradicts recent

claims such as “…the choice of algorithm, .., is as critical as the

choice of distance measure” [15].

We reiterate that we are only offering some evidence to support this

claim. A more forceful demonstration (that is rigorously fair to all

cited work) would require more space than is available here.

In a recent paper [15] the authors introduces k-Shape, a system that

combines a novel time series clustering algorithm and a novel

distance measure (Shape-Based Distance (SBD)), that are designed

to work in conjunction with each other. They perform an

extraordinary comprehensive empirical comparison of the

proposed method with all the major clustering algorithms and

distance measures. For DTW they do recognize that the value of w

can make a difference; they compare two possibilities (cDTW5 and

cDTW10) and conclude that “SBD is a very competitive distance

measure ... and achieves similar results to both constraint and

unconstraint versions of DTW.”

However, simply choosing a better value of w typically makes

improvements that dwarf the claimed improvements of the SDB

algorithm. For example, for the Trace dataset they compare five

clustering algorithms that use DTW vs. the same five clustering

algorithms using SBD. The former achieves Rand-Indexes of

{0.87, 0.75, 0.75, 0.83, 0.77} and the latter achieves Rand-Indexes

of {0.87, 0.87, 0.87, 0.83, 0.87}, suggesting an advantage for SBD.

However, using the exact same split of the Trace data, we can

significantly beat all these approaches without any human

intervention, as our PUA algorithm can achieve 0.99.

We have similarly large margins improvements for most datasets,

for example for Two Patterns, [15] has the DTW based algorithms

achieving Rand-Indexes of {0.87, 0.59, 0.62, 0.97, 0.65}, and SBD

variants achieving {0.25, 0.54, 0.64, 0.67, 0.66} but PUA learns

that cDTW8 is the best setting and achieves a perfect 1.0.

Similarly, in a recent paper [12] the authors introduce a clustering

method called CLDS (complex-valued linear dynamical systems),

and claim that the “approach produces significant improvement in

clustering quality, 1.5 to 5 times better than well-known

competitors on real motion capture sequences.” The method

involves several layers of complicated sub-procedures, so we refer

the interested reader to the original paper. The authors demonstrate

the utility of their work on the publicly available MOCAPANG-

Subject-35, right-foot-marker dataset. The evaluation method is

based on the conditional entropy2, and they manage to score 0.1015,

while cDTW100 using K-Means scores significantly worse at

0.4229, about the same as random guessing.

In revisiting this experiment we noted that the authors acknowledge

that “the original motion sequences have different lengths; we trim

them with equal duration.” But note that this manipulation is only

needed for their proposed method; cDTW can handle sequences of

different lengths. When we re-ran the experiments, we found that

cDTW20 gives a perfect conditional entropy of 0 using K-Means.

TADpole achieves the same superior score for any w from 11 to 20.

As before, the correct value of w makes a difference; for example,

TADpole, if forced to use cDTW10, scores a slightly worse 0.142.

Note that we are not claiming the work proposed in [12] is without

merit. We are simply pointing out that at least on the datasets the

original authors used to validate the method, cDTW, using any

Rand-Index
Optimal w

After one user annotation

After two user annotations

After four user annotations

After eight user annotations

After sixteen user annotations

uWave

155 10 20

Increasing values of w

0

1

0.5

After one user annotation

After two user annotations

After four user annotations

After eight user annotations

After sixteen user annotations

Handwriting Accelerometer

155 10 200

1

0.5
Rand-Index

Optimal w

Increasing values of w

reasonable choice for w with an off-the-shelf clustering method,

can be very competitive.

A recently published work measures the accuracy of eleven

carefully-optimized clustering algorithms on the Trace dataset, of

which eight use DTW as the distance measure [11]. The Rand-

Indexes of these methods are {0.87, 0.76, 0.86, 0.86, 0.91, 0.86,

0.86, 0.87, 0.87, 0.84, 0.75}. However, as noted above, using the

exact same split of the Trace data, we can significantly beat all

these approaches without any human intervention, as our PUA

algorithm can achieve 0.99.

Another recently published time series clustering technique called

YADING is shown to “provide theoretical proof which...

