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failure of the Gridlets. Extensive simulation experiments 
are conducted to quantify the performance of the proposed 
load-balancing strategy on the GridSim platform. Experi-
ments have shown that the proposed system can consider-
ably improve Grid performance in terms of total execution 
time, percentage gain in execution time, average response 
time, resubmitted time and throughput. The proposed load-
balancing technique gives 7  % better performance than 
EGDC in case of constant number of resources, whereas 
in case of constant number of Gridlets, it gives 11 % better 
performance than EGDC.

Keywords  Load balancing · GridSim · Gridlet · 
Response time

1  Introduction

A Grid is a computing and data management infrastructure 
that provides the electronic underpinning for a global soci-
ety in business, government, research, science and enter-
tainment [1]. A computational Grid constitutes the software 
and hardware infrastructure that provides dependable, con-
sistent, pervasive and inexpensive access to high-end com-
putational capabilities [2]. The Grid integrates networking, 
communication, computation and information to provide 
a virtual platform for computation and data management 
in the same way that the Internet integrates resources to 
form a virtual platform for information [1]. The Grid can 
also be considered as a collection of distributed computing 
resources over a local or wide area network that appear to 
an end user as one large virtual computing system [3]. The 
speedy development in computing resources has enhanced 
the performance of computing systems with reduction in 
cost. The availability of low cost, high-speed networks, 
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powerful computers coupled with the advances and the 
popularity of the Internet has led the computing environ-
ment to be mapped from the traditional distributed systems 
to the Grid environments [4].

A computational Grid enables the effective access to 
high-performance computing resources. It supports the 
sharing and coordinated use of resources, independently 
from their physical type and location, in dynamic virtual 
organizations that share the same goal [5]. Grid infra-
structure provides us with the ability to dynamically link 
together resources as an ensemble to support the execution 
of large-scale, resource-intensive and distributed applica-
tions [1]. With its multitude of heterogeneous resources, 
a proper scheduling and efficient load balancing across 
the Grid is required for improving the performance of the 
system [6]. The load-balancing mechanism attempts to 
improve the response time of the user’s submitted appli-
cations by ensuring maximal utilization of available 
resources. The main goal of this type of algorithm is to pre-
vent, if possible, the condition in which some processors 
are overloaded with a set of tasks while others are lightly 
loaded or even idle [7].

In general, the load-balancing algorithms are classified 
as static and dynamic. In a static algorithm, the informa-
tion governing load-balancing decisions which include 
the characteristics of the jobs, the computing nodes and 
the communication networks are known in advance. The 
load-balancing decisions are made deterministically or 
probabilistically at compile time and remain constant 
during runtime. In contrast, the dynamic load-balancing 
algorithms attempt to use the runtime state information to 
make more informative load-balancing decisions. Here, 
the responsibility for making global decisions may lie with 
one centralized location, or be shared by multiple distrib-
uted locations. Undoubtedly, the static approach is easier 
to implement and has minimal runtime overhead. However, 
the advantage of dynamic load balancing over static is that 
the system need not be aware of the runtime behaviour of 
the application before execution. The adaptive algorithms 
are a special type of dynamic algorithms where the param-
eters of the algorithm and/or the scheduling policy itself is 
changed based on the global state of the system. Accord-
ing to another classification, the load-scheduling algo-
rithms could be classified as centralized or distributed. In 
the centralized approach, one node in the system acts as a 
scheduler and makes all the load-balancing decisions. The 
information is sent from the other nodes to the scheduler. In 
the distributed approach, all the nodes of the system remain 
involved in the load-balancing decisions. It therefore, 
becomes very costly for each node to obtain and maintain 
the dynamic state information of the whole system. Here, 
each node obtains and maintains only the partial informa-
tion locally to make suboptimal decisions. However, the 

distributed algorithms suffer from the problem of com-
munication overheads incurred by frequent information 
exchange between processors. The centralized strategy on 
the other hand has the advantage of ease of implementa-
tion, but it suffers from the lack of scalability, fault toler-
ance and the possibility of becoming a performance bottle-
neck. Therefore, the centralized algorithms are found to be 
less reliable than the decentralized algorithms [8, 9].

Load balancing has been discussed in traditional dis-
tributed systems literature for more than three decades. 
Although a Grid belongs to the class of distributed sys-
tems, the load balancing algorithms which are usually run 
on homogeneous and dedicated resources in classical dis-
tributed systems, cannot work well in the Grid architec-
tures. This is due to the unique characteristics of the Grid 
computing environment such as heterogeneity, autonomy, 
scalability, adaptability, dynamic behaviour, application 
diversity, resource non-dedication, resource selection and 
computation-data separation. Thus, it is a challenging 
problem to design an efficient and effective load-balancing 
scheme for Grid environments which can integrate all the 
above said factors [7].

In this paper, our basic aim is to develop a load-bal-
ancing model for Grids which can be adapted to the het-
erogeneous Grid computing environment. The method pro-
posed by us is an improvement over the existing enhanced 
GridSim with deadline control (EGDC) [7]. Our proposed 
approach called “Enhanced GridSim with Load balancing 
based on Deadline Failure Recovery” (EGDFR) performs 
load balancing by providing a scheduling system which 
includes the mechanism of recovery from deadline fail-
ure of the Gridlets. The proposed load-balancing strategy 
(EGDFR) is simulated on the GridSim platform [10]. The 
proposed mechanism is shown to reduce the total execution 
time, average response time (ART), resubmitted time and 
give better results for throughput in comparison to [7, 11].

