
1 3

Engineering with Computers (2016) 32:173–188
DOI 10.1007/s00366-015-0409-y

ORIGINAL ARTICLE

An improved load‑balancing mechanism based on deadline failure
recovery on GridSim

Deepak Kumar Patel1  · Devashree Tripathy2 · Chitaranjan Tripathy1

Received: 25 March 2015 / Accepted: 18 June 2015 / Published online: 30 June 2015
© Springer-Verlag London 2015

failure of the Gridlets. Extensive simulation experiments
are conducted to quantify the performance of the proposed
load-balancing strategy on the GridSim platform. Experi-
ments have shown that the proposed system can consider-
ably improve Grid performance in terms of total execution
time, percentage gain in execution time, average response
time, resubmitted time and throughput. The proposed load-
balancing technique gives 7 % better performance than
EGDC in case of constant number of resources, whereas
in case of constant number of Gridlets, it gives 11 % better
performance than EGDC.

Keywords  Load balancing · GridSim · Gridlet ·
Response time

1  Introduction

A Grid is a computing and data management infrastructure
that provides the electronic underpinning for a global soci-
ety in business, government, research, science and enter-
tainment [1]. A computational Grid constitutes the software
and hardware infrastructure that provides dependable, con-
sistent, pervasive and inexpensive access to high-end com-
putational capabilities [2]. The Grid integrates networking,
communication, computation and information to provide
a virtual platform for computation and data management
in the same way that the Internet integrates resources to
form a virtual platform for information [1]. The Grid can
also be considered as a collection of distributed computing
resources over a local or wide area network that appear to
an end user as one large virtual computing system [3]. The
speedy development in computing resources has enhanced
the performance of computing systems with reduction in
cost. The availability of low cost, high-speed networks,

Abstract  Grid computing has emerged a new field, distin-
guished from conventional distributed computing. It focuses
on large-scale resource sharing, innovative applications
and in some cases, high performance orientation. The Grid
serves as a comprehensive and complete system for organi-
zations by which the maximum utilization of resources is
achieved. The load balancing is a process which involves
the resource management and an effective load distribution
among the resources. Therefore, it is considered to be very
important in Grid systems. For a Grid, a dynamic, distrib-
uted load balancing scheme provides deadline control for
tasks. Due to the condition of deadline failure, developing,
deploying, and executing long running applications over the
grid remains a challenge. So, deadline failure recovery is an
essential factor for Grid computing. In this paper, we pro-
pose a dynamic distributed load-balancing technique called
“Enhanced GridSim with Load balancing based on Deadline
Failure Recovery” (EGDFR) for computational Grids with
heterogeneous resources. The proposed algorithm EGDFR
is an improved version of the existing EGDC in which we
perform load balancing by providing a scheduling system
which includes the mechanism of recovery from deadline

 *	 Deepak Kumar Patel
	 patel.deepak42@gmail.com

	 Devashree Tripathy
	 devashree.tripathy@gmail.com

	 Chitaranjan Tripathy
	 crt.vssut@yahoo.com

1	 Department of Computer Science & Engineering,
Veer Surendra Sai University of Technology, Burla,
Sambalpur 768018, Odisha, India

2	 CSIR-Central Electronics Engineering Research Institute,
Pilani 333031, Rajasthan, India

http://orcid.org/0000-0002-9010-2187
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-015-0409-y&domain=pdf

174	 Engineering with Computers (2016) 32:173–188

1 3

powerful computers coupled with the advances and the
popularity of the Internet has led the computing environ-
ment to be mapped from the traditional distributed systems
to the Grid environments [4].

A computational Grid enables the effective access to
high-performance computing resources. It supports the
sharing and coordinated use of resources, independently
from their physical type and location, in dynamic virtual
organizations that share the same goal [5]. Grid infra-
structure provides us with the ability to dynamically link
together resources as an ensemble to support the execution
of large-scale, resource-intensive and distributed applica-
tions [1]. With its multitude of heterogeneous resources,
a proper scheduling and efficient load balancing across
the Grid is required for improving the performance of the
system [6]. The load-balancing mechanism attempts to
improve the response time of the user’s submitted appli-
cations by ensuring maximal utilization of available
resources. The main goal of this type of algorithm is to pre-
vent, if possible, the condition in which some processors
are overloaded with a set of tasks while others are lightly
loaded or even idle [7].

In general, the load-balancing algorithms are classified
as static and dynamic. In a static algorithm, the informa-
tion governing load-balancing decisions which include
the characteristics of the jobs, the computing nodes and
the communication networks are known in advance. The
load-balancing decisions are made deterministically or
probabilistically at compile time and remain constant
during runtime. In contrast, the dynamic load-balancing
algorithms attempt to use the runtime state information to
make more informative load-balancing decisions. Here,
the responsibility for making global decisions may lie with
one centralized location, or be shared by multiple distrib-
uted locations. Undoubtedly, the static approach is easier
to implement and has minimal runtime overhead. However,
the advantage of dynamic load balancing over static is that
the system need not be aware of the runtime behaviour of
the application before execution. The adaptive algorithms
are a special type of dynamic algorithms where the param-
eters of the algorithm and/or the scheduling policy itself is
changed based on the global state of the system. Accord-
ing to another classification, the load-scheduling algo-
rithms could be classified as centralized or distributed. In
the centralized approach, one node in the system acts as a
scheduler and makes all the load-balancing decisions. The
information is sent from the other nodes to the scheduler. In
the distributed approach, all the nodes of the system remain
involved in the load-balancing decisions. It therefore,
becomes very costly for each node to obtain and maintain
the dynamic state information of the whole system. Here,
each node obtains and maintains only the partial informa-
tion locally to make suboptimal decisions. However, the

distributed algorithms suffer from the problem of com-
munication overheads incurred by frequent information
exchange between processors. The centralized strategy on
the other hand has the advantage of ease of implementa-
tion, but it suffers from the lack of scalability, fault toler-
ance and the possibility of becoming a performance bottle-
neck. Therefore, the centralized algorithms are found to be
less reliable than the decentralized algorithms [8, 9].

Load balancing has been discussed in traditional dis-
tributed systems literature for more than three decades.
Although a Grid belongs to the class of distributed sys-
tems, the load balancing algorithms which are usually run
on homogeneous and dedicated resources in classical dis-
tributed systems, cannot work well in the Grid architec-
tures. This is due to the unique characteristics of the Grid
computing environment such as heterogeneity, autonomy,
scalability, adaptability, dynamic behaviour, application
diversity, resource non-dedication, resource selection and
computation-data separation. Thus, it is a challenging
problem to design an efficient and effective load-balancing
scheme for Grid environments which can integrate all the
above said factors [7].