...guarantees YADING’s high performance” [9]. However, these

guarantees are only with respect to Euclidean distance. The only

publicly available real dataset they test on is StarLightCurves,

where they obtain a Normalized Mutual Information (NMI) score

of 0.60. However, as shown in Figure 14, with 16 constraints given

by the user, we find cDTW1 to be a good choice and achieve a NMI

of 0.79, significantly better (Omitted for brevity: in fact, any

number of constraints above four also works this well).

Figure 14: The Rand-Index vs. the warping window width for

StarLightCurves. We predict w = 1, obtaining a Rand-Index of

0.83, equivalent to a NMI of 0.79.

Likewise, in an expanded tech report that augments the paper [10],

the YADING method achieves a NMI of 0.61 on the

CinC_ECG_torso dataset. However on this dataset, our algorithm

discovers cDTW1 to be the best choice for w, and NMI of 0.66.

Why did the authors of [9][10] dismiss DTW as a distance

measure? They noted that DTW “is one order of magnitude slower

than calculating [Euclidian distance],” and further noted that it

only took them a brief 3.1 seconds to cluster this dataset. However,

this dataset took several years to collect, and many days of careful

human effort in preprocessing. Given that, the difference between

taking 3.1 seconds or taking 30 seconds to do the clustering seems

completely inconsequential (but see also Section 4.5). Of course,

the authors are correct in noting that there is sometimes a need for

great speed and scalability. However, in many domains the tradeoff

between speed and accuracy will favor accuracy. For example, in

the UCR Archive many datasets took hours, days or weeks to

collect (InsectWingbeatSound, ElectricDevices, Fish, Phoneme,

etc), so the few minutes needed to cluster them is negligible, if we

are able to improve accuracy.

Finally, a paper to appear in AAAI tests four algorithms for time

series clustering, two of them based on DTW [29]. These

algorithms give NMI scores of {0.53, 0.45, 0.54, 0.64} for the

Trace dataset, but our PUA algorithm can achieve an almost perfect

NMI of 0.97 (Rand-Index = 0.99) on this same dataset.

These five examples strongly support our claim. Finding a good

value for w (using our method, or any method) can produce

improvements that make all other changes inconsequential.

4.5 Scalability of our Algorithm
At first blush our algorithm appears to require a significant

overhead in time complexity, given that the Density Peaks

algorithm [21] requires O(n2) calculations of cDTW, and we need

to run this algorithm twenty-one times (for each warping window

from 0 to 20). However, this is a pessimistic view. First, note that

we use the TADPole version of the algorithm, which is a

specialization of the Density Peaks algorithm for DTW that

exploits the fact that we can compute tight upper and lower bounds

for cDTWw for any value of w and use these bounds to prune off

many computations. The TADpole algorithm is admissible, and

able to prune 90%-plus of the cDTW calculations.

In fact, we can do even better than this. Instead of doing twenty-

one independent clusterings, we can exploit the fact that for any

two time series Q,C the value of cDTWw(Q,C) is a (very tight)

lower bound for the value of cDTWw+1(Q,C). Thus we can perform

the clusterings in order, from w = 0 to w = 20, at each stage using

any cDTWw calculations actually made, as lower bounds in the next

level. Thus, the time overhead for our ideas is only slightly more

than a single highly optimized clustering.

Finally we note that there is a wide variety of DTW

implementations and the efficiency differences between good and

bad implementations overshadow the small overhead of our

approach. For example, a recently published paper that tests a

DTW-based clustering on some of the datasets we consider, notes

that “several experiments were unable to return results within 20

days” [29]. However, we can cluster exactly these same datasets in

at most minutes, at least 10,000 times faster.

4.6 Nontransferability of the Best Setting for w
We claimed in the introduction that the best setting of w for

classification is generally no indicator of the best setting of w for

clustering. Since this assumption has been explicitly made (but

never tested) multiple times in the literature [15], we will take the

time to show that it is unwarranted. In Figure 15 we show both the

Rand-Index and the accuracy for two datasets.

Figure 15: The Rand-Index (red/fine) and the classification

accuracy (blue/bold) vs. the warping window width, for two

representative datasets.

