
GreenMM: Energy Efficient GPU Matrix Multiplication through
Undervolting

Hadi Zamani
University of California, Riverside

Riverside, CA
hzama001@ucr.edu

Yuanlai Liu
University of California, Riverside

Riverside, CA
yliu158@ucr.edu

Devashree Tripathy
University of California, Riverside

Riverside, CA
devashree.tripathy@email.ucr.edu

Laxmi Bhuyan
University of California, Riverside

Riverside, CA
bhuyan@cs.ucr.edu

Zizhong Chen
University of California, Riverside

Riverside, CA
chen@cs.ucr.edu

ABSTRACT
The current trend of ever-increasing performance in scientific ap-
plications comes with tremendous growth in energy consumption.
In this paper, we present GreenMM framework for matrix mul-
tiplication, which reduces energy consumption in GPUs through
undervolting without sacrificing the performance. The idea in this
paper is to undervolt the GPU beyond the minimum operating volt-
age (Vmin) to save maximum energy while keeping the frequency
constant. Since such undervolting may give rise to faults, we design
an Algorithm Based Fault Tolerance (ABFT) algorithm to detect
and correct those errors. We target cuBLAS Matrix Multiplication
(cuBLAS-MM), as a key kernel used in many scientific applica-
tions. Empirically, we explore different errors and derive a fault
model as a function of undervolting levels and matrix sizes. Then,
using the model, we configure the proposed FT-cuBLAS-MM algo-
rithm. We show that energy consumption is reduced up to 19.8%.
GreenMM also improves the GFLOPS/Watt by 9% with negligible
performance overhead.

KEYWORDS
Undervolting, Matrix multiplication, Fault tolerance, Energy effi-
ciency

© Zamani, Liu, Tripathy, Bhuyan, Chen 2019. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record
was published in Proceedings of the ACM International Conference on Supercomputing (ICS 2019), https://doi.org/10.1145/3330345.3330373.

1 INTRODUCTION
High Performance Computing (HPC) applications like molecular
dynamics, weather prediction and drug discovery demand paral-
lel processing environments. General Purpose Graphics Processing
Units (GPGPUs) have evolved as high performance accelerators
due to their SIMD (Single Instruction Multiple Data) processing
architecture. Modern GPUs with hundreds of computing cores are
capable of 7.8 T FLOPs of double precision floating-point (FP64)
and 15.7 T FLOPs of single precision (FP32) [21]. Moreover, GPUs
are equipped with huge memory bandwidth as high as 1 T Bs. These
characteristics make them well-suited for use as accelerators in
HPC applications, especially for numerical computations and vector
processing. Given their high computational capabilities, the GPUs
consume a significant portion of the total system energy.

Matrix multiplication (MM) is heavily used in many important
numerical computations. The matrix-multiplication kernel, referred

to as GEMM in the Basic Linear Algebra Subroutines (BLAS) [20],
is frequently used as a basic numerical calculation library in CPUs.
GEMM routine is critical to the performance of High Performance
LINPACK benchmark (HPL) and many software packages solving
problem in linear algebra such as LAPACK, ScaLAPACK, MUMPS
and SuperLU.

Over the past few years, there have been significant efforts to
study different techniques improving energy efficiency of GPUs
such as Dynamic Voltage and Frequency Scaling (DVFS) [11][24],
and load balancing in the CPU-GPU heterogeneous systems [23]
[33]. However, DVFS techniques result in performance degradation
due to lowering of the frequency. Also, they do not reduce static
power consumption, which is becoming predominent in today’s
technology.

The impact of undervolting for energy saving has thoroughly
been analyzed recently by reducing the voltage down to the safe
minimum voltage [15][16]. Leng et al. [15] explore energy benefits
of reducing voltage of the GPU chip down to the safe limit. We aim
to save even more energy through undervolting the GPU beyond
the safe minimum operating voltage and tackling the possible GPU
faults by employing a configurable low-overhead fault tolerant (FT)
algorithm.

According to [15] and our observations, different applications
affect the Vmin at which the program executes correctly but fails
when the voltage is reduced any further. The errors can be classified
into Silent Data Corruption (SDC), Run-time Faults, Segmentation
Faults, and Operating System (OS) crash. Some types of errors
lead to divergence in the application control flow, and as a result,
increase the execution time and even in some rare cases end up
in an infinite loop [15]. The most predominant error is SDC. In
Fast Fourier Transform (FFT), Matrix Multiplication and Hotspot
benchmarks, the SDC errors lead to 24%, 42% and 55% faulty
executions, respectively [27].

The reliability loss due to undervolting is not acceptable for most
scientific computing cases. There are software level fault tolerant
techniques such as DMR (dual modular redundancy) [26] and TMR
(triple modular redundancy) [22], which take advantage of redundan-
cies for handling erroneous cases, and checkpointing that tolerate
errors in a checkpoint-restart manner [30]. These techniques are not
very efficient for large scale scientific applications due to large en-
ergy and performance overheads [9]. In such cases, algorithm based
fault tolerance (ABFT) [13], which tolerates errors at the application

308

level, plays a crucial role in error detection and correction in the
systems.

We introduce an energy efficient and ABFT framework, GreenMM,
which tolerates system errors due to undervolting. ABFT techniques
in GPUs were introduced for MM [8], Cholesky [6] and Fast Fourier
Transform [29]. Tan et al. [38] proposed a technique for undervolting
CPUs and correcting errors through ABFT techniques. In our pro-
posed framework, we use a combination of undervolting and ABFT
for GPUs to guarantee energy, power, reliability, and performance ef-
ficiency of the system. First, we experimentally determine Vsa f eMin,
which is the undervolting level beyond which the Operating System
crashes for different applications. The proposed GreenMM frame-
work exploits the voltage slack between Vmin and Vsa f eMin using a
lightweight offline profiling to accurately predict the needed fault
coverage capability as a function of matrix size, undervolting level
and architectural details. We modify the offline ABFT algorithm by
incorporating a number of faults. Online ABFT algorithms have also
been proposed to reduce the overhead for detection and correction
of large number of faults [13]. The basic idea is to decompose the
large matrix into several blocks, which are individually protected
through checksums. Unlike the offline algorithm, the overhead is
lower and faults are not propagated to the output. GreenMM frame-
work is developed for both offline and online algorithms. GreenMM
achieves comparable performance (with 1.5% performance over-
head) to highly optimized cuBLAS-MM in the cuBLAS library, but
needs a lot less energy, which enhances the performance per watt of
the GPU.