In this paper, our basic aim is to develop a load-bal-
ancing model for Grids which can be adapted to the het-
erogeneous Grid computing environment. The method pro-
posed by us is an improvement over the existing enhanced
GridSim with deadline control (EGDC) [7]. Our proposed
approach called “Enhanced GridSim with Load balancing
based on Deadline Failure Recovery” (EGDFR) performs
load balancing by providing a scheduling system which
includes the mechanism of recovery from deadline fail-
ure of the Gridlets. The proposed load-balancing strategy
(EGDFR) is simulated on the GridSim platform [10]. The
proposed mechanism is shown to reduce the total execution
time, average response time (ART), resubmitted time and
give better results for throughput in comparison to [7, 11].

The rest of the paper is organized as follows. In the
next Section, the related works are discussed. We hold
background discussions on GridSim and some important
existing load-balancing schemes on GridSim in Sect. 3.
In Sect. 4, we present our Grid load-balancing scheme
EGDFR. The Sect. 5 presents the simulation results and
compares the proposed work with the existing load-balanc-
ing schemes LBEGS [11] and EGDC [7]. Finally, the con-
cluding remarks are presented in Sect. 6.

2 � Related works

In literature, the researchers have proposed several load-
balancing strategies in Grid environments [6, 7, 12–27].

In [12], Anand et al. presented a decentralized
dynamic load-balancing algorithm called Estimated Load

175Engineering with Computers (2016) 32:173–188	

1 3

Information Scheduling Algorithm (ELISA) for general
purpose distributed computing systems. The ELISA uses
the estimated state information based upon the periodic
exchange of exact state information between the neigh-
bouring nodes to perform load scheduling. The primary
objective of their algorithm is to cut down the communi-
cation and load transfer overheads by minimizing the fre-
quency of status exchange and by restricting the load trans-
fer and status exchange within the buddy set of a processor.
It is shown that the resulting algorithm performs almost as
well as a perfect information algorithm and is superior to
other load-balancing schemes based on the random sharing.
In [6], Shah et al. proposed two algorithms, the MELISA
(Modified ELISA) and load balancing on arrival (LBA).
Their algorithms differ in the way the load balancing is
carried out and are shown to be efficient in minimizing
the response time on large- and small-scale heterogeneous
Grid environments. The MELISA is applicable to large-
scale systems with the resource heterogeneity and network
heterogeneity. The other algorithm, LBA is applicable to
small-scale systems. It performs load balancing by estimat-
ing the expected finish time of a job on buddy processors
on each job arrival. Both the said algorithms estimate sys-
tem parameters such as the job arrival rate, CPU processing
rate and load on the processor. They quantify the perfor-
mance of their algorithms using several influencing param-
eters such as the job size, data transfer rate and the status
exchange period.

The researchers in [13] used several well-known arti-
ficial life techniques to gauge their suitability for solving
Grid load-balancing problems. The artificial life tech-
niques can be used to solve a wide range of complex prob-
lems in recent times. The power of these techniques stems
from their capability in searching large search spaces,
which arise in many combinatorial optimization prob-
lems very efficiently. Due to their popularity and robust-
ness, the genetic algorithm (GA) and tabu search (TS) are
used to solve the Grid load-balancing problem. The results
of the experiment showed that these two methods can be
effectively used for Grid load balancing. The GA and TS
showed similar performance results, and performed better
than the Best-fit, Random, Min–min and Max–min algo-
rithms. Bharadwaj et al. [14] proposed a new paradigm for
load scheduling in distributed systems e.g. divisible load
theory. The Divisible load theory is a methodology that
involves the linear and continuous modelling of partition-
able computation and communication loads for parallel
processing. It adequately represents an important class of
problems with applications in parallel and distributed sys-
tem scheduling, various types of data processing, scientific
and engineering computation and sensor networks. Cao
[15] used an ant-like self-organizing mechanism to achieve
system-wide Grid load balancing through a collection of

simple local interactions between the Grid nodes. In this
model, multiple resource management agents cooperate to
achieve automatic load balancing of distributed job queues.
Each ant takes two sets of m steps in succession to deter-
mine the least and the most loaded nodes, respectively. The
two nodes then redistribute the load between themselves.
After a series of successive redistributions, the system-wide
uniform load balancing could be achieved.

The authors in [16] presented two new distributed swarm
intelligence inspired load-balancing algorithms. One of
these algorithms is based on ant colony optimization and
the other algorithm is based on particle swarm optimiza-
tion. The performance of both the algorithms is evaluated
using several performance criteria such as make span and
load-balancing level. The simulation of these approaches
using a Grid simulation toolkit was conducted. The experi-
mental results showed that the proposed algorithms could
perform very well in a Grid environment. Especially, the
use of particle swarm optimization can yield better per-
formance results in many scenarios than the ant colony
approach. Erdil and Lewis [17] described information dis-
semination protocols to distribute the load in a way without
using load rebalancing through job migration. However, it
becomes more difficult and cost prohibitive for large-scale
heterogeneous Grids. Essentially, in their model, the nodes
adjust their advertising rates and aggressiveness to influ-
ence where jobs get scheduled. Subrata et al. [18] proposed
a game-theoretic solution to the grid load-balancing prob-
lem. The algorithm developed combines the inherent effi-
ciency of the centralized approach and the fault-tolerant
nature of the distributed, decentralized approach. The grid
load-balancing problem is modelled as a noncooperative
game, where the objective is to reach the Nash equilibrium.
One advantage of this scheme is the relatively low over-
head and robust performance against inaccuracies in per-
formance prediction information.

