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Abstract
Coverage-guided greybox fuzzing has become one of the

most common techniques for finding software bugs. Coverage
metric, which decides how a fuzzer selects new seeds, is an
essential parameter of fuzzing and can significantly affect the
results. While there are many existing works on the effective-
ness of different coverage metrics on software testing, little
is known about how different coverage metrics could actu-
ally affect the fuzzing results in practice. More importantly,
it is unclear whether there exists one coverage metric that
is superior to all the other metrics. In this paper, we report
the first systematic study on the impact of different cover-
age metrics in fuzzing. To this end, we formally define and
discuss the concept of sensitivity, which can be used to theo-
retically compare different coverage metrics. We then present
several coverage metrics with their variants. We conduct a
study on these metrics with the DARPA CGC dataset, the
LAVA-M dataset, and a set of real-world applications (a total
of 221 binaries). We find that because each fuzzing instance
has limited resources (time and computation power), (1) each
metric has its unique merit in terms of flipping certain types
of branches (thus vulnerability finding) and (2) there is no
grand slam coverage metric that defeats all the others. We
also explore combining different coverage metrics through
cross-seeding, and the result is very encouraging: this pure
fuzzing based approach can crash at least the same numbers
of binaries in the CGC dataset as a previous approach (Driller)
that combines fuzzing and concolic execution. At the same
time, our approach uses fewer computing resources.

1 Introduction

Greybox fuzzing is a state-of-the-art program testing tech-
nique that has been widely adopted by both mainstream com-
panies such as Google [45] and Adobe [47], and small star-
tups (e.g., Trail of Bits [48]). In the DARPA Cyber Grand
Challenge (CGC), greybox fuzzing has been demonstrated
to be more effective compared to other alternatives such as
symbolic execution and static analysis [8, 15, 34, 37, 39].

Greybox fuzzing generally contains three major stages:
seed scheduling, seed mutation, and seed selection. From a
set of seed inputs, the seed scheduler picks the next seed
for testing. Then, more test cases are generated based on
the scheduled seeds through mutation and crossover in the
seed mutation stage. Finally, test cases of good quality are
selected as new seeds to generate more test cases in the future
rounds of fuzzing. Among these stages, seed selection is the
most important one as it differentiates greybox fuzzing from
blackbox fuzzing and determines the goal of the fuzzer. For
example, when the goal is to improve coverage, we use a
coverage metric to evaluate the quality of a test case, and
when the goal is to reach a particular code point, we can use
distance to evaluate the quality of a test case [2]. Note that
although previous studies [14, 17] have shown that better
coverage of test suite is not directly related to a better quality
of the tested software, the observation that under-tested code is
more likely to have bugs still holds. For this reason, coverage-
guided greybox fuzzing still works very well in practice.

Although various techniques have been proposed to im-
prove greybox fuzzing at the seed scheduling stage [2, 3, 27,
29] and the seed mutation stage [21, 28, 29, 37, 54], very few
efforts focus on improving seed selection. HonggFuzz [40]
only counts the number of basic blocks visited. AFL [38]
utilizes an improved branch coverage that also counts how
many times a branch is visited. Angora [7] further extends the
branch coverage to be context-sensitive. More importantly,
many critical questions about coverage metrics remain unan-
swered.

First, how do we uniformly define the differences among dif-
ferent coverage metrics? Coverage metrics can be categorized
into two major categories: code coverage and data coverage.
Code coverage metrics evaluate the uniqueness among test
cases at the code level, such as line coverage, basic block
coverage, branch/edge coverage, and path coverage. Data cov-
erage metrics, on the other hand, try to distinguish test cases
from a data accessing perspective, such as memory addresses,
access type (read or write), and access sequences. While many
new metrics have been proposed individually in recent works,



there is no systematic and uniform way to characterize the
differences among them. Apparently, different coverage met-
rics have very distinct capability of differentiating test cases,
which we refer to as sensitivity. For example, block coverage
could not tell the difference between visits to the same basic
block from different preceding blocks, while branch coverage
can. Therefore, branch coverage is more sensitive than block
coverage. A systematic and formal definition of sensitivity
is essential as it can not only tell the differences among cur-
rent metrics but also guide future research to propose more
metrics.

Second, is there an optimal coverage metric that outper-
forms all the others in coverage-guided fuzzing? Although
sensitivity provides us a way to compare the capability of
two coverage metrics in discovering interesting inputs, a
more sensitive coverage metric does not always lead to better
fuzzing performance. More specifically, fuzzing can be mod-
eled as a multi-armed bandit (MAB) problem [51] where each
stage (seed selection, scheduling, and mutation) has multiple
choices, and the ultimate goal is to find more bugs with a lim-
ited time budget. A more sensitive coverage metric may select
more inputs as seeds, but the fuzzer may not have enough time
budget to schedule all the seeds or mutate them sufficiently.
Implementation details such as how coverage is actually mea-
sured can further complicate this problem. For instance, a
previous study [12] has shown that hash collisions could re-
duce the actual sensitivity of a coverage metric. A systematic
evaluation is essential to understand the relationship between
sensitivity and fuzzing performance better.

Third, is it a good idea to combine different metrics during
fuzzing? Hypothetically, if different coverage metrics have
their own merits during fuzzing, then it would make sense to
combine them so that different metrics could contribute dif-
ferently. This question is also crucial as it motivates different
thinking and may lead to strategies for improving fuzzing.