To summarize, GreenMM has two parts, GPU Undervolting
model and Fault Tolerant cuBLAS-MM. In GPU Undervolting
model we determine the fault rate, Vmin and Vsa f eMin for the cuBLAS-
MM.The undervolting is started from nominal voltage till Vmin, dur-
ing which no fault is encountered. However, when we undervolt
further from Vmin till Vsa f eMin, FT-cuBLAS-MM corrects the errors
on the fly.

This paper makes the following contributions:

• We experimentally determine the Vmin and Vsa f eMin for dif-
ferent applications, including matrix multiplication.

• We develop a fault model for GPU undervolting and deter-
mine number of faults as a function of matrix size and degree
of undervolting.

• We design a fault tolerant framework, "GreenMM", for matrix
multiplication that provides peak performance on GPUs. We
incorporate the number of faults and modify the original
cuBLAS-MM to implement offline and online FT-cuBLAS-
MM algorithms.

• GreenMM is transparent to applications which utilize the
matrix multiplications, i.e. it uses the same programming
interface as cuBLAS-MM and GreenMM users do not need
to modify source code of the cuBLAS (closed source).

• GreenMM is portable, i.e. it can be used with any GPU archi-
tecture just by changing some architecture specific parameters
in the model.

• We present various experimental results in terms of energy,
power, performance and reliability. GreenMM achieves up to
19.5% energy reduction compared to the original MM. Beside
that, it improves the GFLOPS/Watt of the GPU up to 9%.

2 GPU UNDERVOLTING MODEL
Microprocessor manufacturers usually append an operating guard-
band (a static voltage margin) as high as 20% of the nominal voltage,
to ensure that the microprocessor functions reliably over varying
load and environmental conditions [42]. The guard-bands also ac-
count for errors occurring from the load line, aging effects, noise
and calibration error[32]. The guard-band grows with increase in
variations in technology scaling. However, because we do not en-
counter these errors every time; significant energy saving can be
achieved by reducing guard-band to a much lower supply voltage
[17]. In our work, we aim at using the voltage slack between the
nominal voltage and the actual OS safe voltage to save energy while
preserving the performance. We use a similar approach as in [1] to
reach Vsa f eMin, we also build a fault model empirically as a function
of the undervolting level and matrix size. In GreenMM, we go a
step further by aggressively undervolting and correcting subsequent
errors using the ABFT. Shrinking microprocessor feature size and
diminishing the noise guard-band increase the transient fault rate.
We undervolt till the safe minimum voltage Vmin without experi-
encing any faults. Going beyond Vmin, system may experience soft
errors. Although, GreenMM works for all kinds of soft errors, main
focus is specifically on transient and computation errors such as
SDCs [15]. SDC occurs when the program finishes its execution
normally without any error message but results in a wrong output.
These errors can be covered at the application level. CUDA run-time
errors such as driver faults or segmentation faults caused by memory
management drivers can be detected by inspecting the standard error
output. Operating System crash occurs after a specific undervolting
level (application-dependent), and it is not possible to undervolt the
GPU below the "OS crash point voltage" or Vsa f eMin.

2.1 Fault Distribution in GPU
In order to determine the number of faults to tolerate, we profile the
application. We perform sensitivity analysis of different applications
by reducing the voltage beyond Vmin and by recording the faults at
each voltage. The sensitivity analysis results help us to reach the
minimum voltage at which we can tolerate errors for a given applica-
tion. First, we execute an application at nominal voltage and record
the output as "golden output". Then, starting from base voltage of
1.075V, the underlying GPU (GTX 980) is undervolted in step sizes
of 10mV. The application is executed 100 times for each level of
undervolting and the corresponding output is compared with the
golden output to verify correctness. If the output does not match
with the golden output, then the application has experienced a failure
for that execution. To force the GPU to reduce its voltage at a fixed
frequency, we reduce the target power limit of GPU. Fault distribu-
tion of different applications such as FFTD3D, FFTD2D, Histogram,
MergeSort and BlackScholes on NVIDIA GTX 980 are shown in
Figure 1. Applications that belong to Rodinia benchmark, are used
extensively for performance evaluation of GPU architectures [4].
X-axis denotes the undervolting level starting at 1.075V, and Y-axis
denotes the fault types along with their frequencies. Each application
experiences different types of errors at different voltages. Some ap-
plications such as FFT2D, and FFTD3D show more number of SDC
errors as compared to BlackScholes and MergeSort benchmarks.

309

Figure 1: Error distribution below nominal voltage for different benchmarks using GTX 980

Since SDC errors can be handled at the application level, we only
focus on SDC errors.

2.2 GPU Fault Model
The probability of failure is given by,

Pf =
Number o f f ailures

Number o f application runs
(1)

Pf is derived by counting number of failures in Figure 1. Figure
2 shows Pf for different applications as a function of undervolting.
Vmin is the minimum voltage at which the program executes correctly.
(Vsa f eMin) refers to theoretical lowest safe supply voltage under
which the system can operate without crashing. As shown in Figure 2,
applications have different undervolting levels for Vmin and Vsa f eMin,
which means different amounts of energy can be saved through
undervolting while working with different applications. We observe
a significant voltage guard-band whose margin varies from one
application to another. As shown in Figure 2, we have more voltage
guard-bands in Matrix Multiplication in when compared with the
guard bands in other applications which means we can save more
energy in case of MM.

Reliability of application R(t) at time t is the probability that there
is no failure in the system until time t. We find R(t) where t is the
execution time in equation 2.

R
(
t
)
= 1−Pf

(
t
)

(2)

The failure rate is obtained using Weibull lifetime reliability
model, a well-accepted model for transient and permanent soft er-
rors as in equation 3 [25]. Since we consider undervolting at a fixed
frequency, the failure rate model is a function of supply voltage [38].

R
(
t
)
= e−λ t (3)

The failure rate calculated for different applications is shown in
Figure 3, where X-axis represents the undervolting level and Y-axis
represents the failure rate per minute. The failure rate of applica-
tions BlackScholes, FFTD2D, Histogram, FFTD3D, Mergesort and
cuBLAS-MM are obtained experimentally. As shown in Figure 3,
Vmin for CUDA applications at a specific level of undervolting are
different. In [15], it is observed that programs have different activity
patterns which can lead to different voltage droops. The voltage
droop is the main reason of GPU voltage noise. So, at a specific
voltage, different intra and inter-kernel activities can lead to different
failure rates. It is shown that the voltage noise, and specifically di

dt
droop, has the largest impact on Vsa f eMin in [15]. Microarchitec-
tural events, such as cache misses, cause pipeline stalls and large di

dt
droops lead to different guard-bands and Vsa f eMin. Because cuBLAS-
MM is highly optimized, and all GPU components are active most
of the time, there is no large di

dt droop which could lead to lower
voltage noise margin and larger guard-band.