Zikos et al. [19] studied the site allocation scheduling
of nonclairvoyant jobs in two-level heterogeneous grid
architecture. Three scheduling policies at grid level which
utilize site load information are examined. The aim is the
reduction of site load information traffic, while at the same
time means response time of jobs and fairness in utiliza-
tion between the heterogeneous sites are of great inter-
est. A simulation model is used to evaluate performance
under various conditions. The simulation results showed
that considerable decrement in site load information traf-
fic and utilization fairness can be achieved at the expense
of a slight increase in response time. Fernandes et al.
[20] proposed a route load-balancing algorithm, which is
designed to equally distribute the load of tasks for paral-
lel applications. This algorithm uses the message routing
concepts to define the computer neighbourhood. If any
resource becomes overloaded, then the neighbour’s load is

176	 Engineering with Computers (2016) 32:173–188

1 3

evaluated. If the neighbour node is not overloaded then the
tasks are transferred to it. In [21], Balasangameshwara and
Raju proposed a fault-tolerant hybrid load-balancing algo-
rithm. Their algorithm is carried out in two phases. In the
first phase, a static load-balancing policy selects the desired
effective sites to carry out the submitted job. If any of the
sites is unable to complete the assigned job, a new site is
located using the dynamic load-balancing policy. By this
way, the job failure is identified and load is redistributed to
the underloaded resources. They claimed their algorithm to
perform well in large Grid environments.

Li et al. [22] addressed the load-balancing problem
by presenting a hybrid approach to the load balancing of
sequential tasks under grid computing environments. The
main objective is to arrive at task assignments that could
achieve minimum execution time, maximum node utiliza-
tion and a well-balanced load across all the nodes involved
in a grid. A first-come-first-served and a carefully designed
GA are selected as representatives of both classes to work
together to accomplish the goal. The simulation results
showed that the algorithm can achieve a better load-bal-
ancing performance as compared to its ‘pure’ counterparts.
The authors in [23] introduced a hybrid load-balancing
policy to integrate static and dynamic load-balancing
technologies. Essentially, a static load-balancing policy is
applied to select effective and suitable node sets. This mini-
mizes the unbalanced load probability caused by assigning
tasks to ineffective nodes. When a node reveals the possi-
ble inability to continue providing resources, the dynamic
load-balancing policy determines whether the node in
question is ineffective to provide load assignment. Then
the system obtains a new replacement node within a short
time, to maintain system execution performance. Cao et al.
[24] demonstrated various artificial intelligence techniques
which can be utilized to achieve effective workload and
resource management. A combination of intelligent agents
and multi-agent approaches is applied to both local grid
resource scheduling and global grid load balancing. Each
agent is a representative of a local grid resource and uti-
lizes predictive application performance data with iterative
heuristic algorithms to engineer local load balancing across
multiple hosts.

Wu et al. [25] used a novel multi-agent reinforcement
learning method, called ordinal sharing learning (OSL)
method, is proposed for job scheduling problems, espe-
cially, for realizing load balancing in Grids. The approach
circumvents the scalability problem by using an ordinal
distributed learning strategy, and realizes multi-agent coor-
dination based on an information sharing mechanism with
limited communication. Zheng et al. [26] addressed the
problem of determining which group an arriving job should
be allocated to and how its load can be distributed among

computers in the group to optimize the performance. The
algorithms guarantee finding a load distribution over com-
puters in a group that leads to the minimum response time
or computational cost. The effect of pricing on load dis-
tribution is studied by considering a simple pricing func-
tion. Three fully distributed algorithms are developed to
decide which group the load should be allocated to, taking
into account the communication cost among groups. These
algorithms use different information exchange methods and
a resource estimation technique to improve the accuracy
of load balancing. Li [27] considered optimal load distri-
bution in a nondedicated cluster or grid computing system
with heterogeneous servers processing both generic and
dedicated applications. The goal of load balancing is to
find an optimal load distribution strategy for generic tasks
on heterogeneous servers preloaded by different amount of
dedicated tasks such that the overall ART of generic appli-
cations is minimized. This optimization problem is solved
for three different queueing disciplines, namely, dedicated
applications without priorities, prioritized dedicated appli-
cations without preemption, and prioritized dedicated
applications with preemption.

In [7], Y. Hao et al. presented a load-balancing mecha-
nism called “Load balancing on Enhanced GridSim with
Deadline Control” (EGDC) for Grid environment based
on deadline control for tasks. At the outset, first, resources
check their states and make a request to the Grid Broker
according to the change of state in load. Then, the Grid
Broker assigns the Gridlets between the resources and
scheduling for load balancing under the deadline request.
The EGDC is simulated on the GridSim platform. The
EGDC is shown to reduce the response time, improve the
finished rate of the Gridlet and reduce the resubmitted time.
But the scheduling mechanism of the EGDC suffers from
serious drawbacks. Some Gridlets cannot be finished at the
first resource scheduling before their deadline. So, again all
these unfinished Gridlets can be rescheduled for execution
on the other resources. But, if all resources present in the
Grid system fail to execute some of these unfinished Grid-
lets due to deadline failure, then no mechanism of recovery
from deadline failure of the Gridlets is present in the sched-
uling mechanism of the EGDC. This is viewed as a serious
limitation of the EGDC and therefore needs research atten-
tion for its further improvement.

3 � Background

In this Section, we present a brief discussion of the Grid
simulator (GridSim) and review the existing load-balancing
schemes on GridSim which are useful for rest portion of
this paper.

177Engineering with Computers (2016) 32:173–188	

1 3

3.1 � GridSim

The GridSim is a very popular Grid simulation tool [10].
The GridSim toolkit supports modelling and simulation of
a wide range of resources, such as single or multiproces-
sors, shared or distributed memory machines such as PCs,
workstations, SMPs, and clusters with different capabili-
ties and configurations. The GridSim is built on a general-
purpose discrete event simulation package called SimJava
[28], which is implemented in Java. The GridSim’s highly
specialized grid simulation-based classes are developed
extending SimJava’s simulation foundation classes. The
various layers of the GridSim are shown in Fig. 1 [7]. A
brief discussion on each layer of the GridSim is as follows.

The user dispatches its jobs to the Grid through its own
broker called the Grid Broker. Each user is connected to an
instance of the broker entity. Every job of the user is first
submitted to its broker and then the broker schedules the
parametric tasks according to the user’s scheduling policy.
Before scheduling the tasks, the broker dynamically gets a
list of available resources from the global directory entity.
Every broker tries to optimize the policy of its user and
therefore, the brokers are expected to face extreme com-
petition while gaining access to resources. The scheduling
algorithms used by the brokers must be highly adaptable to
the market’s demand–supply situation. The Grid Resource
is next to the Grid Broker in the hierarchy. Each Grid
Resource may differ from the rest of resources in terms of
the number of processors, cost of processing, speed of pro-
cessing, internal process scheduling policy, local load fac-
tor and the time zone [10]. The Grid Information Service
provides resource registration services and keeps track of
a list of resources available in the Grid. The brokers can
query this for resource contact, configuration and status
information. The Machine is a processing entity manager. It

is responsible for task scheduling and load balancing of its
Processing Elements (PEs). The GridSim resource simula-
tor uses internal events to simulate the execution and allo-
cation of PEs to Gridlet jobs [7].