The rest of the paper is organized as follows. In the 
next Section, the related works are discussed. We hold 
background discussions on GridSim and some important 
existing load-balancing schemes on GridSim in Sect.  3. 
In Sect.  4, we present our Grid load-balancing scheme 
EGDFR. The Sect.  5 presents the simulation results and 
compares the proposed work with the existing load-balanc-
ing schemes LBEGS [11] and EGDC [7]. Finally, the con-
cluding remarks are presented in Sect. 6.

2 � Related works

In literature, the researchers have proposed several load-
balancing strategies in Grid environments [6, 7, 12–27].

In [12], Anand et  al. presented a decentralized 
dynamic load-balancing algorithm called Estimated Load 



175Engineering with Computers (2016) 32:173–188	

1 3

Information Scheduling Algorithm (ELISA) for general 
purpose distributed computing systems. The ELISA uses 
the estimated state information based upon the periodic 
exchange of exact state information between the neigh-
bouring nodes to perform load scheduling. The primary 
objective of their algorithm is to cut down the communi-
cation and load transfer overheads by minimizing the fre-
quency of status exchange and by restricting the load trans-
fer and status exchange within the buddy set of a processor. 
It is shown that the resulting algorithm performs almost as 
well as a perfect information algorithm and is superior to 
other load-balancing schemes based on the random sharing. 
In [6], Shah et al. proposed two algorithms, the MELISA 
(Modified ELISA) and load balancing on arrival (LBA). 
Their algorithms differ in the way the load balancing is 
carried out and are shown to be efficient in minimizing 
the response time on large- and small-scale heterogeneous 
Grid environments. The MELISA is applicable to large-
scale systems with the resource heterogeneity and network 
heterogeneity. The other algorithm, LBA is applicable to 
small-scale systems. It performs load balancing by estimat-
ing the expected finish time of a job on buddy processors 
on each job arrival. Both the said algorithms estimate sys-
tem parameters such as the job arrival rate, CPU processing 
rate and load on the processor. They quantify the perfor-
mance of their algorithms using several influencing param-
eters such as the job size, data transfer rate and the status 
exchange period.

The researchers in [13] used several well-known arti-
ficial life techniques to gauge their suitability for solving 
Grid load-balancing problems. The artificial life tech-
niques can be used to solve a wide range of complex prob-
lems in recent times. The power of these techniques stems 
from their capability in searching large search spaces, 
which arise in many combinatorial optimization prob-
lems very efficiently. Due to their popularity and robust-
ness, the genetic algorithm (GA) and tabu search (TS) are 
used to solve the Grid load-balancing problem. The results 
of the experiment showed that these two methods can be 
effectively used for Grid load balancing. The GA and TS 
showed similar performance results, and performed better 
than the Best-fit, Random, Min–min and Max–min algo-
rithms. Bharadwaj et al. [14] proposed a new paradigm for 
load scheduling in distributed systems e.g. divisible load 
theory. The Divisible load theory is a methodology that 
involves the linear and continuous modelling of partition-
able computation and communication loads for parallel 
processing. It adequately represents an important class of 
problems with applications in parallel and distributed sys-
tem scheduling, various types of data processing, scientific 
and engineering computation and sensor networks. Cao 
[15] used an ant-like self-organizing mechanism to achieve 
system-wide Grid load balancing through a collection of 

simple local interactions between the Grid nodes. In this 
model, multiple resource management agents cooperate to 
achieve automatic load balancing of distributed job queues. 
Each ant takes two sets of m steps in succession to deter-
mine the least and the most loaded nodes, respectively. The 
two nodes then redistribute the load between themselves. 
After a series of successive redistributions, the system-wide 
uniform load balancing could be achieved.

The authors in [16] presented two new distributed swarm 
intelligence inspired load-balancing algorithms. One of 
these algorithms is based on ant colony optimization and 
the other algorithm is based on particle swarm optimiza-
tion. The performance of both the algorithms is evaluated 
using several performance criteria such as make span and 
load-balancing level. The simulation of these approaches 
using a Grid simulation toolkit was conducted. The experi-
mental results showed that the proposed algorithms could 
perform very well in a Grid environment. Especially, the 
use of particle swarm optimization can yield better per-
formance results in many scenarios than the ant colony 
approach. Erdil and Lewis [17] described information dis-
semination protocols to distribute the load in a way without 
using load rebalancing through job migration. However, it 
becomes more difficult and cost prohibitive for large-scale 
heterogeneous Grids. Essentially, in their model, the nodes 
adjust their advertising rates and aggressiveness to influ-
ence where jobs get scheduled. Subrata et al. [18] proposed 
a game-theoretic solution to the grid load-balancing prob-
lem. The algorithm developed combines the inherent effi-
ciency of the centralized approach and the fault-tolerant 
nature of the distributed, decentralized approach. The grid 
load-balancing problem is modelled as a noncooperative 
game, where the objective is to reach the Nash equilibrium. 
One advantage of this scheme is the relatively low over-
head and robust performance against inaccuracies in per-
formance prediction information.