3 GREENMM: ENERGY SAVING
METHODOLOGY

GreenMM introduces an adaptive FT-cuBLAS-MM algorithm; which
aggressively saves energy and power on GPUs through undervolt-
ing with a negligible performance overhead. GreenMM works with
NVIDIA GPUs irrespective of the underlying GPU architecture.

Figure 4 shows the overview of GreenMM. GreenMM finds the
maximum level of undervolting for the underlying GPU and config-
ures the adaptive FT-cuBLAS-MM to tolerate the potential faults

310

Figure 2: Probability of failure for different Rodinia benchmarks and
cuBLAS-MM from cuBLAS library

with regards to the failure rate of the underlying GPU at the maxi-
mum level of undervolting. To find the failure rate of cuBLAS-MM,
GreenMM reduces the voltage of GPU progressively up to Vsa f eMin
and according to the fault model which is described in Section 2
find the failure rate of the GPU at each undervolting level. Then,
based on the failure rate and execution time of given matrix, es-
timates the number of faults. Since these phases should be done
before MM computation, execution time of MM is not determined.
So, GreenMM uses an estimation model to predict the execution
time of any arbitrary size. With multiplying the estimate execution
time and failure rate of the GPU, the number of faults is determined
and now we can configure the FT-cuBLAS-MM. It uses NVML
library commands to reduce voltage of the GPU by changing the
GPU target power limit and voltage offset.

3.1 Offline Profiling
GreenMM finds the optimum working voltage of the GPU for
cuBLAS-MM, going beyond the Vmin and correcting the poten-
tial errors. Incorporating fault tolerance mechanism increases the
execution time, which in turn increases the energy consumption.
GreenMM, carefully calibrates the level of undervolting so that the
energy saving is more than the energy overhead. Optimum working
voltage is found through an offline profiling phase which is done
only once for each GPU. Offline profiling creates the failure rate
model and MM execution time estimation model to estimate the
number of faults for any MM sizes with regards to the underlying
GPU. The offline profiling phase which is shown in Figure 5 is split
into two parts:

3.1.1 Phase 1: Determine the maximum undervolting level (Vsa f eMin)
and fault rate (λ). We execute matrices of small sizes on the GPU to
minimize the profiling time and obtain maximum undervolting level
(Vsa f eMin) and fault rate (λ), as described in Section 2.

In GreenMM, the offline profiling phase takes into account the
aging effect. Also, the effects due to process variation and tempera-
ture were explored on various applications on different GPU cards
in [15]. They concluded that process variation and temperature have
a relatively uniform impact on Vsa f eMin across all applications in a
given GPU card; and the effect of aging is negligible (1-2 % in the
long term). Moreover, The effect of temperature rise is already in-
cluded in the number of faults, as plotted in Figures 1 and 8, because
our fault model already considers the increase in temperature during

Figure 3: Failure rate of different Rodinia benchmarks and
cuBLAS-MM from cuBLAS library

long executions. However, we performed additional experiments to
measure temperature while undervolting. Due to limited resources,
we run MM in a loop to have enough time to observe the temperature
changes. The variation in temperature of the GPU over time with and
without undervolting is shown in Figure 6. It is observed that, after
running kernel continuously, the temperature of GPU remains the
same after a period of time and there is only about 11◦C variation
in the temperature in presence of maximum level of undervolting.
Ref. [15] shows that Vsa f eMin at 70◦C is about 20mV higher than
the values at 40◦C for various GPU cards. Temperature variation in
GreenMM is about 11◦C which is not big enough to make a sensible
change on Vsa f eMin.

3.1.2 Phase 2: Estimate number of faults based on matrix size and
fault rate (λ). The number of faults in an application can be obtained
by multiplying λ with the execution time, as shown in equation 5.
Failure rate remains same irrespective of the input data size for a
given application as in equation 3. Hence, we estimate the execution
time of MM for a given matrix size on a specific GPU through a
simple profiling.

T = ax3 b (4)

F = λ ∗T (5)

Due to different compute resources like SM, register file size,
cache sizes and shared memory size, execution time of the MM for
a given size could be vary in different GPUs. Due to memory con-
straints, the GPU cannot handle matrix multiplication of any arbitrary
size. The time complexity of cuBLAS-MM as a function of matrix
size is provided in equation 4, where a and b are architecture-specific
constants [36][31]. We run MM for different sizes to calculate the
values of a and b for the underlying GPU. Figure 7 shows the ex-
perimental execution time (blue) and the execution time calculated
theoretically from equation 4. Moreover, the red line shows sample
points that were used to derive values of a and b which can be used
for prediction of execution time for larger matrices, shown as green
dashed line. Then, we compare the estimated execution time with
the real experimental results for bigger matrices. As the results show,
the estimation error is negligible.

Due to memory constraints on NVIDIA GTX 980, we use matrix
of size 10K for GreenMM. The Vsa f eMin is 86.05% of nominal

311

CUDA Application

Output

Golden
Output

Undervolting level

Nominal Voltage

! =

 Calculate Estimated Timeexecution

 Estimate Number of Fault(Nf)
 Configure the FT-cuBLAS-MM

P
ro

fi
lin

g
p

h
as

e

 Undervolt the GPU
 Activate power sampling (NVML

library APIs)
 Run the FT-cuBLAS-MM

R
u

n
 a

p
p

lic
at

io
n

Undervolting level

Probability of failure

Find V_safeMin

Explore V_min

Error Distribution

Fault Rate

Undervolting Phase

Figure 4: GreenMM overview

 1.Perform MM and store the results at the
nominal voltage

Start

 1.Undervolt(UV) GPU
 2. Perform MM
 3. Run ++ till Run = Count

Runs=0
Fails=0

Count = 100

MM_Output =
Golden Output ?

Crash ?

Maximum UV level = Previous UV level

End

No

Yes

No
Fails++

Yes

 1. MM_Size *= 2
 2. Perform MM
 3. execution Time
 4. Count++

Count
<

 SampleNum

Yes

Start

Count = 0
SampleNum=5
MM_Size-=512

Find the execution
time estimation
model from the
sample points

End

No

Execution Time Prediction Undervolting/Profiling Phase

Figure 5: Overview of offline profiling

voltage (undervolting level is 13.95%); the number of faults is 1.2 as

shown in Figure 9. Hence, FT-cuBLAS-MM should tolerate at least
2 faults with the input size of 10K * 10K. If GPU memory supports
matrices bigger than 10K * 10K, they may experience more number
of faults.