A Gridlet is an entity that contains all the information
related to a job and its execution management details such
as the job length expressed in million instructions per sec-
ond (MIPS), the disk I/O operations, the size of input and
output files and the job originator. These basic parameters
in the GridSim determine the execution time of a job (Grid-
let), the time required to transport input and output files
between the users and the remote resources, and returning
the processed Gridlets back to the originator along with the
results [10].

3.2 � Load‑balancing schemes on GridSim

There exist many centralized load-balancing schemes for
the Grid. However, those as such cannot be used in Grid-
Sim due to the differences in their frameworks [7]. The
most important load-balancing schemes include the with-
out load balancing (WLB) [10], load balancing on Grid-
Sim (LBGS) [29], load balancing on enhanced GridSim
(LBEGS) [11] and EGDC [7].

In WLB, the GridSim resource simulator adopts internal
events to simulate the execution and allocation of PEs to the
Gridlet jobs. When a job arrives, the space shared systems
start its execution immediately if there is a free PE. Other-
wise, it is queued. During the Gridlet assignment, the job-
processing time is determined and the event is scheduled
for delivery at the end of the execution time. Whenever a
Gridlet finishes, an internal event is delivered to signify the
completion of the scheduled Gridlet job. The resource sim-
ulator then frees the PE allocated to it and checks if there
are any other job waiting in the queue. If there are jobs

…… ………………

.……………………………………………………………………………….

…………………………………………………………………………………………….….

G1 G2 G3 G4 G5 G6……….…Gn [Gridlet 1 ... n] …...………………………………………...…………………………………………...

Grid Broker

 Grid Resource R1 R2 Ri

 Machine M11 M1j M12

PE111 PE112 PE11k

M21 M2j

PE

Mi1 Mij

PE PE PE PE PE PE PE

Fig. 1   The Structure of a grid in GridSim

178	 Engineering with Computers (2016) 32:173–188

1 3

waiting in the queue, then the resource simulator selects a
suitable job depending on the selection policy and assigns
it to the free PE. If a newly arrived event happens to be an
internal event whose tag number is the same as the most
recently scheduled event, then it is recognized as a Grid-
let completion event. If there are Gridlets in the submission
queue, then depending on the allocation policy, the Grid-
Sim selects a suitable Gridlet from the queue and assigns
it to the PE (or a suitable PE if more than one PE is free).
After that, the completed Gridlet is sent back to the broker
or user and removed from the execution set.

The LBGS is a dynamic tree-based model which repre-
sents the Grid architecture. Based on a tree model, the said
algorithm possesses the following main features: (i) it is
layered, (ii) it supports heterogeneity and scalability and
(iii) it is totally independent of any physical architecture of
a Grid. Their simulations show a significant improvement in
the mean response time with a reduction of communication
cost. The load-balancing algorithm LBEGS is an improve-
ment over the LBGS. It gives the details of the load cal-
culation methods of the PE, Machine, and Grid Resource.
At the same time, the model also proposes the method of
load balancing between PEs, machines, and resources. The
above said scheme not only reduces the communication
overhead of Grid resources but also cuts down the idle time
of the resources during the process of load balancing based
on GridSim. The effectiveness in terms of communication
overhead and response time reduction is gauged.

In [7], the authors presented a distributed load-balancing
scheme called the EGDC for the grid environments that
provides deadline control for tasks.

3.3 � Enhanced GridSim with load balancing based
on deadline control (EGDC): a brief discussion

In this Subsection, a brief description of the load-balancing
mechanism called EGDC [7] is presented.

Suppose that the load of one resource is the l.currentload
and a Gridlet g is assigned to resource r with a deadline
in t seconds. Then the new load of a resource is calculated
using the following expression.

Then, the state of every resource is checked periodically.
The states are classified into three categories: underloaded,
normally loaded, and overloaded. If the load of the resource
is more than resource level load, we call the state of the
resource “over loaded”. If the load of resource is less than
machine level load, we call the state of the resource “under-
loaded”. If the load of resource is in between resource level
load to machine level load, we call the state of resource “nor-
mally loaded”. After checking the state of every resource,

l.currentload = l.currentload

+ (g.Gridletlength/t/resource.capacity)

the Grid Broker inserts it into the list that it should belong
to. When the Grid Broker gets information from a resource
about its changed state, it changes the state to new load state
in its Grid information. The Grid Broker inserts the resource
into the Overload list or the Normally load list or the Under-
load list depending upon whether the state is overloaded,
normally loaded or underloaded, respectively.

If the state of a resource is over loaded, we can transform
Gridlets from that resource and if the state of a resource is
under loaded, we can assign more Gridlets to the resource.
We make a list of Gridlets which we want to transfer from
an overloaded resource to an underloaded resource and
then insert that list of Gridlets into the Unassignedgridlet
list for subsequent scheduling. The Unassignedgridlet list
is used to store the unfinished Gridlets coming from the
overloaded resource and the new arriving Gridlets. Then,
the Grid Broker schedules the Gridlets coming from the
Unassignedgridlet list to the underloaded resources using
a scheduling mechanism. The EGDC is simulated on
the GridSim platform. The EGDC is shown to reduce the
response time, improve the finished rate of the Gridlet and
reduce the resubmitted time.

However, the scheduling mechanism of the EGDC suf-
fers from serious drawbacks. Some Gridlets cannot be fin-
ished at the first resource scheduling before their deadline.
So, again all these unfinished Gridlets can be rescheduled for
execution on the other resources. But, if all resources pre-
sent in the Grid system, fail to execute some of these unfin-
ished Gridlets due to deadline failure, then no mechanism of
recovery from deadline failure of the Gridlets is present in
the scheduling mechanism of the EGDC. This is viewed as
serious limitation of the EGDC. Hence, it requires further
improvement in the scheduling mechanism. In the next sec-
tion to follow, we improve the existing EGDC and propose a
new method called “Enhanced GridSim with Load balancing
based on Deadline Failure Recovery” (EGDFR).