Zikos et  al. [19] studied the site allocation scheduling 
of nonclairvoyant jobs in two-level heterogeneous grid 
architecture. Three scheduling policies at grid level which 
utilize site load information are examined. The aim is the 
reduction of site load information traffic, while at the same 
time means response time of jobs and fairness in utiliza-
tion between the heterogeneous sites are of great inter-
est. A simulation model is used to evaluate performance 
under various conditions. The simulation results showed 
that considerable decrement in site load information traf-
fic and utilization fairness can be achieved at the expense 
of a slight increase in response time. Fernandes et  al. 
[20] proposed a route load-balancing algorithm, which is 
designed to equally distribute the load of tasks for paral-
lel applications. This algorithm uses the message routing 
concepts to define the computer neighbourhood. If any 
resource becomes overloaded, then the neighbour’s load is 
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evaluated. If the neighbour node is not overloaded then the 
tasks are transferred to it. In [21], Balasangameshwara and 
Raju proposed a fault-tolerant hybrid load-balancing algo-
rithm. Their algorithm is carried out in two phases. In the 
first phase, a static load-balancing policy selects the desired 
effective sites to carry out the submitted job. If any of the 
sites is unable to complete the assigned job, a new site is 
located using the dynamic load-balancing policy. By this 
way, the job failure is identified and load is redistributed to 
the underloaded resources. They claimed their algorithm to 
perform well in large Grid environments.

Li et  al. [22] addressed the load-balancing problem 
by presenting a hybrid approach to the load balancing of 
sequential tasks under grid computing environments. The 
main objective is to arrive at task assignments that could 
achieve minimum execution time, maximum node utiliza-
tion and a well-balanced load across all the nodes involved 
in a grid. A first-come-first-served and a carefully designed 
GA are selected as representatives of both classes to work 
together to accomplish the goal. The simulation results 
showed that the algorithm can achieve a better load-bal-
ancing performance as compared to its ‘pure’ counterparts. 
The authors in [23] introduced a hybrid load-balancing 
policy to integrate static and dynamic load-balancing 
technologies. Essentially, a static load-balancing policy is 
applied to select effective and suitable node sets. This mini-
mizes the unbalanced load probability caused by assigning 
tasks to ineffective nodes. When a node reveals the possi-
ble inability to continue providing resources, the dynamic 
load-balancing policy determines whether the node in 
question is ineffective to provide load assignment. Then 
the system obtains a new replacement node within a short 
time, to maintain system execution performance. Cao et al. 
[24] demonstrated various artificial intelligence techniques 
which can be utilized to achieve effective workload and 
resource management. A combination of intelligent agents 
and multi-agent approaches is applied to both local grid 
resource scheduling and global grid load balancing. Each 
agent is a representative of a local grid resource and uti-
lizes predictive application performance data with iterative 
heuristic algorithms to engineer local load balancing across 
multiple hosts.

Wu et  al. [25] used a novel multi-agent reinforcement 
learning method, called ordinal sharing learning (OSL) 
method, is proposed for job scheduling problems, espe-
cially, for realizing load balancing in Grids. The approach 
circumvents the scalability problem by using an ordinal 
distributed learning strategy, and realizes multi-agent coor-
dination based on an information sharing mechanism with 
limited communication. Zheng et  al. [26] addressed the 
problem of determining which group an arriving job should 
be allocated to and how its load can be distributed among 

computers in the group to optimize the performance. The 
algorithms guarantee finding a load distribution over com-
puters in a group that leads to the minimum response time 
or computational cost. The effect of pricing on load dis-
tribution is studied by considering a simple pricing func-
tion. Three fully distributed algorithms are developed to 
decide which group the load should be allocated to, taking 
into account the communication cost among groups. These 
algorithms use different information exchange methods and 
a resource estimation technique to improve the accuracy 
of load balancing. Li [27] considered optimal load distri-
bution in a nondedicated cluster or grid computing system 
with heterogeneous servers processing both generic and 
dedicated applications. The goal of load balancing is to 
find an optimal load distribution strategy for generic tasks 
on heterogeneous servers preloaded by different amount of 
dedicated tasks such that the overall ART of generic appli-
cations is minimized. This optimization problem is solved 
for three different queueing disciplines, namely, dedicated 
applications without priorities, prioritized dedicated appli-
cations without preemption, and prioritized dedicated 
applications with preemption.

In [7], Y. Hao et al. presented a load-balancing mecha-
nism called “Load balancing on Enhanced GridSim with 
Deadline Control” (EGDC) for Grid environment based 
on deadline control for tasks. At the outset, first, resources 
check their states and make a request to the Grid Broker 
according to the change of state in load. Then, the Grid 
Broker assigns the Gridlets between the resources and 
scheduling for load balancing under the deadline request. 
The EGDC is simulated on the GridSim platform. The 
EGDC is shown to reduce the response time, improve the 
finished rate of the Gridlet and reduce the resubmitted time. 
But the scheduling mechanism of the EGDC suffers from 
serious drawbacks. Some Gridlets cannot be finished at the 
first resource scheduling before their deadline. So, again all 
these unfinished Gridlets can be rescheduled for execution 
on the other resources. But, if all resources present in the 
Grid system fail to execute some of these unfinished Grid-
lets due to deadline failure, then no mechanism of recovery 
from deadline failure of the Gridlets is present in the sched-
uling mechanism of the EGDC. This is viewed as a serious 
limitation of the EGDC and therefore needs research atten-
tion for its further improvement.