As the size of the matrix increases, the execution time as well
as the number of faults also increase as shown in Figure 8. The
matrix size varies between 10K and 100K as the undervolting level
is changed from 0% to 13.95% in Y-axis; Z-axis shows the number of
faults. For a given undervolting level, the number of faults for large
matrix sizes is more than the number of faults in small matrices..
In the following, we propose an adaptive FT algorithm than can be
configured to handle different number of faults.

3.2 Offline FT-cuBLAS-MM
The ABFT for Matrix Multiplication has a very low performance
overhead when compared with other techniques [3]. The basic idea
of ABFT is to encode input matrices with checksums to detect
and correct the corrupted data. The traditional ABFT introduced
by Huang et al. [13] is capable of correcting one fault by checking
correctness at the very end of computation. In our work, we introduce
an enhanced offline version, FT-cuBLAS-MM, which is capable of
tolerating any arbitrary number of faults by increasing the number of
weighted check-sum vectors. Algorithm 1 describes the pseudo-code
for the offline FT-cuBLAS-MM.

Generating the weights of the checksum vectors, encoding the
column checksums, and the row checksum are done according to
algorithms into the matrix is done according algorithms 2, 3 and 4
respectively. The result of C f = Ac ∗Br is a full checksum matrix.
At the end of computation, we check full checksum relationship
again and if the relationship does not hold, then our result is faulty;
thereafter, faults are detected and corrected using equation 6.

Ci j = Σn
j=1c f

i j −Σn
k=1,k≠ jc

f
ik (6)

312

Figure 6: Temperature variation over time without and with maximum
level of undervolting

Algorithm 1 The pseudo-code for Detection Phase

1: Generate checksum weights vectors v1 and v2
2: Encode A −→ Ac

3: Encode B −→ Br

4: C f = Ac ×Br

5: Recompute the checksum for C f

6: Verify full checksum relationship of C f

Algorithm 2 Generating weighted checksum vectors for each block

1: for i = 0,1, ...,nb do
2: v1

[
i
]
= 1

3: end for
4: for i = 0,1, ...,nb do
5: v2

[
i
]
= 1 i

6: end for

3.3 Online FT-cuBLAS-MM
Offline FT-cuBLAS-MM only checks correctness of results at the
end of computation. We design an online version of FT-cuBLAS-
MM to check correctness of MM during computation, so that we
can prevent faults to be propagated. We introduce an Online FT-
cuBLAS-MM that can handle different number of faults. Fault cover-
age capability of FT-cuBLAS-MM is determined before starting the
MM computation. However, the key problem here is that we must
use MM algorithm such that it maintains the checksum relationship
even in the middle of the computation. In [7], it is proved that outer
product Matrix Multiplication maintains checksum relationship in
each iteration of computation. For a matrix with size of N, we have
at most N opportunities to tolerate faults during the entire MM com-
putation. The fault detection phase, which is always active, increases
the performance overhead. So, to achieve high performance, we
can invoke the FT-cuBLAS-MM routine once in every several it-
erations. There is a trade-off between the number of iterations and
overhead of online FT-cuBLAS-MM. The number of iterations to
invoke FT-cuBLAS-MM is closely related to the number of faults
that may happen during the computation. If the failure rate of system
increases, then we should check more frequently, otherwise, there is
no need to employ an algorithm with higher fault coverage capability.
The algorithm to perform MM has several steps. The detailed steps
of the algorithm are shown in algorithm 5.

Figure 7: Execution time estimation model vs. the real execution time

During each iteration, we update checksum of the result matrix to
maintain full checksum relationship. Then, we compute sum of each
row and column in the result matrix and compare it with the row
and column checksum. If the check is passed we move to the next
iteration, otherwise, if any checksum does not match, we locate the
exact position of error through comparing the checksums. To correct
the error (Ci j), we simply add the difference of jth checksum column
and the sum of jth column to the result matrix element at location
(i, j). GreenMM corrects two errors at the same time regardless of
the error patterns. Also, it corrects any number of errors which may
happen in the same row or column.

Algorithm 3 Column checksum update for A(m * k)

1: for j = 0,1, ...,k−1 do
2: for i = 0,1, ...,m−1 do
3: ColChkv1

[
j
]
= Σm−1

i=0 V1
[
i
]
∗A

[
i
][

j
]

4: ColChkv2
[

j
]
= Σm−1

i=0 V2
[
i
]
∗A

[
i
][

j
]

5: end for
6: end for

Algorithm 4 Row checksum update for B(k * n)

1: for i = 0,1, ...,k−1 do
2: for j = 0,1, ...,n−1 do
3: RowChkv1

[
i
]
= n−1

j=0 V 1
[

j
]
∗B

[
i
][

j
]

4: RowChkv2
[
i
]
= n−1

j=0 V 2
[

j
]
∗B

[
i
][

j
]

5: end for
6: end for

As shown in algorithm 5, online FT-cuBLAS-MM algorithm
consists of following steps:

(1) Move input matrices to the GPU using cudaMemCpy API.
(2) Generate checksum weights vectors in the CPU and move

them to the GPU. The weights are generated according to
algorithm 2. Due to frequent accesses to weights vector in
GPU, to get peak performance, pitched device memory is
allocated using cudaMallocPitch API that allocates linear

313

memory space for better efficiency in terms of performance
and power.

(3) Divide input matrices into blocks given the number of faults
and do MM without checksums.

(4) Invoke cuBLAS-MM to update column checksum for each
block according to algorithm 3.

(5) Invoke cuBLAS-MM to update C
(6) Invoke cuBLAS-MM to update row checksum of B given the

equations described in algorithm 4.
(7) Update row checksum of C by invoking cuBLAS-MM
(8) Recalculate column and row checksums of C by invoking a

simple kernel which adds elements of the result matrix.

Algorithm 5 Pseudo-code for online FT-cuBLAS-MM

1: Initialization
NB = N (Matrix Size)/ B (Block Size)

2: for i = 1, ...,NB do
3: AB,BB −→ GPU
4: Update CB −→ cuBLAS-MM

(
AB,BB,CB)

5: Update AB
c −→ cuBLAS-MM

(
AB,ColChkv,Ac

B)
6: Update Cc

B −→ cuBLAS-MM
(
Ac

B,BB,Cc
B)

7: Update Br
B −→ cuBLAS-MM

(
BB,RowChkv,Br

B)
8: Update Cr

B −→ cuBLAS-MM
(
AB,Br

B,C
r
B)

9: Recalculate −→ CB_ColChk2
10: while CB_ColChk1 ≠CB_ColChk2 do
11: Do Correction
12: end while
13: Recalculate −→ CB_RowChk2
14: while CB_RowChk1 ≠CB_RowChk2 do
15: Do Correction
16: end while
17: Update C
18: end for
19: C −→CPU

(9) Compare recalculated checksums and old checksums to lo-
cate the potential error. Any potential errors can be located by
comparing the column and the row checksums. Since com-
puters do floating point calculations in finite precision, the
checksum relationship can not hold exactly due to round-off

0
15

5

10

100
10 90

N
u

m
b

e
r

o
f

F
a

u
lt
s

15

80
70

20

Undervolting Level (%)
Matrix Size (K)

60

25

5 50
40

30
20

0 10

Figure 8: Estimated Number of faults for different matrix sizes given the
undervolting levels.

errors. So, we need a threshold to distinguish between round-
off errors and computation errors. Too large thresholds may
hide the computation errors, while, too small thresholds may
interrupt correct computation. In comparison phase, accord-
ing to [40], e−10 has been chosen as a conservative threshold
to distinguish between round-off and computation errors.