To answer the questions mentioned above, we conduct the
first systematic study on the impact of coverage metrics on
the performance of coverage-guided fuzzing. In particular,
we formally define and discuss the concept of sensitivity to
distinguish different coverage metrics. Based on the different
levels of sensitivity, we then present several representative
coverage metrics, namely “basic branch coverage,” “context-
sensitive branch coverage,” “n-gram branch coverage,” and
“memory-access-aware branch coverage,” as well as their vari-
ants. Finally, we implement six coverage metrics in a widely-
used greybox fuzzing tool, AFL [38], and evaluate them with
large datasets, including the DARPA CGC dataset [4], the
LAVA-M dataset [42], and a set of real-world binaries. The
highlighted findings are:

• Many of these more sensitive coverage metrics indeed
lead to finding more bugs as well as finding them signifi-
cantly faster.
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Figure 1: The workflow of coverage-guided greybox fuzzing.

• Different coverage metrics often result in finding dif-
ferent sets of bugs. Moreover, at different times of the
whole fuzzing process, the best performer may vary. As
a result, there is no grand slam coverage metric that can
beat others.

• A combination of these different metrics can help find
more bugs and find them faster. Notably, using less com-
puting resources, a combination of fuzzers with different
coverage metrics is able to find at least the same amount
of bugs in the CGC dataset as Driller, a hybrid fuzzer
augmented AFL with concolic execution did [35].

To facilitate further research on this topic, we have made
the source code and dataset available at https://github.
com/bitsecurerlab/afl-sensitive.

2 Background

In this section, we provide the background information about
coverage-guided greybox fuzzing, with a focus on the seed
selection.

2.1 Coverage-guided Greybox Fuzzing
Coverage-guided greybox fuzzing generates inputs (or test
cases) incrementally via a feedback loop. Specifically, there
are three main stages, as illustrated in Figure 1. (1) Seed
scheduling: a seed is picked from a set of seeds according
to the scheduling criteria. (2) Seed mutation: within a lim-
ited time budget, new test cases are generated by performing
various mutations on the scheduled seed. (3) Seed selection:
each generated test case is fed to the program under test and
evaluated based on the coverage metric; if the testcase leads
to new coverage, it will be selected as a new seed. As this
feedback loop continues, more coverage will be reached, and
hopefully, a test case will trigger a bug.

2.2 Seed Selection
A seed selection strategy determines the trend and speed of
the evolution of the fuzzing process. Essentially, a good seed
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selection strategy needs to solve two essential problems: (1)
how to collect coverage information and (2) how to measure
the quality of test cases.

Coverage Information Collection. AFL instruments the pro-
gram under test to collect and compute the coverage. There
are two instrumentation approaches. When the source code
of the program under test is available, a modified Clang com-
piler is used to insert the coverage calculation logic into the
compiled executable at assembly level (normal mode) or in-
termediate representation level (fast mode). When the source
code is not available, a modified user-mode QEMU is used
to run the binary code of the tested program directly, and the
coverage calculation logic is inserted during the binary trans-
lation phase. VUzzer [29] uses PIN [41] to perform binary
instrumentation to collect the information. HonggFuzz [40]
and kAFL [31] use hardware branch tracers like Intel Process
Tracing (PT) to collect coverage information and DigTool [25]
uses a hypervisor to collect coverage information from OS
kernels.

Test Case Measurement. The quality of test cases is mea-
sured by leveraging coverage metrics. HonggFuzz [40] and
Vuzzer [29] use basic block coverage metric that tracks visits
of basic blocks. AFL [38] uses an improved branch coverage
metric that could differentiate the visits to the same block
from different preceding blocks. LibFuzzer [43] can use ei-
ther block coverage or branch coverage. A more recent work
Angora [7] extends the branch coverage metric with a calling
context. Another important aspect is how the metric is really
measured. Since coverage is measured during the execution
of each test case, fuzzers usually prefer simpler implementa-
tions to improve the fuzzing throughput. For example, AFL
identifies a branch using a simple hash function (Equation 1).
Unfortunately, this approximation could reduce the effective
sensitivity of a coverage metric due to hash collisions [12].

3 Sensitivity and Coverage Metrics

In this section, we formally define and discuss the concept of
the sensitivity of a coverage metric. Accordingly, we present
several coverage metrics that have different sensitivities.

3.1 Formal Definition of Sensitivity
When comparing different coverage metrics, a central ques-
tion is “is metric A better than metric B?” To answer this ques-
tion, we need to take a look at how a mutation-based greybox
fuzzer finds a bug. In mutation-based greybox fuzzing, a bug
triggering test case is reached via a chain of mutated test cases.
In this process, if an intermediate test case is deemed “unin-
teresting” by a coverage metric, the chain will break and the
bug triggering input may not be reached. Based on this obser-
vation, we decide to define sensitivity as a coverage metric’s
ability to preserve such mutation chains.

To formally describe this concept, we first need to define
a coverage metric as a function C : (P × I)→M, which
produces a measurement M ∈M when running a program
P ∈ P with an input I ∈ I . Given two coverage metrics Ci
and C j, Ci is “more sensitive” than C j, denoted as Ci �C j, if

(1) ∀P ∈ P , ∀I1, I2 ∈ I , Ci(P, I1) = Ci(P, I2)→ C j(P, I1) =
C j(P, I2), and

(2) ∃P ∈ P , ∃I1, I2 ∈ I , C j(P, I1) = C j(P, I2)∧Ci(P, I1) 6=
Ci(P, I2)

The first condition means, for any program P, if any two
inputs I1 and I2 produce the same coverage measurement
using Ci; then they must produce the same measurement using
C j, i.e., C j is always not more discriminative than Ci. The
second condition means, there exists at least a program P such
that two inputs I1 and I2 would produce the same measurement
using C j but different measurements using Ci, i.e., Ci can be
more discriminative than C j.