3 � Background

In this Section, we present a brief discussion of the Grid 
simulator (GridSim) and review the existing load-balancing 
schemes on GridSim which are useful for rest portion of 
this paper.
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3.1 � GridSim

The GridSim is a very popular Grid simulation tool [10]. 
The GridSim toolkit supports modelling and simulation of 
a wide range of resources, such as single or multiproces-
sors, shared or distributed memory machines such as PCs, 
workstations, SMPs, and clusters with different capabili-
ties and configurations. The GridSim is built on a general-
purpose discrete event simulation package called SimJava 
[28], which is implemented in Java. The GridSim’s highly 
specialized grid simulation-based classes are developed 
extending SimJava’s simulation foundation classes. The 
various layers of the GridSim are shown in Fig.  1 [7]. A 
brief discussion on each layer of the GridSim is as follows.

The user dispatches its jobs to the Grid through its own 
broker called the Grid Broker. Each user is connected to an 
instance of the broker entity. Every job of the user is first 
submitted to its broker and then the broker schedules the 
parametric tasks according to the user’s scheduling policy. 
Before scheduling the tasks, the broker dynamically gets a 
list of available resources from the global directory entity. 
Every broker tries to optimize the policy of its user and 
therefore, the brokers are expected to face extreme com-
petition while gaining access to resources. The scheduling 
algorithms used by the brokers must be highly adaptable to 
the market’s demand–supply situation. The Grid Resource 
is next to the Grid Broker in the hierarchy. Each Grid 
Resource may differ from the rest of resources in terms of 
the number of processors, cost of processing, speed of pro-
cessing, internal process scheduling policy, local load fac-
tor and the time zone [10]. The Grid Information Service 
provides resource registration services and keeps track of 
a list of resources available in the Grid. The brokers can 
query this for resource contact, configuration and status 
information. The Machine is a processing entity manager. It 

is responsible for task scheduling and load balancing of its 
Processing Elements (PEs). The GridSim resource simula-
tor uses internal events to simulate the execution and allo-
cation of PEs to Gridlet jobs [7].

A Gridlet is an entity that contains all the information 
related to a job and its execution management details such 
as the job length expressed in million instructions per sec-
ond (MIPS), the disk I/O operations, the size of input and 
output files and the job originator. These basic parameters 
in the GridSim determine the execution time of a job (Grid-
let), the time required to transport input and output files 
between the users and the remote resources, and returning 
the processed Gridlets back to the originator along with the 
results [10].

3.2 � Load‑balancing schemes on GridSim

There exist many centralized load-balancing schemes for 
the Grid. However, those as such cannot be used in Grid-
Sim due to the differences in their frameworks [7]. The 
most important load-balancing schemes include the with-
out load balancing (WLB) [10], load balancing on Grid-
Sim (LBGS) [29], load balancing on enhanced GridSim 
(LBEGS) [11] and EGDC [7].

In WLB, the GridSim resource simulator adopts internal 
events to simulate the execution and allocation of PEs to the 
Gridlet jobs. When a job arrives, the space shared systems 
start its execution immediately if there is a free PE. Other-
wise, it is queued. During the Gridlet assignment, the job-
processing time is determined and the event is scheduled 
for delivery at the end of the execution time. Whenever a 
Gridlet finishes, an internal event is delivered to signify the 
completion of the scheduled Gridlet job. The resource sim-
ulator then frees the PE allocated to it and checks if there 
are any other job waiting in the queue. If there are jobs 

…… ………………
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Fig. 1   The Structure of a grid in GridSim
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waiting in the queue, then the resource simulator selects a 
suitable job depending on the selection policy and assigns 
it to the free PE. If a newly arrived event happens to be an 
internal event whose tag number is the same as the most 
recently scheduled event, then it is recognized as a Grid-
let completion event. If there are Gridlets in the submission 
queue, then depending on the allocation policy, the Grid-
Sim selects a suitable Gridlet from the queue and assigns 
it to the PE (or a suitable PE if more than one PE is free). 
After that, the completed Gridlet is sent back to the broker 
or user and removed from the execution set.

The LBGS is a dynamic tree-based model which repre-
sents the Grid architecture. Based on a tree model, the said 
algorithm possesses the following main features: (i) it is 
layered, (ii) it supports heterogeneity and scalability and 
(iii) it is totally independent of any physical architecture of 
a Grid. Their simulations show a significant improvement in 
the mean response time with a reduction of communication 
cost. The load-balancing algorithm LBEGS is an improve-
ment over the LBGS. It gives the details of the load cal-
culation methods of the PE, Machine, and Grid Resource. 
At the same time, the model also proposes the method of 
load balancing between PEs, machines, and resources. The 
above said scheme not only reduces the communication 
overhead of Grid resources but also cuts down the idle time 
of the resources during the process of load balancing based 
on GridSim. The effectiveness in terms of communication 
overhead and response time reduction is gauged.

In [7], the authors presented a distributed load-balancing 
scheme called the EGDC for the grid environments that 
provides deadline control for tasks.

3.3 � Enhanced GridSim with load balancing based 
on deadline control (EGDC): a brief discussion

In this Subsection, a brief description of the load-balancing 
mechanism called EGDC [7] is presented.

Suppose that the load of one resource is the l.currentload 
and a Gridlet g is assigned to resource r with a deadline 
in t seconds. Then the new load of a resource is calculated 
using the following expression.