(10) Correct any potential errors according to equation 6

4 EVALUATION
4.1 Experimental Setup
All experiments are performed on NVIDIA GTX 980 [1], the archi-
tectural specifications can be found in Table 2. Given the limited
memory size of the GPU, we were able to evaluate the results for up
to a matrix size of 10K. We reduced nominal voltage of the GPU in
step sizes of 10 - 12mV until the VOSCrashpoint using the MSI After
Burner [15]. By decreasing the target power limit of the GPU, we
can enforce specific operating voltage. We use NVIDIA System
Management Interface (Nvidia-smi), a widely used command line
utility on top of NVIDIA Management Library (NVML), to measure
power consumption of the GPU at 10ms intervals. Some important
commands on power management in NVIDIA GPUs are shown in
Table 1.

The execution times of cuBLAS-MM and FT-cuBLAS-MM are
shown in Figure 10. The overhead of fault tolerance is large for
small matrices, however, the overhead decreases with increase in the
matrix size. For small matrices, there is 8% performance overhead,
while in case of bigger matrices (10K), performance overhead of
FT-cuBLAS-MM comes down to 1.5%.

There is no need for fault tolerance till Vmin as the probability
of error occurrence is zero. The detection phase is activated when
undervolting beyond Vmin to detect potential errors, however, the cor-
rection phase is activated only if an error is detected in the detection
phase. The detection phase accounts for majority of the overhead
in the FT-cuBLAS-MM. For instance, when the matrix size is 10K,
the detection phase takes 139ms while the correction phase takes
only 0.24ms, which means the number of faults to be corrected has

Figure 9: Number of faults according to the undervolting level for
matrices with size of 10K on NVIDIA GTX 980

314

Table 1: Power management commands using the NVML library

Command Description
nvmlDeviceGetPowerUsage Retrieves power usage for the GPU and its associated circuitry in milliwatts

nvmlDeviceSetPersistenceMode Enables persistent mode to prevent driver from unloading
nvmlDeviceSetPowerManagementLimit Sets new power limit for the device

nvmlDeviceSetApplicationsClocks Sets clocks that applications will lock to
Accuracy Power Measurement Accuracy & Reading is accurate to within +/- 5% of the current power draw

Table 2: NVIDIA GTX 980 specifications

Processor
2048 CUDA-core NVIDIA
Maxwell GeForce GTX 980

Peak Perf. 4.6 TFLOPs
Memory 4 GB GDDR5

Base Clock 1126 MHz
Boost Clock 1216 MHz

Memory Clock 7 GHz
Default Voltage 1.075 V

low impact on the performance. In case of 10K matrix size, the
maximum number of faults we need to tolerate is 1.2 as shown in
Figure 9; which can be handled by offline FT-cuBLAS-MM. Offline
FT-cuBLAS-MM is a special case of online FT-cuBLAS-MM when
the number of faults is less than or equal to 2. Here, the block size is
the same as the matrix size.

4.2 Performance and Energy Saving Evaluation
of FT-cuBLAS-MM

When the matrix size increases, the failure rate remains the same.
However, the number of errors increases. To evaluate the overhead
of FT-cuBLAS-MM, faults are injected directly into partial sum
results at random locations and in random iterations according to
fault model described in Section 2. Fault injection in a controlled
manner emulates the impact of hardware transient faults on MM
computation. We observed errors in the output, however, they were

Figure 10: Performance overhead of matrix multiplication for different
matrix sizes in presence of two errors

detected and corrected by the offline or online FT-cuBLAS-MM
depending on the size of matrix and the number of faults.

FT-cuBLAS-MM as described in Section 3, improves the relia-
bility of computation and tolerates any arbitrary number of faults.
This is because, we check correctness of the partial results in each
iteration. There is a trade-off between reliability of computation,
energy consumption and performance overhead. We measure the
performance (GFLOPS) of the cuBLAS-MM and FT-cuBLAS-MM
on NVIDIA GTX 980 in the presence of different number of faults
for a 10K matrix. Since the actual number of faults at Vsa f eMin
(i.e. 13.95%) undervolting level is 1.2, we evaluate the performance
overhead by manually injecting faults into 10K matrix. Increase in
the number of faults results in increased performance overhead, as
shown in Figure 11. The performance is 165 GFLOPS in presence
of 2 errors and 162 GFLOPS in presence of 16 faults. On average,
the performance overhead for different number of faults is 1.5%.

The energy consumption of the GPU is calculated by multiplying
power (at each undervolting level) with the execution time of MM.
Figure 12 shows the energy saving in FT-cuBLAS-MM versus the
original cuBLAS-MM in presence of different undervolting levels
and number of faults. Since no fault occurs till Vmin, fault detection
phase is disabled.

The fault detection and correction phases are activated when we
undervolt from Vmin till Vsa f eMin. The X-axis denotes the undervolt-
ing level and the corresponding number of faults. Figure 12 (a) shows
the energy saving at different undervolting levels for matrix size of
10K with and without fault tolerance. Undervolting level at Vmin for
the original cuBLAS-MM is 10.23% without any faults. Undervolt-
ing beyond Vmin results in faults; and the maximum number of faults
is 1.2 at undervolting level of 13.95% as shown in Figure 9. So,

Figure 11: Performance evaluation of the FT-cuBLAS-MM

315

Original cuBLAS-MM

Offline FT-cuBLAS-MM

Original cuBLAS-MM

Offline FT-cuBLAS-MM

Online FT-cuBLAS-MM

Figure 12: Energy saving in the FT-cuBLAS-MM versus the original cuBLAS-MM given different undervolting levels and number of faults

offline FT-cuBLAS-MM is used to correct the faults. For a matrix
of size 10K, the cuBLAS-MM can save energy up to 14% just by
undervolting and without any fault tolerance, but with GreenMM the
energy saving is increased up to 19.8% due to undervolting beyond
Vmin.