3.2 Coverage Metrics

In this subsection, we introduce several coverage metrics and
their approximated measurement. Then we compare their
sensitivity.

Branch Coverage Branch coverage is a straightforward yet
effective enhancement over block coverage, which is the most
basic one that can only tell which code block is visited. By
involving the code block preceding the currently visited one,
branch coverage can differentiate the visits of the same code
block from different predecessors. Branch here means an edge
from one code block to another one.

Ideally, branch coverage should be measured as a tuple
(prev_block, cur_block), where prev_block and cur_block
stand for the previous block ID and the current block ID,
respectively. In practice, branch coverage is usually mea-
sured by hashing this tuple (as key) into a hash table (e.g., a
hit_count map). For example, the state-of-the-art fuzzing
tool AFL identifies a branch as:

block_trans = (prev_block << 1) ⊕ cur_block (1)

where branch ID is calculated as its runtime address. The
block_trans is then used as the key to index into a hash map to
access the hit_count of the branch, which records how many
times the branch has been taken. After a test case finishes
its execution, its coverage information is compared with the
global coverage information (i.e., a global hit_count map).
If the current test case has new coverage, it will be selected
as a new seed.

Although branch coverage is widely used in mainstream
fuzzers, its sensitivity is low. For instance, considering a



branch within a function that is frequently called by the pro-
gram (e.g., strcmp). When the branch is visited under dif-
ferent calling contexts, branch coverage will not be able to
distinguish them.

N-Gram Branch Coverage After incorporating one preced-
ing block in branch coverage, it is intuitive to incorporate
more preceding basic blocks as history into the current basic
block. We refer to this coverage metric as n-gram branch
coverage, where n is a configurable parameter that indicates
how many continuous branches are considered as one unit,
and any changes of them will be distinguished. When n = 0,
n-gram branch coverage is reduced to block coverage. On the
opposite extreme, when n→ ∞, n-gram branch coverage is
equivalent to path coverage because it incorporates all preced-
ing branches into the context and any change in the execution
path will be treated differently.

Ideally, n-gram branch coverage should be measured as
a tuple (block1, . . . ,blockn+1). For efficiency, we propose
to hash the tuple as a key into the hit_count map as
(prev_block_trans << 1) ⊕ curr_block_trans, where

prev_block_trans = (block_trans1⊕·· ·⊕block_transn−1)
(2)

In other words, we record the previous n−1 block transi-
tions (calculated as in Equation 1) and XOR them together,
left shift 1 bit, and then XOR with the current block transition.

Now an interesting question is: what is the best value for
n? If n is too small, it might be almost the same as branch
coverage. If n is too large, it may cause seed explosion (a
similar phenomenon as path explosion). Fuzzing progress
would be even slower due to the enormous amount of seeds.

To answer this question empirically, we adapt AFLFast to
n-gram branch coverage where n is set to 2, 4, and 8. We will
evaluate these settings in §4.

Context-Sensitive Branch Coverage A function lies be-
tween a basic block and a path with respect to the granularity
of code. Therefore, calling context is another important piece
of information that can be incorporated as part of the coverage
metric, which allows a fuzzer to distinguish the same code
executed with different data. We refer to this coverage metrics
as “context-sensitive coverage metric.”

Ideally, context-sensitive branch coverage metric should
be measured as a tuple (call_stack, prev_block, curr_block).
For efficiency, we define a calling context call_ctx as a se-
quence of program locations where function calls are made
in order:

call_ctx =


0 initial value
call_ctx⊕ call_next_insn if call
call_ctx⊕ ret_to_insn if ret

(3)

Then the key-value pair stored in the bitmap will be now
calculated as call_ctx⊕block_trans.

Initially, the calling context value call_ctx is set to 0. Then
during the program execution, when encountering a call in-
struction, we XOR the current call_ctx with the instruction’s
position immediately next to the call instruction and store the
result in call_ctx. Similarly, when encountering a ret instruc-
tion, we XOR the current call_ctx with the return address.
In this way, a small value call_ctx efficiently accumulates
function calls made in sequence and eliminates function calls
that have returned.

Memory-Access-Aware Branch Coverage In addition to
leveraging extra control flow information as stated above, data
flow information also deserves to be considered. Based on the
intuition that a primary focus of fuzzing is to detect memory-
corruption vulnerabilities, memory access information can be
of great help in measuring coverage. Fundamentally, memory
corruption exhibits an erroneous memory access behavior.
Therefore, it makes sense to select seeds that exhibit distinct
memory access patterns.

In general, this memory-access aware coverage metric is
more sensitive than branch coverage. Because if a new test
case reaches a branch that has been covered by prior test cases,
but at least one new memory location is accessed, this test
case will still be considered as “interesting” in memory-access
aware coverage metric and kept as a seed.

There can be many ways to characterize memory ac-
cess patterns. In this paper, we investigate one design op-
tion. We instrument memory access operations of the pro-
gram under test, and define each memory access as a tuple
(type, addr, block_trans), where type represents access type
(read or write), addr is the accessed memory location, and
block_trans means after which branch this memory access is
performed.