In retrospect it is not surprising that these values are at best weakly

related. For 1NN classification (the most commonly used

classification technique in the literature [8][20]) only the distance

between the unlabeled exemplar and it’s single nearest neighbor

matters. However, for clustering, the mutual distance among small

groups of objects matter.

5. CONCLUSIONS AND FUTURE WORK
In this work we have shown that w, the amount of warping allowed,

is a critical parameter for clustering time series under the DTW

distance. For most datasets, if this parameter is badly set, then

nothing else matters; it will simply be impossible to produce a high

0 5 10 15 20

After sixteen user annotations

Rand-Index
(the ground truth)

StarLightCurves

Optimal w

Increasing values of w

1

0.5

0 10 20
0.45

0.5

0.55

0.6

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0.2

0.4

0.6

0.8

R
a
n
d
 I
n
d
e
x

0 10 20
0.7

0.8

0.9

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
ra

c
y

0

0.5

1

R
a
n
d
 I
n
d
e
x

ToeSegmentation2 MiddlePhalanxTW

Increasing values of w Increasing values of w

quality clustering. We have further proposed the first semi-

supervised technique designed to discover the best value for w.

Our paper has several other observations that are novel, or at least

underappreciated. We have shown w depends not only on the data

object shapes, but on the number data objects considered. This

observation has been made for classification before, but not for

clustering [20]. We have shown that the optimal setting for w for

classification is not generally the optimal setting for clustering, an

assumption that has appeared in the literature [15]. Finally, in the

last decade, a handful of researchers have argued that warping

constraints are a necessary evil, and that there are “cases where

unconstrained warping is useful” [23], or that research should

“focus on unconstrained DTW” [1]. While absence of evidence is

not evidence of absence, the extensive nature of our experiments,

which failed to find a single dataset which requires a value of w

greater than 20%, suggests that these efforts are likely to be

fruitless.

Finally, we have released all our code and data [31], to allow others

to confirm, extend and exploit our ideas.

Acknowledgements

We would like to acknowledge funding from NSF IIS-1161997 II

and NSF IIS-1510741.

6. REFERENCES
[1] Athitsos, V., et al. Approximate embedding-based subsequence

matching of time series. In Proceedings of the 2008 ACM

SIGMOD International Conference on Management of Data,

2008, 365-378.

[2] Basu, S., Bilenko, M. and Mooney, R.J. A probabilistic

framework for semi-supervised clustering. In Proceedings of the

tenth ACM SIGKDD international conference on Knowledge

Discovery and Data Mining, 2004, 59-68.

[3] Basu, S., Banerjee, A. and Mooney, R. Semi-supervised

clustering by seeding. In In Proceedings of 19th International

Conference on Machine Learning, 2002.

[4] Begum, N., Ulanova, L., Wang, J. and Keogh, E. Accelerating

Dynamic Time Warping Clustering with a Novel Admissible

Pruning Strategy. In Proceedings of the 21st ACM SIGKDD 2015,

49-58.

[5] Bilenko, M., and Mooney, R. J. Adaptive duplicate detection

using learnable string similarity measures. In Proceedings of the

ninth ACM SIGKDD international conference on Knowledge

discovery and data mining, 2003, 39-48.

[6] Chen, Y., Hu, B., Keogh, E.J. and Batista G. E. A. P. A. DTW-D:

Time series semi-supervised learning from a single example.

In Proc’ of the 19th ACM SIGKDD, 2013, 383-391.

[7] Demiriz, A., Bennett, K. P. and Embrechts, M. J. Semi-supervised

clustering using genetic algorithms. Artificial neural networks in

engineering (ANNIE-99), 1999, 809-814.

[8] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X. and Keogh,

E. Querying and Mining of Time Series Data: Experimental

Comparison of Representations and Distance Measures. Proc’ of

the VLDB Endowment, 2008, 1542-52.

[9] Ding, R., Wang, Q., Dang, Y., Fu, Q., Zhang, H., and Zhang, D.

YADING: Fast Clustering of Large-scale Time Series Data. Proc’

of the VLDB Endowment, 2015, 8(5), 473-484.

[10] Ding, R., Wang, Q., Dang, Y., Fu, Q., Zhang, H., and Zhang, D.