4 � The proposed work: enhanced GridSim
with load balancing based on deadline failure
recovery (EGDFR)

In this section, we propose a new load-balancing scheme
called “Enhanced GridSim with Load balancing based on
Deadline Failure Recovery” (EGDFR). The work proposed
in this Section is an improved version of the existing EGDC
[7] in which it performs load balancing by providing a
scheduling system which includes the mechanism of recov-
ery from deadline failure of the Gridlets. This new mech-
anism of scheduling reduces the execution time to a large
extent. The incorporation of the said features of the pro-
posed method makes it quite attractive in Grid applications.
The proposed method is supported with an algorithm and

179Engineering with Computers (2016) 32:173–188	

1 3

a flowchart followed by a brief description. The following
notation and terminologies are used throughout this paper.

4.1 � Notation and terminologies

Lr	� Current load of a resource
Cr	� Capacity of a resource
PE	� No. of PEs in a machine
CPE	� Capacity of a PE

Underloaded resource list	� A list of underloaded resources
OverloadedResourcelist	� A list of overloaded resources
Normal resource list	� A list of normally loaded

resources
rt	� Resource load level
rb	� Machine load level
m	� No. of machines in a resource
Dg	� Deadline given to the Gridlet
Lg	� Length of the Gridlet
Eg	� Execution time of the Gridlet on a resource

180	 Engineering with Computers (2016) 32:173–188

1 3

Next, we present the pseudo code of the proposed algo-
rithm in Subsect. 4.1.

4.2 � Proposed algorithm

The detailed flowchart illustrating the various steps of the
new approach of load balancing is presented in Fig. 2.

4.3 � Description of the proposed algorithm

In this Subsection, a brief stepwise description of the pro-
posed algorithm (EGDRF) is presented.

In the proposed model, there is a Grid system which con-
sists of heterogeneous resources which are connected by com-
munication channels. Here, the GridBroker is responsible for

Yes No

Yes No

Yes No

Yes No

 Begin

 Check the state of every resource

 Lr < rb

Resource is underloaded

 Eg <= Dg

Resource is overloaded Resource is normally
loaded

Arrange the underloaded
resources according to the
highest capacity

Make a list of Gridlets which we want to transfer from overloaded resources

Insert that list of Gridlets and also the new arriving Gridlets in to
UnassignedGridletlist

 Lr > rt

Assigning Gridlets from UnassignedGridletlist to underloaded resources

for every Resource r in UnderloadedResourcelist
for every Gridlet g in UnassignedGridletlist
temp = (Lg) / (Dg *Cr);
total = Lr + temp;

total <= rt

Assigning Gridlet g to Resource r

Execution of the Gridlet g on
Resource r within the Deadline

Move to next underloaded resource
present in the UnderloadedResourcelist
for execution of that Gridlet g

End

 Calculate the current load of all resources

Assign Gridlets to resources for execution

Apply the recovery mechanism from Deadline failure of the Gridlet
g on Resource r

Arrange all the Gridlets according to the largest size

Fig. 2   Flowchart of the EGDFR scheme

181Engineering with Computers (2016) 32:173–188	

1 3

scheduling of Gridlets on the heterogeneous resources present
in the Grid system. During the scheduling process, first the
GridBroker checks the condition of all the resources present in
the Grid system. Then according to the state of all resources,
the GridBroker schedules the new Gridlets on those resources
by maintaining overall load balance of the total Grid system.

Step 1 First, for checking the state of all the resources,
the GridBroker has to calculate the current load of all
resources. Suppose that the current load of a resource r is
Lr. When a Gridlet g is assigned to a resource r with a dead-
line, the GridBroker estimates the new load on the resource
using the following equation [15].

Fig. 3   Execution time versus
number of gridlets

Fig. 4   Percentage gain in
execution time versus number
of gridlets

Fig. 5   ART versus number of
gridlets

182	 Engineering with Computers (2016) 32:173–188

1 3

Let us assume that the resource r has a machine list
given as (machine 1, machine 2,…, machine i,…, machine
m). The machine i can be illustrated as the machine i (int
idi, int PEi, int CPEi) representing the id of the resource, the
number of PEs, and the rating of every PE respectively. The
CPEi can be expressed in Standard Performance Evaluation
Corporation (SPEC) or MIPS. The resource’s capacity (Cr)
can be calculated as follows

Step 2 Second, the Grid Broker check the recent state of
all the resources. The states are classified into three categories:
underloaded, normally loaded, and overloaded. If the load of
the resource is more than rt, we call the state of the resource
‘‘overloaded’’. If the load of resource is <rb, we call the state
of the resource ‘‘underloaded’’. If the load of a resource is
in between rt to rb, we call the state of resource ‘‘normally

(1)

/∗Calculate the new load of a resource∗/

factor =
(

Lg
)

/
(

Dg ∗ Cr

)

;

Lr = currentload + (factor);

(2)Cr =

m
∑

i=1

(PEi × CPEi)

loaded’’. Here rt, rb are known as the resource level load and
the machine level load, respectively. After checking the state
of the resources, the Grid Broker inserts it into the list that it
should belong to. The Grid Broker inserts the resource into
the OverloadedResourcelist or the NormalResoucelist or the
UnderloadedResourcelist depending upon whether the state is
overloaded, normally loaded or underloaded, respectively.

/∗Check the state of every resource*/

for all resources do

calculate Lr which is the current load of a resource;

if (Lr<rb)

resource is “under loaded”

and add this resource to UnderloadedResourcelist;

else if (Lr>rt)

resource is “over

loaded” and add this resource to OverloadedResourcelist;

else

resource is “normally loaded”

and add this resource to NormalResourcelist;

end for

Fig. 6   Resubmitted time versus
number of gridlets

Fig. 7   Throughput versus
number of gridlets

183Engineering with Computers (2016) 32:173–188	

1 3

Step 3 In the third step, if the state of any resource is
over loaded, then the Grid Broker make a list of Gridlets
which need to be transfer from that overloaded resource to
one of the underloaded resources present in the Underload-
edResourcelist and then insert that list of Gridlets into the
UnassignedGridletlist for subsequent scheduling. Now, the
GridBroker can also schedule new Gridlets on the under-
loaded resources present in the UnderloadedResourcelist.
The UnassignedGridletlist is used to store the unfinished
Gridlets coming from the overloaded resource and the new
arriving Gridlets.