For efficiency, we propose to calculate the hash key as
(block_trans ⊕ mem_ac_ptn), where

mem_ac_ptn =

{
mem_addr if read
mem_addr+hal f _map_size if write

(4)
Note that reads are distinguished from writes by allocating
their keys to different half regions of the map.

Since memory corruption is mainly caused by memory
writes, it is meaningful to investigate a variant of memory ac-
cess coverage: “memory-write-aware branch coverage.” That
is, we only instrument and record memory writes, but not
reads, making it less sensitive.

3.3 Sensitivity Lattice

Obviously,� is a strict partial order, because it is asymmetric
(if C1 � C2, by no means C2 � C1), transitive (if C1 � C2
and C2 � C3, then C1 � C3), and irreflexive (Ci � Ci is not
possible). However, it is not a total order, because it is possible
that two metrics are not comparable.
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Figure 2: Sensitivity Lattice for Coverage Metrics

As a result, we can draw a sensitivity lattice for the cov-
erage metrics discussed above. Figure 2 shows this lattice.
Block coverage is the least sensitive metric, compared to the
rest, so it appears on the top. Immediately below is branch cov-
erage. It is more sensitive than block coverage. Then below
branch coverage are the three coverage metrics that incorpo-
rate different extra information on top of branches.

However, there is no direct comparison among these three
coverage metrics, because each of them extends branch cov-
erage in different dimensions: context-sensitive branch cover-
age incorporates calling context, n-gram branch coverage in-
tegrates n-1 preceding block transitions, and memory-access-
aware branch coverage includes memory accesses. We can
always construct a program and two inputs, such that the same
coverage measurement is produced for one metric, but two
different coverage measurements are produced for another.

For different values of n in n-gram branch coverage, i-gram
is more sensitive than j-gram if i > j. Ultimately, path cov-
erage is more sensitive than n-gram branch coverage and
context-sensitive branch coverage.

Interestingly enough, we cannot compare path cover-
age with either memory-access-aware branch coverage or
memory-write-aware branch coverage. Path coverage is not
necessarily more sensitive because two inputs may follow the
same path but exhibit different memory access patterns.

It is noteworthy that the coverage metrics presented here
are a few representative ones but are by no means complete.
We hope this work can stimulate research on developing more
coverage metrics and obtaining a deeper understanding of
their impact.

4 Evaluation

To answer the research questions raised in §1, we imple-
mented all the coverage metrics mentioned in §3 except the
basic branch coverage, which is already implemented in AFL.
We then conducted comprehensive experiments to evaluate
the performance of different coverage metrics. Moreover, to
better understand how different coverage metrics working to-
gether could affect fuzzing; we also evaluate the combination
of them.

Table 1: real-world applications used in evaluation.

Applications Version Applications Version

objdump+binutils 2.29 readelf+binutils 2.29
strings+binutils 2.29 nm+binutils 2.29
size+binutils 2.29 file 5.32
gzip 1.8 tiffset+tiff 4.0.9
tiff2pdf+tiff 4.0.9 gif2png 2.5.11
info2cap+ncurses 6.0 jhead 3.0

4.1 Implementation
In this study, since our primary goal is to fuzz binaries without
source code, we choose to add our instrumentation based on
user-mode QEMU. For instance, for context-sensitive branch
coverage, we instrument call and ret instructions to cal-
culate calling context, and for memory-access-aware branch
coverage, we instrument memory reads and writes. For n-
gram branch coverage, we use a circular buffer to store the
last n-block transitions, for efficient n-gram calculation.

For convenience, in the remainder of this paper, we use
the following abbreviations to represent different metrics: bc
represents the existing branch coverage in AFL, ct represents
context-sensitive branch coverage, mw is short for memory-
write-aware branch coverage, and ma represents memory-
access-aware branch coverage. For n-gram branch coverage,
we choose to implement three versions: 2-gram, 4-gram and
8-gram, and use n2, n4, and n8 for their abbreviations.

Furthermore, we adopted the seed scheduling of
AFLFast [3] in our implementation. Since AFLFast inclines
to allocate more fuzzing time on newly generated seeds,
different coverage metrics will make a greater impact on
fuzzing performance.

4.2 Dataset
We collect binaries from DARPA Cyber Grand Challenge
(CGC) [4]. There are 131 binaries from CGC Qualifying
Event (CQE) and 74 binaries from CGC Final Event (CFE),
and thus 205 ones in total. These binaries are carefully crafted
by security experts to utilize different kinds of techniques
(e.g., complex I/O protocols and input checksums) and embed
vulnerabilities in various ways (e.g., buffer overflow, inte-
ger overflow, and use-after-free) to comprehensively evaluate
various vulnerability discovery techniques.

We also choose the LAVA-M Dataset [11, 42], which con-
sists of four GNU coreutils programs (base64, md5sum, uniq,
and who) for evaluation. Each of these binaries is injected with
a large number of specific vulnerabilities. As a result, we treat
these injected vulnerabilities as ground truth and use them to
evaluate different coverage metrics.

In addition to the two datasets above, we also manage to
collect 12 real-world applications with their latest versions
(Table 1) and assess the performance of different coverage
metrics in practice with them.



4.3 Experiment Setup
Our experiments are conducted on a private cluster consisting
of a pool of virtual machines. Each virtual machine has a
Ubuntu 14.04.1 operating system equipped with 2.3 GHz Intel
Xeon processor (24 cores) and 30GB of RAM. As fuzzing is a
random process, we followed the recommendations from [20]
and performed each evaluation several times for a sufficiently
long period.