Then, the state of every resource is checked periodically. 
The states are classified into three categories: underloaded, 
normally loaded, and overloaded. If the load of the resource 
is more than resource level load, we call the state of the 
resource “over loaded”. If the load of resource is less than 
machine level load, we call the state of the resource “under-
loaded”. If the load of resource is in between resource level 
load to machine level load, we call the state of resource “nor-
mally loaded”. After checking the state of every resource, 

l.currentload = l.currentload

+ (g.Gridletlength/t/resource.capacity)

the Grid Broker inserts it into the list that it should belong 
to. When the Grid Broker gets information from a resource 
about its changed state, it changes the state to new load state 
in its Grid information. The Grid Broker inserts the resource 
into the Overload list or the Normally load list or the Under-
load list depending upon whether the state is overloaded, 
normally loaded or underloaded, respectively.

If the state of a resource is over loaded, we can transform 
Gridlets from that resource and if the state of a resource is 
under loaded, we can assign more Gridlets to the resource. 
We make a list of Gridlets which we want to transfer from 
an overloaded resource to an underloaded resource and 
then insert that list of Gridlets into the Unassignedgridlet 
list for subsequent scheduling. The Unassignedgridlet list 
is used to store the unfinished Gridlets coming from the 
overloaded resource and the new arriving Gridlets. Then, 
the Grid Broker schedules the Gridlets coming from the 
Unassignedgridlet list to the underloaded resources using 
a scheduling mechanism. The EGDC is simulated on 
the GridSim platform. The EGDC is shown to reduce the 
response time, improve the finished rate of the Gridlet and 
reduce the resubmitted time.

However, the scheduling mechanism of the EGDC suf-
fers from serious drawbacks. Some Gridlets cannot be fin-
ished at the first resource scheduling before their deadline. 
So, again all these unfinished Gridlets can be rescheduled for 
execution on the other resources. But, if all resources pre-
sent in the Grid system, fail to execute some of these unfin-
ished Gridlets due to deadline failure, then no mechanism of 
recovery from deadline failure of the Gridlets is present in 
the scheduling mechanism of the EGDC. This is viewed as 
serious limitation of the EGDC. Hence, it requires further 
improvement in the scheduling mechanism. In the next sec-
tion to follow, we improve the existing EGDC and propose a 
new method called “Enhanced GridSim with Load balancing 
based on Deadline Failure Recovery” (EGDFR).

4 � The proposed work: enhanced GridSim 
with load balancing based on deadline failure 
recovery (EGDFR)

In this section, we propose a new load-balancing scheme 
called “Enhanced GridSim with Load balancing based on 
Deadline Failure Recovery” (EGDFR). The work proposed 
in this Section is an improved version of the existing EGDC 
[7] in which it performs load balancing by providing a 
scheduling system which includes the mechanism of recov-
ery from deadline failure of the Gridlets. This new mech-
anism of scheduling reduces the execution time to a large 
extent. The incorporation of the said features of the pro-
posed method makes it quite attractive in Grid applications. 
The proposed method is supported with an algorithm and 
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a flowchart followed by a brief description. The following 
notation and terminologies are used throughout this paper.

4.1 � Notation and terminologies

Lr	� Current load of a resource
Cr	� Capacity of a resource
PE	� No. of PEs in a machine
CPE	� Capacity of a PE

Underloaded resource list	� A list of underloaded resources
OverloadedResourcelist	� A list of overloaded resources
Normal resource list	� A list of normally loaded 

resources
rt	� Resource load level
rb	� Machine load level
m	� No. of machines in a resource
Dg	� Deadline given to the Gridlet
Lg	� Length of the Gridlet
Eg	� Execution time of the Gridlet on a resource
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Next, we present the pseudo code of the proposed algo-
rithm in Subsect. 4.1.

4.2 � Proposed algorithm

The detailed flowchart illustrating the various steps of the 
new approach of load balancing is presented in Fig. 2.

4.3 � Description of the proposed algorithm

In this Subsection, a brief stepwise description of the pro-
posed algorithm (EGDRF) is presented.

In the proposed model, there is a Grid system which con-
sists of heterogeneous resources which are connected by com-
munication channels. Here, the GridBroker is responsible for 

Yes                                             No  

Yes                       No 

Yes                                               No

Yes                                                           No    

 Begin 

  Check the state of every resource 

  Lr < rb 

Resource is underloaded 

  Eg <= Dg 

Resource is overloaded Resource is normally 
loaded

Arrange the underloaded 
resources according to the 
highest capacity 

Make a list of Gridlets which we want to transfer from overloaded resources  

Insert that list of Gridlets and also the new arriving Gridlets in to 
UnassignedGridletlist 

   Lr > rt 

Assigning Gridlets from UnassignedGridletlist to underloaded resources 

for every Resource r in UnderloadedResourcelist 
for every Gridlet g in UnassignedGridletlist 
temp = (Lg) / (Dg *Cr);                                                                                             
total = Lr + temp;

total <= rt 

Assigning Gridlet g to Resource r  

Execution of the Gridlet g on 
Resource r within the Deadline 

Move to next underloaded resource 
present in the UnderloadedResourcelist 
for execution of that Gridlet g 

End 

 Calculate the current load of all resources 

Assign Gridlets to resources for execution 

Apply the recovery mechanism from Deadline failure of the Gridlet 
g on Resource r 

Arrange all the Gridlets according to the largest size 

Fig. 2   Flowchart of the EGDFR scheme
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scheduling of Gridlets on the heterogeneous resources present 
in the Grid system. During the scheduling process, first the 
GridBroker checks the condition of all the resources present in 
the Grid system. Then according to the state of all resources, 
the GridBroker schedules the new Gridlets on those resources 
by maintaining overall load balance of the total Grid system.