Step 4 From the beginning of scheduling, our priority
always should be assigning the largest Gridlet present in
the UnassignedGridletlist to one of the best underloaded
resources present in the UnderloadedResourcelist. It directs
that all the Gridlets should be executed on the heterogene-
ous resources within the deadline. The Gridlet execution
time must be less than the deadline assigned to the Grid-
let. So the Gridlet execution time becomes important due
to resource heterogeneity which is influenced by the capac-
ity of the resources. The underloaded resource having the
highest capacity has the low execution time. Our algorithm
considers these facts. Therefore, we arrange the under
loaded resources present in the UnderloadedResourcelist

according to the highest capacity of the resource. Also, we
arrange the Gridlets present in the UnassignedGridletlist
according to the largest size of the Gridlet. Now, the Grid-
Broker can schedule the largest Gridlet present in the Unas-
signedGridletlist to the underloaded resource present in the
UnderloadedResourcelist having highest capacity.

Step 5 Next, we assign the Gridlets coming from the
UnassignedGridletlist to the underloaded resources present
in the UnderloadedResourcelist. In our scheduling mecha-
nism, the GridBroker can assign Gridlets to a resource
until the load of the resource will be less than or equal to
rt means maximum up to the upper bound of the normally
loaded range i.e., rb–rt and the state of resource will be
either normallyloaded or underloaded. When after assign-
ing a Gridlet to the resource, the load of resource will
exceed the value of rt, that means the condition fails and
the state of resource will be overloaded. So when the con-
dition fails, then the GridBroker cannot assign that Gridlet
to the resource and shall have to move to the next under
loaded resource present in the UnderloadedResourcelist for
execution of that Gridlet.

Some Gridlets cannot be finished at the first schedul-
ing due to deadline failure. These are called unfinished
Gridlets and the GridBroker insert that list of Gridlets

Fig. 8   Execution time versus
number of PEs

Fig. 9   Percentage gain in
execution time versus number
of PEs

184	 Engineering with Computers (2016) 32:173–188

1 3

into the UnfinishedGridletlist. Now, all these unfin-
ished Gridlets present in the UnfinishedGridletlist can
be rescheduled for execution on the other underloaded
resources present in the UnderloadedResourcelist. But
after providing the Gridlets to the best resources, if all
resources present in the Grid system, fail to execute
some of these unfinished Gridlets due to deadline fail-
ure, then a recovery mechanism from deadline failure
of the Gridlets is used in the new proposed scheduling
method.

Here, in the new proposed scheduling mechanism, after
assigning a Gridlet to the resource, if the resource can-
not be finished at the first scheduling due to deadline fail-
ure, then there is no need to store that Gridlet in Unfin-
ishedGridletlist for rescheduling it later. For a Gridlet
having the problem of deadline failure, is going to trans-
fer at that present time to the next underloaded resource
present in the UnderloadedResourcelist for execution.
Before transferring the Gridlet to the next underloaded
resource, the GridBroker is going to save the state of the

Fig. 10   ART versus number
of PEs

Fig. 11   Resubmitted time
versus number of PEs

Fig. 12   Throughput versus
number of PEs

185Engineering with Computers (2016) 32:173–188	

1 3

running Gridlet to stable storage means up to which the
execution time of the Gridlet is not going to exceed the
deadline. This saved state can be used to resume execu-
tion of the Gridlet from the point in the computation where
the check-point was last taken, instead of restarting the
Gridlet from its very beginning. The Gridlet is going to
transfer from the present resource to the next underloaded
resource present in the UnderloadedResourcelist. Once
the loading completes in the next underloaded resource,
the Gridlet is recovered and resumes execution from the
point where the check-point was last taken. The execution
time reduces to a large extent by resuming the execution
from such intermediate points. This recovery mechanism
from deadline failure of the Gridlets is popularly known as
check-pointing.

5 � Simulation and results

The proposed algorithm was implemented using the Grid-
Sim5.0 simulator [10]. The details of the experimental
setup and results are described below. Finally, the results of
the simulation are compared with EGDC [7] and LBEGS
[11]. The comparison of the proposed algorithm EGDFR is
based on the total execution time, ART, resubmitted time
and throughput. We use Windows 7 on an Intel Core (1.73
and 1.73 GHz), with 3 GB of RAM and 1000 GB of hard
disk for the simulation purpose.

5.1 � Performance metrics

In this work, we have considered four performance metrics.
The metrics considered here are total execution time, ART,
resubmitted time and throughput. First, we consider the
total execution time as the performance metric to measure
the algorithm’s efficiency. It indicates the time at which all
Gridlets get executed. The execution time is the total simu-
lation time which is measured from the time the first Grid-
let is sent to the Grid until the last Gridlet comes out of the
Grid.

Second, we consider the ART of the Gridlets processed
in the system as the performance metric. If n no. of Gridlets
is processed by the system, then the ART is given by

where Arrivali is the time at which the ith Gridlet arrives,
and Finishi is the time at which it leaves the system. Some
of the Gridlets may not be executed before their deadline.
The number of Gridlets that cannot be finished on time
called unfinished Gridlets can be rescheduled for execution.
Therefore, the resubmitted time is another standard for our

(3)Average response time (ART) =
1

n

n
∑

i=1

(Finishi − Arrivali)

test. Throughput is used to measure the ability of the grid to
accommodate jobs. Throughput is defined as

where n is the total number of Gridlets submitted and Tn is
the total amount of time necessary to complete n Gridlets.

5.2 � Performance evaluation

We conducted our simulations for three different but inter-
esting cases: (i) Case 1: Simulation with constant number
of PEs, (ii) Case 2: Simulation with constant number of
Gridlets, (iii) Case 3: Simulation with varying Job size.

5.2.1 � Case 1: simulation with constant number of PEs

In this case, the simulation is conducted assuming the num-
ber of PEs to be constant and Gridlets to vary. Without
loss of generality, we assume that there are 30 resources
in the system and every resource has two machines. Every
machine has five PEs. So, the Grid system has total 300
PEs. Due to the resource heterogeneity, every PE has the
rating between 1 and 5 MIPS. Here, we express the Grid-
let length in PEs (1 million instructions). Every Gridlet
length is between 1 and 5 million instructions. Every Grid
has a deadline within a range of 1–6 s. In our simulation
model, we have considered the heterogeneous resources
that are connected by communication channels. The net-
work bandwidth connecting two resources varies from 0.5
to 10 Mbps. According to [7, 11], the resource/machine/PE
threshold is 0.8/0.75/0.6. Therefore, we set resource thresh-
old (rl) = 0.8, machine threshold (ml) = 0.75. Figures 3, 4,
5, 6, and 7 show the results of comparison of our proposed
method with other for the case 1.