The tests are mainly focused on the CGC dataset. Specifi-
cally, each coverage metric is tested with every binary of the
CGC dataset in the dataset using two fuzzing instances for
6 hours (i.e., similar to one instance running 12 hours). We
chose this fuzzing time because almost all of the bugs found
by fuzzer in CQE and CFE were reported within the first six
hours. Moreover, in order to take the randomness of fuzzing
into account, each test is performed ten times. The total evalu-
ation time is around 60 days. For binaries with initial sample
inputs, we utilized them as initial seeds; otherwise, we used
an empty seed.

For the LAVA-M dataset, we tested each coverage metric
separately for 24 hours and three times. We used the seed
inputs provided by this benchmark and dictionaries of con-
stants extracted from the binary as suggested in [44]. For
the real-world dataset, we tested each coverage metric for 48
hours, with two fuzzing instances, and for six times. We used
the example inputs from AFL as seeds whenever possible;
otherwise with an empty seed.

4.4 Evaluation Metrics
To answer the question of whether there is an optimal cover-
age metric, we propose three metrics to quantify the experi-
mental results and evaluate the performance of the presented
coverage metrics:

• Unique crashes. A unique crash during fuzzing implies
that a potential bug of the binary has been found. For the
CGC dataset, each binary is designed to have a single
vulnerability, so we did not perform any crash dedupli-
cation. For the LAVA-M dataset, each bug is assigned
with a unique ID which is used for crash deduplication.
For the real-world dataset, we utilize the hash of each
crash’s backtrace for deduplication.

• Time to crash. This metric indicates how fast a given
binary can be crashed by a fuzzer and is mainly for
the CGC dataset. Because a CGC binary only has one
vulnerability, this metric can be used to measure the
efficiency of fuzzing with different coverage metrics.

• Seed count. A more sensitive coverage metric is more
likely to convert a testcase into a seed, and thus the
number of unique seeds may be larger. Therefore, this
metric quantifies the sensitivity of each coverage metric
in a practical sense.
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Figure 3: Number of crashed CGC binaries. Because each
binary only has on vulnerability, this number is equivalent to
the total number of unique crashes.

4.5 Comparison of Unique Crashes

CGC dataset Figure 3 summarizes the number of crashed
CGC binaries for each coverage metric across ten rounds
of trials. Overall, the baseline metric bc crashed about 89
binaries on average and 91 binaries at most. Except for ma
and mw, all other more sensitive coverage metrics (ct, n2,
n4, n8) outperform bc. This result is encouraging: sensitivity
does play an important role in finding crashes. However, as
demonstrated by mw and ma, too much sensitivity could also
have a negative impact on fuzzing performance. The reason
is, more sensitive metrics will select more test cases as seeds
(§4.7); when the time budget is limited, each seed will get
less time to mutate or not get scheduled at all.

Next, we investigated each coverage metric’s ability to
trigger individual bug/crash – is there any bug that is only
triggered by one or a subset of the evaluated metrics but not
the rest? To answer this question, we conducted a pairwise
comparison on crashed binaries (Table 2). For each pair of
coverage metrics i (in the row) and j (in the column), we
first count the number of binaries that were only crashed by i
but not by j, denoted as the number after the “/”. Since such

Table 2: Pairwise comparisons (row vs. column) of uniquely
crashed CGC binaries.

bc ct ma mw n2 n4 n8 others

bc 0/0 0/6 0/15 0/11 0/6 0/6 0/5 0/2
ct 9/13 0/0 9/23 10/15 6/12 3/6 4/8 1/3
ma 2/3 3/4 0/0 2/3 4/6 4/5 2/3 1/1
mw 6/8 2/5 0/12 0/0 3/8 2/7 3/5 0/2
n2 4/4 0/3 7/16 4/9 0/0 0/2 0/2 0/0
n4 9/12 3/5 12/23 8/16 8/10 0/0 0/5 0/1
n8 9/10 6/6 13/20 10/13 7/9 2/4 0/0 0/0
all 19/21 10/14 20/33 19/24 18/23 11/15 9/16 110



Table 3: Number of unique bugs found by different coverage
metrics on the LAVA-M dataset

bc ct ma mw n2 n4 n8 Listed

base64 45 45 44 45 45 45 45 44
md5sum 54 58 35 43 59 58 51 57
uniq 29 29 29 20 29 29 29 28
who 261 255 301 231 166 159 299 2136

differences could be caused by randomness, we conducted
a second experiment focusing on the impact of sensitivity.
Specifically, during fuzzing, we recorded the chain of seeds
that led to each crashing test case. Each chain starts with the
initial seed and ends with the crashing test case. Afterward, for
each pair of coverage metrics (i, j), we checked whether each
seed along the chain selected by i would also be selected by j
as seed, without any additional mutation (i.e., fuzzing). In this
process, we also discarded additional sensitivity (non-binary
hit_count) and insensitivity (key collision) introduced in
implementation. The result is denoted as the number before
the “/” in each cell of Table 2. For example, entry (ct, bc)
indicates that there were 13 binaries crashed by ct but not
by bc, within which 9 crashes have at least one seed along
the crashing chains that will be dropped by bc. Similarly,
entry (bc, ct) indicates that 6 binaries crashed by bc are not
crashed by ct, of which however none of the seeds along the
crashing chain will be dropped by ct. Besides, for a metric k,
entry (all, k) indicates the number of binaries crashed by at
least one of the other coverage metrics but not by k and entry
(k, others) indicates the number of binaries only crashed by
k but not by any other coverage metrics. Finally, entry (all,
others) indicates the number of binaries crashed by at least
one of all the seven coverage metrics.