Evaluation on Real Datasets: YADING. Microsoft Tech Report,

2015.

[11] Ferreira, L. N. and Zhao, L. Time Series Clustering via

Community Detection in Networks. Information Sciences, 2015,

Volume 53, 2015, Pages 183–190.

[12] Li, L. and Prakash, B. A. Time series clustering: Complex is

simpler!. In Proceedings of the 28th International Conference on

Machine Learning, 2011, 185-192.

[13] Liu, J., Zhong, L., Wickramasuriya, J. and Vasudevan, V. uWave:

Accelerometer-based personalized gesture recognition and its

applications. Pervasive and Mobile Computing, 2009, 5(6), 657-

675.

[14] Lv, Y. and Zhai, C. Positional relevance model for pseudo-

relevance feedback. In Proceedings of the 33rd international

ACM SIGIR conference on Research and development in

information retrieval, 2010, 579-586.

[15] Paparrizos, J. and Gravano, L. k-Shape: Efficient and Accurate

Clustering of Time Series. In Proceedings of the 2015 ACM

SIGMOD, 1855-1870.

[16] Petitjean, F., Forestier, G., Webb, G., Nicholson, A. E., Chen, Y.

and Keogh, E. Dynamic Time Warping Averaging of Time Series

Allows Faster and More Accurate Classification. In IEEE ICDM

2014, 470-479.

[17] Rakthanmanon, T., et al. Searching and mining trillions of time

series subsequences under dynamic time warping. In Proc’ of the

18th ACM SIGKDD international conference on Knowledge

discovery and data mining, 2012, 262-270.

[18] Rand, W. M. Objective criteria for the evaluation of clustering

methods. Journal of the American Statistical association,

1971, 66(336), 846-850.

[19] Rani, S. and Sikka, G. Recent Techniques of Clustering of Time

Series Data: a Survey. Int. J. Comput. Appl, 2012, 52(15), 1-9.

[20] Ratanamahatana, C.A. and Keogh, E.J. Three Myths about

Dynamic Time Warping. In Proceedings of SIAM International

Conference on Data Mining, 2005, 506-10.

[21] Rodriguez, A. and Laio, A. Clustering by fast search and find of

density peaks. Science 344, no. 6191, 2014, 1492-1496.

[22] Shokoohi-Yekta, M., Wang, J. and Keogh, E. On the Non-Trivial

Generalization of Dynamic Time Warping to the Multi-

Dimensional Case. In Data Mining. Proceeding of the 2015

International Conference on, 2015, 39-48.

[23] Shou, Y., Mamoulis, N. and Cheung, D. W. Fast and Exact

Warping of Time Series Using Adaptive Segmental

Approximations. Machine Learning, 2005, 58(2-3), 231-267.

[24] Vinh, N. X., Epps, J., & Bailey, J. Information theoretic measures

for clusterings comparison. The Journal of Machine Learning

Research, 11, 2010, 2837-2854.

[25] Von Luxburg, U. Clustering stability: An overview. Now

Publishers Inc, 2010.

[26] Wagstaff, K. and Cardie, C. Clustering with instance-level

constraints. In Proceedings of the 17th International Conference

on Machine Learning, 2000, 1103–10.

[27] Yanping, C., et al. The UCR Time Series Classification Archive.

www.cs.ucr.edu/~eamonn/time_series_data/, 2015.

[28] Zakaria, J., Mueen, A. and Keogh E. Clustering Time Series

Using Unsupervised-Shapelets. In Proc’ of the 2012 IEEE 12th

International Conference on Data Mining, 785-794.

[29] Zhong, Y., Liu, S., Wang, X., Xiao, J. and Song, Y. Tracking Idea

Flows between Social Groups. arXiv preprint arXiv:1512.04036.

To appear in AAAI 2016, 2015.

[30] Zhou, J., Zhu, S. F., Huang, X. and Zhang, Y. Enhancing Time

Series Clustering by Incorporating Multiple Distance Measures

with Semi-Supervised Learning. Journal of Computer Science

and Technology, 2015, 30(4), 859-873.

[31] Supporting webpage: sites.google.com/site/dtwclustering/

http://www.cs.ucr.edu/~eamonn/time_series_data/