Step 1 First, for checking the state of all the resources, 
the GridBroker has to calculate the current load of all 
resources. Suppose that the current load of a resource r is 
Lr. When a Gridlet g is assigned to a resource r with a dead-
line, the GridBroker estimates the new load on the resource 
using the following equation [15].

Fig. 3   Execution time versus 
number of gridlets

Fig. 4   Percentage gain in 
execution time versus number 
of gridlets

Fig. 5   ART versus number of 
gridlets
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Let us assume that the resource r has a machine list 
given as (machine 1, machine 2,…, machine i,…, machine 
m). The machine i can be illustrated as the machine i (int 
idi, int PEi, int CPEi) representing the id of the resource, the 
number of PEs, and the rating of every PE respectively. The 
CPEi can be expressed in Standard Performance Evaluation 
Corporation (SPEC) or MIPS. The resource’s capacity (Cr) 
can be calculated as follows

Step 2 Second, the Grid Broker check the recent state of 
all the resources. The states are classified into three categories: 
underloaded, normally loaded, and overloaded. If the load of 
the resource is more than rt, we call the state of the resource 
‘‘overloaded’’. If the load of resource is <rb, we call the state 
of the resource ‘‘underloaded’’. If the load of a resource is 
in between rt to rb, we call the state of resource ‘‘normally 

(1)

/∗Calculate the new load of a resource∗/

factor =
(

Lg
)

/
(

Dg ∗ Cr

)

;

Lr = currentload + (factor);

(2)Cr =

m
∑

i=1

(PEi × CPEi)

loaded’’. Here rt, rb are known as the resource level load and 
the machine level load, respectively. After checking the state 
of the resources, the Grid Broker inserts it into the list that it 
should belong to. The Grid Broker inserts the resource into 
the OverloadedResourcelist or the NormalResoucelist or the 
UnderloadedResourcelist depending upon whether the state is 
overloaded, normally loaded or underloaded, respectively.

/∗Check the state of every resource*/

for all resources do

calculate Lr which is the current load of a resource;

if (Lr<rb)

resource is “under loaded”

and add this resource to UnderloadedResourcelist;

else if (Lr>rt)

resource is “over

loaded” and add this resource to OverloadedResourcelist;

else

resource is “normally loaded”

and add this resource to NormalResourcelist;

end for

Fig. 6   Resubmitted time versus 
number of gridlets

Fig. 7   Throughput versus 
number of gridlets
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Step 3 In the third step, if the state of any resource is 
over loaded, then the Grid Broker make a list of Gridlets 
which need to be transfer from that overloaded resource to 
one of the underloaded resources present in the Underload-
edResourcelist and then insert that list of Gridlets into the 
UnassignedGridletlist for subsequent scheduling. Now, the 
GridBroker can also schedule new Gridlets on the under-
loaded resources present in the UnderloadedResourcelist. 
The UnassignedGridletlist is used to store the unfinished 
Gridlets coming from the overloaded resource and the new 
arriving Gridlets.

Step 4 From the beginning of scheduling, our priority 
always should be assigning the largest Gridlet present in 
the UnassignedGridletlist to one of the best underloaded 
resources present in the UnderloadedResourcelist. It directs 
that all the Gridlets should be executed on the heterogene-
ous resources within the deadline. The Gridlet execution 
time must be less than the deadline assigned to the Grid-
let. So the Gridlet execution time becomes important due 
to resource heterogeneity which is influenced by the capac-
ity of the resources. The underloaded resource having the 
highest capacity has the low execution time. Our algorithm 
considers these facts. Therefore, we arrange the under 
loaded resources present in the UnderloadedResourcelist 

according to the highest capacity of the resource. Also, we 
arrange the Gridlets present in the UnassignedGridletlist 
according to the largest size of the Gridlet. Now, the Grid-
Broker can schedule the largest Gridlet present in the Unas-
signedGridletlist to the underloaded resource present in the 
UnderloadedResourcelist having highest capacity.

Step 5 Next, we assign the Gridlets coming from the 
UnassignedGridletlist to the underloaded resources present 
in the UnderloadedResourcelist. In our scheduling mecha-
nism, the GridBroker can assign Gridlets to a resource 
until the load of the resource will be less than or equal to 
rt means maximum up to the upper bound of the normally 
loaded range i.e., rb–rt and the state of resource will be 
either normallyloaded or underloaded. When after assign-
ing a Gridlet to the resource, the load of resource will 
exceed the value of rt, that means the condition fails and 
the state of resource will be overloaded. So when the con-
dition fails, then the GridBroker cannot assign that Gridlet 
to the resource and shall have to move to the next under 
loaded resource present in the UnderloadedResourcelist for 
execution of that Gridlet.

Some Gridlets cannot be finished at the first schedul-
ing due to deadline failure. These are called unfinished 
Gridlets and the GridBroker insert that list of Gridlets 

Fig. 8   Execution time versus 
number of PEs

Fig. 9   Percentage gain in 
execution time versus number 
of PEs
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into the UnfinishedGridletlist. Now, all these unfin-
ished Gridlets present in the UnfinishedGridletlist can 
be rescheduled for execution on the other underloaded 
resources present in the UnderloadedResourcelist. But 
after providing the Gridlets to the best resources, if all 
resources present in the Grid system, fail to execute 
some of these unfinished Gridlets due to deadline fail-
ure, then a recovery mechanism from deadline failure 
of the Gridlets is used in the new proposed scheduling 
method.