We can see that the difference between any two coverage
metrics is considerable. More importantly, there is no sin-
gle winner that beats everyone else. Even for ma, although it
crashes the smallest amount of binaries in total, it contributes
2 unique crashed binaries beyond bc, and 3, 2, 4, 4, and 2
unique crashed binaries beyond ct, mw, n2, n4, and n8 respec-
tively, of which the crashes have at least one seed along the
crashing chains that will be dropped by the other metric. In
other words, every coverage metric can make its own and
unique contribution. This observation further motivates us to
study the combination of different coverage metrics. We will
discuss more in §4.8.

LAVA-M dataset Table 3 summarizes the bugs found on
LAVA-M dataset by different coverage metrics, while the
last column represents the number of bugs listed by LAVA
authors. Compare to the CGC dataset, the LAVA-M dataset is
not very suitable for our goal. In particular, most injected bugs
are protected by a magic number, which is very hard to be
solved by random mutation and cannot reflect unique abilities
of different coverage metrics. Although we have followed
the suggestions from [44] and used dictionaries of constant

Table 4: Number of unique crashes found by different cover-
age metrics in the real-world dataset.

bc ct ma mw n2 n4 n8

gif2png 4 4 3 4 5 4 4
info2cap 1446 1063 481 99 568 933 943
objdump – – – – 1 1 –
size – 1 – – 1 1 1
nm – 1 – 1 – – 1

(magic) numbers extracted from the binary, we still cannot
rule out the differences caused by not being able to solve
the magic number. For binary base64, md5sum, and uniq,
the difference between different coverage metrics is small,
except for ma in md5sum and mw in uniq. For binary who, it
is surprising that in addition to n8, ma also finds much more
unique bugs than bc and other three metrics, despite its poor
performance on the CGC dataset.

Real-world dataset There are many crashes found for bina-
ries in the real-world dataset. We use the open-source tool
afl-collect [49] to de-duplicate these crashes and identify
unique crashes. Overall, we have successfully found unique
bugs in 5 real-world binaries as listed in Table 4. It is worth
noting that for binary objdump, size, and nm, only our newly
proposed coverage metrics find unique bugs.

4.6 Comparison of Time to Crash

CGC dataset Since most CGC binaries only contain one bug,
we then measure the time to first crash (TFC) for different
coverage metrics across the ten rounds of trials. The accumu-
lated number within a 95% confidence of binaries crashed
over time is shown in Figure 4. The x-axis presents time in
seconds while the y-axis shows the accumulated number of
binaries crashed. For example, we can see that n4 almost
manages to crash more binaries than other coverage metrics
in the first hour (3600 seconds) and ma performs the worst
among them. We also see that all of the proposed coverage
metrics other than ma and mw can help find crashes in binaries
more quickly than the original AFL (bc). Moreover, although
n4 does not find the most crashes, it is the best one during
the early stage (30 to 90 minutes). After 90 minutes, ct sur-
passes it and becomes one of the best performers. For the time
each coverage metric spends on crashing individual binaries,
please refer to Figure 11 in Appendix.

LAVA-M dataset Figure 5 presents the number of unique
bugs found over time by different coverage metrics on the
four binaries. We can see that the newly proposed coverage
metrics outperform bc on all four binaries. Although ma is
slower than others, it finally finds the same number of unique
bugs on binary base64 and unique. On binary who, ma even
finds quite more unique bugs. Moreover, ct and n8 perform
stably well across four binaries, and the latter one performs
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Figure 4: Number of binaries crashed over time during fuzzing
on the CGC dataset. The x-axis presents in seconds and the
y-axis shows the number of binaries whose TFC (time-to-first-
crash) were within that time.

extremely well on binary who: it finds the largest number of
unique bugs and much faster than the rest.

Real-world dataset Similarly, Figure 6 shows the number of
unique bugs over time found by different coverage metrics on
the five crashed binaries in the real-world dataset. We can see
that except for info2cap, bc either finds unique bugs much
more slowly than others or does not find any bugs at all. In
addition, there is no global trend about which coverage metric
is the fastest one to find bugs across the five binaries.

4.7 Comparison of Seed Count

CGC dataset We collect the number of seeds selected for
each binary using different coverage metrics and report the
mean number within a 95% confidence among the ten runs.
Figure 7 displays the cumulative distribution of the numbers
of generated seeds. A curve closer to the top left in the figure
implies that in general fewer seeds are generated for binaries
with the corresponding coverage metric.

We had several observations from the result. First, ma was
significantly more sensitive than the rest coverage metrics.
It selects several orders of magnitude more seeds than the
others. While most of these seeds are stepping stones for
more meaningful mutations that lead to final crashes, too
many of them would hurt the fuzzing performance because
the differences among most of the seeds are so tiny that they
are unlikely to result in any new bug. Second, for n-gram
branch coverage, as n increases from 1 (bc) to 8, the number
of seeds increases correspondingly, although the lines for
bc and n2 are too close to each other. This phenomenon
meets our expectation, as n8� n4� n2� bc. Third, while in
theory, we cannot compare ct with n-gram regarding their
sensitivities, we observe that the seed count distribution for
ct is between n4 and n8, at least for the CGC dataset. Fourth,

in theory, ma� mw� bc. We indeed observe these relations
in the form of seed counts for ma, mw, and bc.