In Figs. 3 and 4, the observations are taken by vary-
ing the number of Gridlets starting from 0 and ending at
2500 with a step of 500, keeping the number of PEs con-
stant at 300. Figure 3 presents a comparative look of the
total execution time versus number of Gridlets of our pro-
posed algorithm EGDFR with the existing methods. We
have executed the simulation a number of times and got the
exact results. In all the cases the total execution time of our
EGDFR is found to be less than EGDC and LBEGS with
the increase of Gridlets. In Fig. 4, the results are presented
for EGDFR and EGDC. Figure 4 shows that the gain in
execution time is higher in EGDFR as compared to EGDC.

In Fig. 5, the observations are taken by varying the number
of Gridlets starting from 50 and ending at 250 with a step of
50 while the number of PEs is kept constant at 300. Some
Gridlets cannot be finished at the first resource scheduling
before their deadline. So, a Gridlet having deadline failure is
going to transfer to the other resource at that present time, not

(4)Throughput =
n

Tn

186	 Engineering with Computers (2016) 32:173–188

1 3

later. Therefore, the sum of resubmitted time is another stand-
ard for our test. Here, after providing continuously 2500 Grid-
lets for execution to 30 resources, from that we have provided
250 unfinished Gridlets for rescheduling to 30 resources. Fig-
ure 5 establishes that the resubmitted time of the EGDFR is
less than those of the others with the increasing of Gridlets.

In Figs. 6, and 7, the observations are taken by varying
the number of Gridlets starting from 0 and ending at 2500
with a step of 500, keeping the number of PEs constant at
300. Figure 5 presents a comparative look of the ART versus
number of Gridlets and the results are presented for EGDC,
LBEGS and our proposed method EGDFR. Figure 5 shows
that the ART is lower in the case of EGDFR as compared to
the EGDC and LBEGS. Figure 7 compares the throughput
versus number of Gridlets for our proposed method EGDFR
with the existing ones. From the results, it is quite clear that
the throughput of EGDFR is always more than EGDC and
LBEGS with the increase in the number of Gridlets.

5.2.2 � Case 2: simulation with constant number of Gridlets

Here, we consider another case and conduct simulation
assuming the number of Gridlets to be fixed and the PEs to

vary. Here, we assume that each resource has two machines
and every machine has five PEs. Due to the resource het-
erogeneity, every PE has the rating between 1 and 5 MIPS.
The Grid is created by varying the number of resources
while keeping the number of Gridlets constant. We express
the Gridlet length in PEs (1 million instructions). The
length of each Gridlet lies between 1 and 5 million instruc-
tions. Every Grid has a deadline within a range of 1–6 s. In
our simulation model, we have considered the heterogene-
ous resources that are connected by communication chan-
nels. The network bandwidth connecting two resources
varies from 0.5 to 10 Mbps. According to [7, 11], the
resource/machine/PE threshold is 0.8/0.75/0.6. Therefore,
we set resource threshold (rl) = 0.8, machine threshold
(ml) = 0.75. The results plotted in Figs. 8, 9, 10, 11, and
12 compare the proposed method with the existing ones for
the case 2.

In Figs. 8, and 9, the observations are taken by vary-
ing the number of resources starting from 30 to 150 with a
step of 30, while the numbers of Gridlets are kept constant
at 1000. Figure 8 presents a comparative look of the total
execution time versus number of PEs of our proposed algo-
rithm EGDFR with the existing methods. We have executed

Fig. 13   Execution time versus
job size

Fig. 14   ART versus job size

187Engineering with Computers (2016) 32:173–188	

1 3

the simulation a number of times and got the exact results.
In all the cases the total execution time of our EGDFR is
found to be less than EGDC and LBEGS with the increase
of resources. In Fig. 9, the results are presented for EGDFR
and EGDC. From Fig. 9, it is evident that the gain in execu-
tion time is higher in EGDFR as compared to EGDC.

In Fig. 10, the observations are taken by varying the
number of resources starting from 30 and ending at 150
with a step of 30 and the number of Gridlets kept con-
stant at 1000. Some Gridlets cannot be finished at the first
resource scheduling before their deadline. So, a Gridlet
having deadline failure is going to transfer to the other
resource at that present time, not later. Therefore, the sum
of resubmitted time is another standard for our test. Here,
after providing continuously 1000 Gridlets for execution
to resources starting from 30 and ending at 150, we have
again provided 100 unfinished Gridlets for rescheduling
to resources starting from 30 and ending at 150. Figure 10
establishes that the resubmitted time of the EGDFR is less
than those of the others with the increase of resources.

In Figs. 11, and 12, the observations are taken by vary-
ing the number of resources starting from 30 to 150 with
a step of 30, while the numbers of Gridlets are kept con-
stant at 1000. Figure 11 presents a comparative look of the
ART versus number of PEs and the results are presented for
EGDC, LBEGS and our proposed method EGDFR. From
Fig. 11, it is evident that the ART is lower in the case of
EGDFR than the EGDC and LBEGS with the increase of
resources. Figure 12 compares the throughput versus num-
ber of PEs for our proposed method EGDFR with the exist-
ing ones. From the results, it is quite clear that the through-
put of EGDFR is always more than EGDC and LBEGS
with the increase of resources.

5.2.3 � Case 3: simulation with varying job size

It is very interesting to measure the performance of the
algorithms by varying the job size. In this simulation, we
have taken the observations by varying the job size from
1 to 5 MB. As we increase the job size, the performance
of our proposed method becomes much better than EGDC
and LBEGS in terms of the decrease in the total execution
time and ART (Figs. 13, 14). Figure 13 establishes the total
execution time of the EGDFR to be less than EGDC and
LBEGS with the increase in job size. From Fig. 14, it is
evident that the ART is lower in the case of EGDFR than
the EGDC and LBEGS.

6 � Conclusions

In this paper, we proposed a dynamic distributed load-
balancing technique called “Enhanced GridSim with

Load balancing based on Deadline Failure Recovery”
(EGDFR) for the heterogeneous Grid computing environ-
ment. We considered three cases for simulation, one with
constant number of PEs, second with the constant number
of Gridlets and third with the varying Job Size. Extensive
simulations are conducted using GridSim5.0 for all these
cases. From the simulation results, the proposed method
(EGDFR) is observed to have better performance than the
EGDC [7] and LBEGS [11] in terms of the total execution
time, ART, resubmitted time and throughput. The proposed
work with modification can be extended further for sched-
uling and fault tolerance on GridSim.