Figure 12 (b) shows the energy saving at different undervolting
levels for matrix size 40K with and without fault tolerance. Under-
volting beyond Vmin, results in faults; and the maximum number of
faults is 10.2 at undervolting level 13.95%. Offline FT-cuBLAS-MM
with two weighted-check sum vectors can not cover those number
of faults. Hence, we activate the Online FT-cuBLAS-MM to tolerate
the faults. Although, going beyond Vmin results in more number
of faults, we can still save 4% additional energy by activating the
FT-cuBLAS-MM. For a matrix of size 40K, when there are no faults,
the cuBLAS-MM saves energy up to 14% with undervolting, but
when using undervolting in combination with FT-cuBLAS-MM the
energy saving increases to 18%.

4.3 Performance/Watt and Total Energy
Consumption Evaluation

cu-BLAS-MM is not open source; so, the number of operations
cannot be calculated accurately; however, the number of floating
point operations that take place when multiplying 2 matrices can be
estimated according to equation 7.

N f p = 2n3 −n2 (7)

With assuming the same amount of operations in both cases (with
and without ABFT), and measuring the extra execution time which
is needed for ABFT part, we can have a fair comparison.

As shown in Figure 13, despite the performance overhead of
ABFT, GreenMM has higher performance per watt (GFLOPS/Watt)
in comparison to the original cuBLAS-MM. This is because, we
can save significant power by just undervolting the GPU. Figure
13 shows GFLOPS/Watt of the GPU. X-axis shows the number of
faults and the Y-axis shows GFLOPSWatt improvement ratio when
compared with the performance of the original cuBLAS-MM with-
out undervolting. When there are two faults, at 13.95% undervolting
level, GreenMM improves GFLOPSWatt of the GPU by 9%. When

Figure 13: Comparing performance in GPU with default voltage versus
undervolted GPU in presence of different number of faults.

the number of faults increases to 16, there will be 7% improvement in
GFLOPSWatt over the original cuBLAS-MM without undervolting.

To have an explicit comparison, we also plot the total energy
consumption for multiplying two matrices with input size of 10K in
presence of different number of faults. X-axis shows the number of
faults and the Y-axis shows the total energy consumption. The first
left column shows the original cu-BLAS-MM energy consumption,
while the other column shows the energy consumption of GreenMM
in presence of different number of faults. To evaluate GreenMM
with number of faults more than 2, we manually inject faults into the
partial results during the computation at the optimum undervolting
level. The results show that when the original cu-BLAS-MM is
used without any faults, the GPU consumes more than 1600 Joules,
whereas, the GreenMM consumes about 1300 Joules for multiplying
the matrices in presence of 2 faults.

MM heavy applications such HPL and ScaLAPACK involves a
time-consuming task to deal with MM computation. Trailing matrix
updates consumes more than 90% of the computation cost in HPL
[39]. GreenMM can be employed to compute this phase. Since
GreenMM is transparent to the users, it can be integrated into HPL
and other MM heavy applications supporting GPUs.

316

5 RELATED WORK
The ever-increasing popularity of GPUs has motivated development
of energy efficient GPU architectures, most of which target for en-
ergy saving in general over many applications. However, very few of
the architecture designs are targeted at reducing energy consumption
of linear algebra basic routines such as cuBLAS-MM that are used
in scientific application.

Dynamic Voltage and Frequency Scaling (DVFS), is one common
approach to reduce power and energy consumption of a system [19].
Applying DVFS, based on system utilization, the processors can
operate in different power states whenever high performance is not
necessary. DVFS in GPU domain can behave in a very different
manner compared to DVFS in CPUs in regard to energy efficiency
[10]. Besides the DVFS technique, GPU undervolting is another
approach for improving GPU energy efficiency. Leng et al. [16],
reduce chip voltage of the GPU to Vmin without introducing any
errors; which was achieved by leveraging guard-band voltage of the
GPU. However they did not go beyond Vmin because errors would
occur with any further undervolting. In our work, we show that even
beyond Vmin there is opportunity to save more energy and correct
potential faults by combining undervolting and Algorithm Based
Fault Tolerance (ABFT) together. GPUs/CPUs use huge number of
communications links which have made them seriously prone to
coupling and inductance effects [35][34]. By using undervolting,
we also could relax the coupling and inductance effect and increase
the reliability. In [41] [12], power gating is applied onto GPU to
save energy on branch divergence and idle components respectively.
[2] applies dynamic resource allocation to improve GPU energy
efficiency. [37] attempts to reduce energy consumption by selecting
between the CPU or GPU to run the application. In CPU domain,
there are several studies which rely on hardware sensors to look for
possibilities to reduce the operating voltage by monitoring critical
path [14]. In [38], Tan et al. investigated the interplay between en-
ergy efficiency and reliability on the CPUs. In their approach, they
combined undervolting with a fault tolerant technique to tolerate
faults caused by undervolting on the CPUs. Their fault rate model is
based on digital circuit failure, and not based on the CPU hardware.
It is because they could not drive CPU undervolting to below the
threshold value to generate faults. So, they emulated the errors and
corrected them. They used an analytic fault model and only consid-
ered a single soft error to correct. In GreenMM, we introduce a fault
model taking into account the real system faults during undervolting
through NVML APIs. We drove the GPU voltage under the threshold
(Vsa f eMin), so that the number of faults is practically measured. Thus,
our proposed fault model is more accurate and realistic.

Fault tolerant mechanisms such as redundancy-based techniques
[28] can recover from hard failures, however, at a huge performance
cost. These techniques are not useful in GPU applications due to high
penalty in terms of energy consumption and performance. Check-
pointing has been applied to tolerate failures on the GPU through
restarting application from some previously saved correct state [30].
Checkpointing suffers from significant performance and memory
overheads. Compared to aforementioned techniques, ABFT provides
the advantage of negligible overhead along with the capability of
detecting and correcting errors with low overhead. ABFT has widely

Figure 14: Energy consumption at the default voltage versus optimum
level of undervolting with matrix input size of 10k.

been studied for improving linear algebra library on both CPUs
[40][18] and GPUs [5].

6 CONCLUSION
This paper presented a technique to save energy in GPUs through
undervolting. First, we profiled error distribution of different appli-
cations from Rodinia benchmark to create an empirical fault model
based on behaviour of the applications, while reducing the GPU
voltage beyond Vmin. After this point, the most predominant error
was SDC error, which can be corrected at the application level. Then,
we designed a ABFT based fault tolerant matrix multiplication al-
gorithm, called FT-cuBLAS-MM, to correct the errors dynamically.
We evaluated energy consumption and performance on NVIDIA
GTX 980. Our experiments showed that energy consumption can
be reduced up to 19.8% using GreenMM, with performance over-
head of 1.5%. Moreover, The GFLOPS/WAT T improvement of the
GreenMM in comparison to the original cuBLAS-MM for a matrix
of size 10K is 9%.