Table 5: The numbers of seeds generated by different coverage
metrics on the LAVA-M dataset.

bc ct ma mw n2 n4 n8

base64 208 170 16372 200 196 273 425
md5sum 706 497 75323 71131 474 719 4958
uniq 104 52 43928 50178 77 92 153
who 223 144 14183 16511 190 271 470

LAVA-M dataset Table 5 lists seed counts generated by each
coverage metric on the four binaries in the LAVA-M dataset.
We can see that the observations for the CGC dataset still
hold in general, with some outliers. For instance, the seed
counts of ct on all four binaries are smaller than those of bc.
These numbers are not statistically significant, given such a
small-scale dataset.

Table 6: The numbers of seeds generated by different coverage
metrics on the real-world dataset.

bc ct ma mw n2 n4 n8

file 38 38 38 19462 38 38 38
gif2png 1039 2037 151008 29606 804 1665 3840
gzip 1305 1340 124253 65035 1002 1875 5446
info2cap 4966 12555 76048 30136 4802 8831 17104
objdump 6015 42625 49401 126578 4978 8756 22914
readelf 8461 15317 91982 63009 8758 15425 35429
strings 61 62 1619 59 69 68 131
tiff2pdf 834 883 143902 2841 724 1108 2395
tiffset 2 2 2 2 2 2 2
size 2117 4860 111978 143693 1605 3003 10278
nm 12566 49307 133460 73386 5947 10174 23322
jhead 384 284 75328 29229 362 576 1376

Real-world dataset Table 6 lists seed counts generated
by each coverage metric on the 12 real-world binaries. We
can draw similar observations as on the CGC and LAVA-M
datasets with some exceptions: the seed count distribution for
ct is no longer between n4 and n8 in general.

4.8 Combination of Coverage Metrics

From the evaluation results above, we observe that each
coverage metric has its unique characteristics in terms of
crashes found and crashing times. This observation leads us
to wonder whether combining fuzzers with different cover-
age metrics together would find more crashes and find them
faster. To answer this question, we consider two options for
combination: (1) fuzzers with different coverage metrics are
running in parallel and synchronizing seeds across all metrics
periodically (i.e., cross-seeding); and (2) fuzzers with differ-
ent coverage metrics are running in parallel but independently,
as the baseline to show whether cross-seeding really helps.
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Figure 5: Number of unique bugs found over time during fuzzing on the LAVA-M dataset.
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Figure 6: Number of unique crashes found over time on real-world dataset. The x-axis presents TFC in 1000 seconds.

0 2000 4000 6000 8000 10000 12000
number of seeds

25

50

75

100

125

150

175

200

nu
m

be
r o

f b
in

ar
ie

s

bc
ct
ma
mw
n2
n4
n8

Figure 7: Partial CDFs of seeds generated by different cover-
age metrics on the CGC dataset. A curve closer to the top left
indicates fewer generated seeds.

To study these two options, we create three configurations
of 14 fuzzing instances: (a) all 14 fuzzing instances with bc
and seed synchronization; (b) 2 fuzzing instances for each of
the 7 different coverage metrics with seed synchronization
only within the same metric; and (c) 2 fuzzers for each of the
7 different coverage metrics with seed synchronization across
all metrics (i.e., cross-seeding).

CGC dataset We run the three configurations each for six
hours, and for three times to get median results on the CGC
dataset. Figure 8 illustrates the number of binaries crashed
over time for the three configurations. We can make the fol-
lowing observations. First, both combination options outper-
form the baseline by large margins, with respect to both the
number of crashed binaries and crash times. The combination
without cross-seeding (configuration b) crashes 78 CQE bina-

ries, 31 CFE binaries, and 109 binaries in total. The one with
cross-seeding (configuration c) crashes 77 CQE binaries, 33
CFE binaries, and 110 in total. Meanwhile, the baseline only
crashes 64 CQE binaries, 30 CFE binaries, and 94 in total. It
is a notable achievement: the hybrid fuzzer Driller [35] was
able to crash 77 CQE binaries after 24 hours with the help
of concolic execution, where each binary is assigned to four
fuzzing instances and all binaries share a pool of 64 CPU
cores for concolic execution, using totally 12,640 CPU hours
(131 binaries× 4 cores× 24 hours+ 60 cores× 24 hours).
Compared with Driller, we can achieve the same or even
better results by pure fuzzing with less computing resources
(131 binaries×14 cores×6 hours = 11,004 CPU hours to-
tally)!

Second, the blue line and the red line cross at around 3
hours. At this cross point, 105 binaries have been crashed
for both configurations. It implies that the combination with
cross-seeding is able to crash 105 binaries much earlier than
the one without cross-seeding.

LAVA-M and real-world datasets We also run the three
configurations each for 24 hours on LAVA-M dataset, and
each for 48 hours on the real-world dataset. Figure 9 and Fig-
ure 10 present the results. We observed that the combination
without cross-seeding always outperforms the baseline (14
fuzzers with bc only) by large margins. On the other hand, the
combination with cross-seeding has inconsistent performance
across these nine binaries. In some cases, it is even worse
than the baseline. Unlike the result for the CGC dataset, this
result is not statistically significant. However, it does indicate
that sometimes, the overhead of cross-seeding may outweigh
its benefits. Xu et al. [52] have shown that cross-seeding over-
head is significant in parallel fuzzing and propose OS-level
modifications for improving fuzzing performance. It would
be interesting to re-evaluate the performance of the combi-
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Figure 8: Number of binaries crashed during fuzzing tests by
combining different coverage metrics on the CGC dataset.

nation with cross-seeding with these OS-level modifications.
We leave it as future work.