Here, in the new proposed scheduling mechanism, after 
assigning a Gridlet to the resource, if the resource can-
not be finished at the first scheduling due to deadline fail-
ure, then there is no need to store that Gridlet in Unfin-
ishedGridletlist for rescheduling it later. For a Gridlet 
having the problem of deadline failure, is going to trans-
fer at that present time to the next underloaded resource 
present in the UnderloadedResourcelist for execution. 
Before transferring the Gridlet to the next underloaded 
resource, the GridBroker is going to save the state of the 

Fig. 10   ART versus number 
of PEs

Fig. 11   Resubmitted time 
versus number of PEs

Fig. 12   Throughput versus 
number of PEs
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running Gridlet to stable storage means up to which the 
execution time of the Gridlet is not going to exceed the 
deadline. This saved state can be used to resume execu-
tion of the Gridlet from the point in the computation where 
the check-point was last taken, instead of restarting the 
Gridlet from its very beginning. The Gridlet is going to 
transfer from the present resource to the next underloaded 
resource present in the UnderloadedResourcelist. Once 
the loading completes in the next underloaded resource, 
the Gridlet is recovered and resumes execution from the 
point where the check-point was last taken. The execution 
time reduces to a large extent by resuming the execution 
from such intermediate points. This recovery mechanism 
from deadline failure of the Gridlets is popularly known as 
check-pointing.

5 � Simulation and results

The proposed algorithm was implemented using the Grid-
Sim5.0 simulator [10]. The details of the experimental 
setup and results are described below. Finally, the results of 
the simulation are compared with EGDC [7] and LBEGS 
[11]. The comparison of the proposed algorithm EGDFR is 
based on the total execution time, ART, resubmitted time 
and throughput. We use Windows 7 on an Intel Core (1.73 
and 1.73 GHz), with 3 GB of RAM and 1000 GB of hard 
disk for the simulation purpose.

5.1 � Performance metrics

In this work, we have considered four performance metrics. 
The metrics considered here are total execution time, ART, 
resubmitted time and throughput. First, we consider the 
total execution time as the performance metric to measure 
the algorithm’s efficiency. It indicates the time at which all 
Gridlets get executed. The execution time is the total simu-
lation time which is measured from the time the first Grid-
let is sent to the Grid until the last Gridlet comes out of the 
Grid.

Second, we consider the ART of the Gridlets processed 
in the system as the performance metric. If n no. of Gridlets 
is processed by the system, then the ART is given by

where Arrivali is the time at which the ith Gridlet arrives, 
and Finishi is the time at which it leaves the system. Some 
of the Gridlets may not be executed before their deadline. 
The number of Gridlets that cannot be finished on time 
called unfinished Gridlets can be rescheduled for execution. 
Therefore, the resubmitted time is another standard for our 

(3)Average response time (ART) =
1

n

n
∑

i=1

(Finishi − Arrivali)

test. Throughput is used to measure the ability of the grid to 
accommodate jobs. Throughput is defined as

where n is the total number of Gridlets submitted and Tn is 
the total amount of time necessary to complete n Gridlets.

5.2 � Performance evaluation

We conducted our simulations for three different but inter-
esting cases: (i) Case 1: Simulation with constant number 
of PEs, (ii) Case 2: Simulation with constant number of 
Gridlets, (iii) Case 3: Simulation with varying Job size.

5.2.1 � Case 1: simulation with constant number of PEs

In this case, the simulation is conducted assuming the num-
ber of PEs to be constant and Gridlets to vary. Without 
loss of generality, we assume that there are 30 resources 
in the system and every resource has two machines. Every 
machine has five PEs. So, the Grid system has total 300 
PEs. Due to the resource heterogeneity, every PE has the 
rating between 1 and 5 MIPS. Here, we express the Grid-
let length in PEs (1 million instructions). Every Gridlet 
length is between 1 and 5 million instructions. Every Grid 
has a deadline within a range of 1–6  s. In our simulation 
model, we have considered the heterogeneous resources 
that are connected by communication channels. The net-
work bandwidth connecting two resources varies from 0.5 
to 10 Mbps. According to [7, 11], the resource/machine/PE 
threshold is 0.8/0.75/0.6. Therefore, we set resource thresh-
old (rl) = 0.8, machine threshold (ml) = 0.75. Figures 3, 4, 
5, 6, and 7 show the results of comparison of our proposed 
method with other for the case 1.

In Figs.  3 and 4, the observations are taken by vary-
ing the number of Gridlets starting from 0 and ending at 
2500 with a step of 500, keeping the number of PEs con-
stant at 300. Figure  3 presents a comparative look of the 
total execution time versus number of Gridlets of our pro-
posed algorithm EGDFR with the existing methods. We 
have executed the simulation a number of times and got the 
exact results. In all the cases the total execution time of our 
EGDFR is found to be less than EGDC and LBEGS with 
the increase of Gridlets. In Fig. 4, the results are presented 
for EGDFR and EGDC. Figure  4 shows that the gain in 
execution time is higher in EGDFR as compared to EGDC.

In Fig. 5, the observations are taken by varying the number 
of Gridlets starting from 50 and ending at 250 with a step of 
50 while the number of PEs is kept constant at 300. Some 
Gridlets cannot be finished at the first resource scheduling 
before their deadline. So, a Gridlet having deadline failure is 
going to transfer to the other resource at that present time, not 

(4)Throughput =
n

Tn
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later. Therefore, the sum of resubmitted time is another stand-
ard for our test. Here, after providing continuously 2500 Grid-
lets for execution to 30 resources, from that we have provided 
250 unfinished Gridlets for rescheduling to 30 resources. Fig-
ure 5 establishes that the resubmitted time of the EGDFR is 
less than those of the others with the increasing of Gridlets.