ACKNOWLEDGMENT
This work is supported by NSF Grants CCF-1423108, CCF-1513201.
The authors would like to thank the anonymous reviewers for their
invaluable comments and suggestions.

REFERENCES
[1] [n. d.]. GTX 980Ti Specifications. https://www.anandtech.com/show/8526/

nvidia-geforce-gtx-980-review/21
[2] Pedro Alonso, Manuel F Dolz, Francisco D Igual, Rafael Mayo, and Enrique S

Quintana-Orti. 2012. Reducing energy consumption of dense linear algebra
operations on hybrid CPU-GPU platforms. In Parallel and Distributed Processing
with Applications (ISPA), 2012 IEEE 10th International Symposium on. IEEE,
56–62.

[3] George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. 2009.
Algorithm-based fault tolerance applied to high performance computing. J. Paral-
lel and Distrib. Comput. 69, 4 (2009), 410–416.

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. Ieee, 44–54.

[5] Jieyang Chen, Sihuan Li, and Zizhong Chen. 2016. Gpu-abft: Optimizing
algorithm-based fault tolerance for heterogeneous systems with gpus. In Net-
working, Architecture and Storage (NAS), 2016 IEEE International Conference
on. IEEE, 1–2.

317

https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/21
https://www.anandtech.com/show/8526/nvidia-geforce-gtx-980-review/21

[6] Jieyang Chen, Xin Liang, and Zizhong Chen. 2016. Online algorithm-based fault
tolerance for cholesky decomposition on heterogeneous systems with gpus. In
Parallel and Distributed Processing Symposium, 2016 IEEE International. IEEE,
993–1002.

[7] Zizhong Chen. 2008. Extending algorithm-based fault tolerance to tolerate fail-
stop failures in high performance distributed environments. In Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. IEEE,
1–8.

[8] Chong Ding, Christer Karlsson, Hui Liu, Teresa Davies, and Zizhong Chen. 2011.
Matrix multiplication on gpus with on-line fault tolerance. In Parallel and Dis-
tributed Processing with Applications (ISPA), 2011 IEEE 9th International Sym-
posium on. IEEE, 311–317.

[9] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and
Ron Brightwell. 2012. Detection and Correction of Silent Data Corruption for
Large-scale High-performance Computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC ’12). IEEE Computer Society Press, Los Alamitos, CA, USA, Article 78,
12 pages. http://dl.acm.org/citation.cfm?id=2388996.2389102

[10] Rong Ge, Ryan Vogt, Jahangir Majumder, Arif Alam, Martin Burtscher, and
Ziliang Zong. 2013. Effects of Dynamic Voltage and Frequency Scaling on a
K20 GPU. In Proceedings of the 2013 42Nd International Conference on Parallel
Processing (ICPP ’13). IEEE Computer Society, Washington, DC, USA, 826–833.
http://dx.doi.org/10.1109/ICPP.2013.98

[11] João Guerreiro, Aleksandar Ilic, Nuno Roma, and Pedro Tomás. 2018. DVFS-
aware application classification to improve GPGPUs energy efficiency. Parallel
Comput. (2018). https://doi.org/10.1016/j.parco.2018.02.001

[12] Sunpyo Hong and Hyesoon Kim. 2010. An Integrated GPU Power and Per-
formance Model. In Proceedings of the 37th Annual International Symposium
on Computer Architecture (ISCA ’10). ACM, New York, NY, USA, 280–289.
https://doi.org/10.1145/1815961.1815998

[13] Kuang-Hua Huang et al. 1984. Algorithm-based fault tolerance for matrix opera-
tions. IEEE transactions on computers 100, 6 (1984), 518–528.

[14] Charles R. Lefurgy, Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-Ware,
Bishop Brock, Jose A. Tierno, and John B. Carter. 2011. Active Management
of Timing Guardband to Save Energy in POWER7. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-44).
ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/2155620.2155622

[15] Jingwen Leng, Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, and Vi-
jay Janapa Reddi. [n. d.]. Safe Limits on Voltage Reduction Efficiency in GPUs:
A Direct Measurement Approach. In Proceedings of the 48th International Sym-
posium on Microarchitecture (MICRO-48). ACM, New York, NY, USA, 294–307.
https://doi.org/10.1145/2830772.2830811

[16] Jingwen Leng, Yazhou Zu, and Vijay Janapa Reddi. 2014. Energy efficiency
benefits of reducing the voltage guardband on the Kepler GPU architecture. Proc.
of SELSE (2014).

[17] J. Leng, Y. Zu, M. Rhu, M. S. Gupta, and V. J. Reddi. 2014. GPUVolt: Modeling
and characterizing voltage noise in GPU architectures. In 2014 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED). 141–146.
https://doi.org/10.1145/2627369.2627605

[18] Xin Liang, Jieyang Chen, Dingwen Tao, Sihuan Li, Panruo Wu, Hongbo Li, Kaim-
ing Ouyang, Yuanlai Liu, Fengguang Song, and Zizhong Chen. 2017. Correcting
soft errors online in fast fourier transform. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
ACM, 30.

[19] Wenjie Liu, Zhihui Du, Yu Xiao, David A Bader, and Chen Xu. 2011. A waterfall
model to achieve energy efficient tasks mapping for large scale GPU clusters. In
Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on. IEEE, 82–92.

[20] Mark Harris Luke Durant, Olivier Giroux and Nick Stam. 2001. Basic Linear
Algebra Subprograms Technical(BLAST) Forum Standard. http://www.netlib.
org/blas/blast-forum/blas-report.pdf

[21] Mark Harris Luke Durant, Olivier Giroux and Nick Stam. 2017. Volta Whitepaper.
https://devblogs.nvidia.com/inside-volta

[22] Robert E Lyons and Wouter Vanderkulk. 1962. The use of triple-modular redun-
dancy to improve computer reliability. IBM Journal of Research and Development
6, 2 (1962), 200–209.

[23] Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. 2012. Greengpu: A
holistic approach to energy efficiency in gpu-cpu heterogeneous architectures. In
Parallel Processing (ICPP), 2012 41st International Conference on. IEEE, 48–57.

[24] Xinxin Mei, Ling Sing Yung, Kaiyong Zhao, and Xiaowen Chu. 2013. A Mea-
surement Study of GPU DVFS on Energy Conservation. In Proceedings of the
Workshop on Power-Aware Computing and Systems (HotPower ’13). ACM, New
York, NY, USA, Article 10, 5 pages. https://doi.org/10.1145/2525526.2525852

[25] DN Prabhakar Murthy, Min Xie, and Renyan Jiang. 2004. Weibull models. Vol. 505.
John Wiley & Sons.