References

	 1.	 Berman F, Fox G, Hey AJ (2003) Grid computing: making the
global infrastructure a reality. Wiley, New York

	 2.	 Foster I, Kesselman C (eds) (1999) The grid: blueprint for a
future computing infrastructure. Morgan Kaufmann Publishers,
San Francisco

	 3.	 Myer T (2003) Grid computing: conceptual flyover for devel-
opers. IBM’s Developers work Grid Library, IBM Corporation,
New York

	 4.	 Rathore N, Channa I (2014) Load balancing and job migration
techniques in grid: a survey of recent trends. Wirel Pers Com-
mun 79:1–37

	 5.	 Rathore N, Channa I (2011) A cogitative analysis of load balanc-
ing technique with job migration in grid environment. In: IEEE
proceedings of the world congress on information and communi-
cation technology (WICT), pp 77–82

	 6.	 Shah R, Veeravalli B, Misra M (2007) On the design of adaptive
and decentralized load-balancing algorithms with load estima-
tion for computational grid environments. IEEE Trans Parallel
Distrib Syst 18(12):1675–1686

	 7.	 Hao Y, Liu G, Wen N (2012) An enhanced load balancing mech-
anism based on deadline control on GridSim. Future Gener
Comput Syst 28:657–665

	 8.	 Subrata R, Zomaya AY, Landfeldt B (2008) Game-theoretic
approach for load balancing in computational grids. IEEE Trans
Parallel Distrib Syst 19(1):66–76

	 9.	 Yagoubi B, Lilia HT, Maussa HS (2006) Load balancing in grid
computing. Asian J Inf Technol 5(10):1095–1103

	10.	 Murshed M, Buyya R, Abramson D (2001) GridSim: A toolkit
for the modeling and simulation of global grids. Technical
Report, Monash, CSSE

	11.	 Qureshi K, Rehman A, Manuel P (2010) Enhanced GridSim
architecture with load balancing. J Supercomput 57:1–11

	12.	 Anand L, Ghose D, Mani V (1999) ELISA: an estimated load
information scheduling algorithm for distributed computing sys-
tems. Comput Math Appl 37:57–85

	13.	 Subrata R, Zomaya AY, Landfeldt B (2007) Artificial life tech-
niques for load balancing in computational grids. J Comput Syst
Sci 73:1176–1190

	14.	 Bharadwaj V, Ghose D, Robertazzi TG (2003) Divisible load
theory: a new paradigm for load scheduling in distributed sys-
tems. Clust Comput 6:7–17

	15.	 Cao J (2004) Self-organizing agents for grid load balancing. In:
Proceedings of the fifth IEEE/ACM international workshop on
grid computing, GRID’04, Pittsburgh

	16.	 Ludwig S, Moallem A (2011) Swarm intelligence approaches for
grid load balancing. J Grid Comput 9:1–23

188	 Engineering with Computers (2016) 32:173–188

1 3

	17.	 Erdil D, Lewis M (2012) Dynamic grid load sharing with adap-
tive dissemination protocols. J Supercomput 59:1–28

	18.	 Subrata R, Zomaya AY, Landfeldt B (2008) Game-theoretic
approach for load balancing in computational grids. IEEE Trans
Parallel Distrib Syst 19(1):66–76

	19.	 Zikos S, Karatza HD (2009) Communication cost effective
scheduling policies of nonclairvoyant jobs with load balancing in
a grid. J Syst Softw 82:2103–2116

	20.	 Fernandes de Mello R, Senger LJ, Yang LT (2006) A routing
load balancing policy for grid computing environments. In: Pro-
ceedings of the 20th international conference on advanced infor-
mation networking and applications, Aina’06, vol. 1, pp 18–20

	21.	 Balasangameshwara J, Raju N (2012) A hybrid policy for fault
tolerant load balancing in grid computing environments. J Netw
Comput Appl 35:412–422

	22.	 Li Y, Yang Y, Ma M, Jhou L (2009) A hybrid load balancing
strategy of sequential tasks for grid computing environments.
Future Gener Comput Syst 25:819–828

	23.	 Yan KQ, Wang SS, Wang SC, Chang CP (2009) Towards a
hybrid load balancing policy in grid computing system. Expert
Syst Appl 36:12054–12064

	24.	 Cao J, Spooner DP, Jarvis SA, Nudd GR (2005) Grid load bal-
ancing using intelligent agents. Future Gener Comput Syst
21:135–149

	25.	 Wu J, Xu X, Zhang P, Liu C (2011) A novel multi-agent rein-
forcement learning approach for job scheduling in grid comput-
ing. Future Gener Comput Syst 27:430–439

	26.	 Zheng Q, Tham CK, Veeravalli B (2008) Dynamic load balanc-
ing and pricing in grid computing with communication delay. J
Grid Comput 6:239–253

	27.	 Li K (2008) Optimal load distribution in nondedicated hetero-
geneous cluster and grid computing environments. J Syst Archit
54:111–123

	28.	 Howell F, McNab R (1998) SimJava: a discrete event simula-
tion package for Java with applications in computer systems
modeling. In: Proceedings of the 1st international conference on
web-based modelling and simulation, society for computer simu-
lation, San Diego

	29.	 Yagoubi B, Slimani Y (2006) Dynamic load balancing strategy
for grid computing. World Acad Sci Eng Technol 13:90–95

	An improved load-balancing mechanism based on deadline failure recovery on GridSim
	Abstract
	1 Introduction
	2 Related works
	3 Background
	3.1 GridSim
	3.2 Load-balancing schemes on GridSim
	3.3 Enhanced GridSim with load balancing based on deadline control (EGDC): a brief discussion

	4 The proposed work: enhanced GridSim with load balancing based on deadline failure recovery (EGDFR)
	4.1 Notation and terminologies
	4.2 Proposed algorithm
	4.3 Description of the proposed algorithm

	5 Simulation and results
	5.1 Performance metrics
	5.2 Performance evaluation
	5.2.1 Case 1: simulation with constant number of PEs
	5.2.2 Case 2: simulation with constant number of Gridlets
	5.2.3 Case 3: simulation with varying job size

	6 Conclusions
	References