In Figs. 6, and 7, the observations are taken by varying 
the number of Gridlets starting from 0 and ending at 2500 
with a step of 500, keeping the number of PEs constant at 
300. Figure 5 presents a comparative look of the ART versus 
number of Gridlets and the results are presented for EGDC, 
LBEGS and our proposed method EGDFR. Figure 5 shows 
that the ART is lower in the case of EGDFR as compared to 
the EGDC and LBEGS. Figure 7 compares the throughput 
versus number of Gridlets for our proposed method EGDFR 
with the existing ones. From the results, it is quite clear that 
the throughput of EGDFR is always more than EGDC and 
LBEGS with the increase in the number of Gridlets.

5.2.2 � Case 2: simulation with constant number of Gridlets

Here, we consider another case and conduct simulation 
assuming the number of Gridlets to be fixed and the PEs to 

vary. Here, we assume that each resource has two machines 
and every machine has five PEs. Due to the resource het-
erogeneity, every PE has the rating between 1 and 5 MIPS. 
The Grid is created by varying the number of resources 
while keeping the number of Gridlets constant. We express 
the Gridlet length in PEs (1 million instructions). The 
length of each Gridlet lies between 1 and 5 million instruc-
tions. Every Grid has a deadline within a range of 1–6 s. In 
our simulation model, we have considered the heterogene-
ous resources that are connected by communication chan-
nels. The network bandwidth connecting two resources 
varies from 0.5 to 10 Mbps. According to [7, 11], the 
resource/machine/PE threshold is 0.8/0.75/0.6. Therefore, 
we set resource threshold (rl)  =  0.8, machine threshold 
(ml) = 0.75. The results plotted in Figs. 8, 9, 10, 11, and 
12 compare the proposed method with the existing ones for 
the case 2.

In Figs.  8, and 9, the observations are taken by vary-
ing the number of resources starting from 30 to 150 with a 
step of 30, while the numbers of Gridlets are kept constant 
at 1000. Figure 8 presents a comparative look of the total 
execution time versus number of PEs of our proposed algo-
rithm EGDFR with the existing methods. We have executed 

Fig. 13   Execution time versus 
job size

Fig. 14   ART versus job size
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the simulation a number of times and got the exact results. 
In all the cases the total execution time of our EGDFR is 
found to be less than EGDC and LBEGS with the increase 
of resources. In Fig. 9, the results are presented for EGDFR 
and EGDC. From Fig. 9, it is evident that the gain in execu-
tion time is higher in EGDFR as compared to EGDC.

In Fig.  10, the observations are taken by varying the 
number of resources starting from 30 and ending at 150 
with a step of 30 and the number of Gridlets kept con-
stant at 1000. Some Gridlets cannot be finished at the first 
resource scheduling before their deadline. So, a Gridlet 
having deadline failure is going to transfer to the other 
resource at that present time, not later. Therefore, the sum 
of resubmitted time is another standard for our test. Here, 
after providing continuously 1000 Gridlets for execution 
to resources starting from 30 and ending at 150, we have 
again provided 100 unfinished Gridlets for rescheduling 
to resources starting from 30 and ending at 150. Figure 10 
establishes that the resubmitted time of the EGDFR is less 
than those of the others with the increase of resources.

In Figs. 11, and 12, the observations are taken by vary-
ing the number of resources starting from 30 to 150 with 
a step of 30, while the numbers of Gridlets are kept con-
stant at 1000. Figure 11 presents a comparative look of the 
ART versus number of PEs and the results are presented for 
EGDC, LBEGS and our proposed method EGDFR. From 
Fig. 11, it is evident that the ART is lower in the case of 
EGDFR than the EGDC and LBEGS with the increase of 
resources. Figure 12 compares the throughput versus num-
ber of PEs for our proposed method EGDFR with the exist-
ing ones. From the results, it is quite clear that the through-
put of EGDFR is always more than EGDC and LBEGS 
with the increase of resources.

5.2.3 � Case 3: simulation with varying job size

It is very interesting to measure the performance of the 
algorithms by varying the job size. In this simulation, we 
have taken the observations by varying the job size from 
1 to 5  MB. As we increase the job size, the performance 
of our proposed method becomes much better than EGDC 
and LBEGS in terms of the decrease in the total execution 
time and ART (Figs. 13, 14). Figure 13 establishes the total 
execution time of the EGDFR to be less than EGDC and 
LBEGS with the increase in job size. From Fig.  14, it is 
evident that the ART is lower in the case of EGDFR than 
the EGDC and LBEGS.

6 � Conclusions

In this paper, we proposed a dynamic distributed load-
balancing technique called “Enhanced GridSim with 

Load balancing based on Deadline Failure Recovery” 
(EGDFR) for the heterogeneous Grid computing environ-
ment. We considered three cases for simulation, one with 
constant number of PEs, second with the constant number 
of Gridlets and third with the varying Job Size. Extensive 
simulations are conducted using GridSim5.0 for all these 
cases. From the simulation results, the proposed method 
(EGDFR) is observed to have better performance than the 
EGDC [7] and LBEGS [11] in terms of the total execution 
time, ART, resubmitted time and throughput. The proposed 
work with modification can be extended further for sched-
uling and fault tolerance on GridSim.
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