[26] Sayori Nakagawa, Satoshi Fukumoto, and Naohiro Ishii. 2003. Optimal check-
pointing intervals of three error detection schemes by a double modular redun-
dancy. Mathematical and Computer Modelling 38, 11 (2003), 1357 – 1363.

https://doi.org/10.1016/S0895-7177(03)90138-5 Stochastic models in engineer-
ing, technology, and management.

[27] D. A. G. Oliveira, P. Rech, L. L. Pilla, P. O. A. Navaux, and L. Carro. 2014.
GPGPUs ECC efficiency and efficacy. In 2014 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). 209–215.

[28] David Patterson, Aaron Brown, Pete Broadwell, George Candea, Mike Chen,
James Cutler, Patricia Enriquez, Armando Fox, Emre Kiciman, Matthew
Merzbacher, David Oppenheimer, Naveen Sastry, William Tetzlaff, Jonathan
Traupman, and Noah Treuhaft. 2002. Recovery Oriented Computing (ROC):
Motivation, Definition, Techniques,. Technical Report. Berkeley, CA, USA.

[29] Laercio L Pilla, P Rech, F Silvestri, Christopher Frost, Philippe Olivier Alexandre
Navaux, M Sonza Reorda, and Luigi Carro. 2014. Software-based hardening
strategies for neutron sensitive FFT algorithms on GPUs. IEEE Transactions on
Nuclear Science 61, 4 (2014), 1874–1880.

[30] James S Plank, Micah Beck, Gerry Kingsley, and Kai Li. 1994. Libckpt: Trans-
parent checkpointing under unix. Computer Science Department.

[31] Ronald L Rivest and Charles E Leiserson. 1990. Introduction to algorithms.
McGraw-Hill, Inc.

[32] N. Rohbani, M. Ebrahimi, S. Miremadi, and M. B. Tahoori. 2017. Bias Tem-
perature Instability Mitigation via Adaptive Cache Size Management. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25, 3 (March 2017),
1012–1022. https://doi.org/10.1109/TVLSI.2016.2606579

[33] N. Rohbani, Z. Shirmohammadi, M. Zare, and S. Miremadi. 2017. LAXY: A
Location-Based Aging-Resilient Xy-Yx Routing Algorithm for Network on Chip.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
36, 10 (Oct 2017), 1725–1738. https://doi.org/10.1109/TCAD.2017.2648817

[34] Z. Shirmohammadi and H. Z. Sabzi. 2018. DR: Overhead Efficient RLC
Crosstalk Avoidance Code. In 2018 8th International Conference on Computer
and Knowledge Engineering (ICCKE). 63–68. https://doi.org/10.1109/ICCKE.
2018.8566456

[35] Z. Shirmohammadi, H. Z. Sabzi, and S. G. Miremadi. 2017. 3D-DyCAC: Dynamic
numerical-based mechanism for reducing crosstalk faults in 3D ICs. In 2017 IEEE
International High Level Design Validation and Test Workshop (HLDVT). 87–90.
https://doi.org/10.1109/HLDVT.2017.8167468

[36] Steven S Skiena. 1998. The algorithm design manual: Text. Vol. 1. Springer
Science & Business Media.

[37] H. Takizawa, K. Sato, and H. Kobayashi. 2008. SPRAT: Runtime processor
selection for energy-aware computing. In 2008 IEEE International Conference on
Cluster Computing. 386–393.

[38] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson. 2015. Investigating
the Interplay between Energy Efficiency and Resilience in High Performance
Computing. In 2015 IEEE International Parallel and Distributed Processing
Symposium. 786–796. https://doi.org/10.1109/IPDPS.2015.108

[39] Q. Wang, J. Ohmura, S. Axida, T. Miyoshi, H. Irie, and T. Yoshinaga. 2010.
Parallel Matrix-Matrix Multiplication Based on HPL with a GPU-Accelerated PC
Cluster. In 2010 First International Conference on Networking and Computing.
243–248. https://doi.org/10.1109/IC-NC.2010.39

[40] Panruo Wu and Zizhong Chen. 2014. FT-ScaLAPACK: Correcting soft errors on-
line for ScaLAPACK Cholesky, QR, and LU factorization routines. In Proceedings
of the 23rd international symposium on High-performance parallel and distributed
computing. ACM, 49–60.

[41] Qiumin Xu and Murali Annavaram. 2014. PATS: pattern aware scheduling and
power gating for GPGPUs. In Parallel Architecture and Compilation Techniques
(PACT), 2014 23rd International Conference on. IEEE, 225–236.

[42] Yazhou Zu, Charles R Lefurgy, Jingwen Leng, Matthew Halpern, Michael S Floyd,
and Vijay Janapa Reddi. [n. d.]. Adaptive guardband scheduling to improve
system-level efficiency of the POWER7+. In Proceedings of the 48th International
Symposium on Microarchitecture. ACM, 308–321.

318

http://dl.acm.org/citation.cfm?id=2388996.2389102
http://dx.doi.org/10.1109/ICPP.2013.98
https://doi.org/10.1016/j.parco.2018.02.001
https://doi.org/10.1145/1815961.1815998
https://doi.org/10.1145/2155620.2155622
https://doi.org/10.1145/2830772.2830811
https://doi.org/10.1145/2627369.2627605
http://www.netlib.org/blas/blast-forum/blas-report.pdf
http://www.netlib.org/blas/blast-forum/blas-report.pdf
https://devblogs.nvidia.com/inside-volta
https://doi.org/10.1145/2525526.2525852
https://doi.org/10.1016/S0895-7177(03)90138-5
https://doi.org/10.1109/TVLSI.2016.2606579
https://doi.org/10.1109/TCAD.2017.2648817
https://doi.org/10.1109/ICCKE.2018.8566456
https://doi.org/10.1109/ICCKE.2018.8566456
https://doi.org/10.1109/HLDVT.2017.8167468
https://doi.org/10.1109/IPDPS.2015.108
https://doi.org/10.1109/IC-NC.2010.39

	Abstract
	1 Introduction
	2 GPU Undervolting Model
	2.1 Fault Distribution in GPU
	2.2 GPU Fault Model

	3 GreenMM: Energy Saving Methodology
	3.1 Offline Profiling
	3.2 Offline FT-cuBLAS-MM
	3.3 Online FT-cuBLAS-MM

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance and Energy Saving Evaluation of FT-cuBLAS-MM
	4.3 Performance/Watt and Total Energy Consumption Evaluation

	5 Related Work
	6 Conclusion
	References