In summary, it is better to combine different coverage met-
rics with or without cross-seeding, which can help find more
bugs and find them faster.

5 Discussion and Future Work

In this section, we discuss several areas that can be potentially
improved and explored in future work.

Precision and collision of coverage calculation For our
presented coverage metrics, we adopt straightforward formu-
las for computing key-value pairs in the hit_count map,
for the sake of efficiency, but at the cost of precision. For
instance, Equation 3 uses a simple XOR for computing the
calling context. As a result, it cannot differentiate a function
being called twice from a function just returned. Similarly,
Equation 2 XOR’s previous n−1 block transitions together
to compute n-gram branch coverage. This computation omits
the exact order among these n−1 block transitions, and thus
loses precision. A related problem is hash collisions [12]. Sim-
ple formulas presented in this paper may end up computing
the same key from two sets of different input values. Better
formulas that improve precision and reduce collisions deserve
more investigation. Note that although [12] has proposed a
greedy algorithm to reduce collision, the proposed method
only works for branch coverage and cannot be easily applied
to other coverage metrics.

Application-aware coverage metric selection and re-
source allocation In Figure 2, we can see the presented
coverage metrics are not in a total order in terms of sensitiv-
ity. This means different coverage metrics have either unique
strength in breaking through a specific pattern of code like
loops. From the evaluation results presented in §4, we also
observe that (1) there is no “grand slam” metric that beats all

other metrics; and (2) even for metrics whose sensitivities are
in total order (e.g., bc, n2, n4, n8), the most sensitive on
is not always better. In this paper, we explored a simple com-
bination of them and allocated computing resources equally
among them. Because fuzzing can be modeled as a multi-
armed bandit (MAB) problem [51] that aims to find more
bugs with a limited time budget, previous work has shown
how to improve the performance of fuzzing through adaptive
mutation ratio [6]. Similarly, it might be possible to conduct
static or dynamic analysis on each tested program to deter-
mine which coverage metric is more suitable. This decision
may also change over time, so a resource allocation scheme
might be useful to allocate computing resources among dif-
ferent coverage metrics dynamically.

6 Related Work

In §2 we have highlighted some related work on greybox
fuzzing. In this section, we briefly discuss some additional
work related to fuzzing.

Fuzzing was first introduced to test the reliability of UNIX
utilities [22] in a blackbox way. Since then blackbox fuzzing
has been widely used and developed that results in several
mature tools such as Peach [46] and Zzuf [50]. There are
many research works on improving it. For instance, Woo et
al. [51] evaluate more than 20 seed scheduling algorithms
using a mathematical model to find the one leading to the
greatest number of found bugs within the given time budget.
SYMFUZZ [6] optimizes the mutation ratio to maximize the
number of found bugs given a pair of program and seed via
detecting dependencies among the bit positions. Rebert et
al. [30] propose an optimal algorithm of selecting a subset
from a given set of input files as initial seed files to maximize
the number of bugs found in a fuzzing campaign. Moon-
Shine [23] develops a framework that automatically generates
seed programs for fuzzing OS kernels via collecting and dis-
tilling system call traces.

Whitebox fuzzing aims to direct the fuzz testing via rea-
soning about various properties of the programs. Mayhem [5]
involves multiple program analysis techniques, including con-
colic execution, to indicate the execution behavior for an input
to find exploitable bugs. Taintscope [37] leverages dynamic
taint analysis to identify checksum fields in input and locate
checksum handling code in programs to direct fuzzing bypass
checksum checks. BuzzFuzz [13] uses taint analysis to infer
input fields affecting sensitive points in the code, which most
often are parameters of system and library calls, and then
make the fuzzing focus on these fields. MutaGen [18] aims to
generate high-coverage test inputs via performing mutations
on an input generator’s machine code and using dynamic slic-
ing to determine which instructions to mutate. Redqueen [1]
presents another approach to solve magic bytes and check-
sum tests via inferring input-to-state correspondence based
on lightweight branch tracing. ProFuzz [53] tries to infer the
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Figure 9: Number of unique bugs found over time by combining different coverage metrics on the LAVA-M dataset.
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Figure 10: Number of unique bugs found over time by combining different coverage metrics for crashed real-world binaries.

semantic type of input bytes through the coverage information
and apply different mutation strategies according to the type.
Neuzz [32] approximates taint analysis by learning the input-
to-branch-coverage mapping using a neural network, which
can then predict what inputs bytes can lead to more coverage.
Eclipser [9] identifies input-dependent branch predicates by
checking which branches are affected when mutating an input
byte; then uses binary search to flip the branch.

It is worth mentioning that recently whitebox fuzzing
has been extensively explored in finding OS kernel and
driver bugs. CAB-Fuzz [19] optimizes concolic execution
for quickly exploring interesting paths to find bugs in COTS
OS kernels. SemFuzz [54] uses semantic bug-related infor-
mation retrieved from text reports to guide generating system
call sequences that crash Linux kernels as Proof-of-Concept
exploits. IMF [16] leverages dependence models between API
function calls inferred from API logs to generate a program
that can fuzz commodity OS kernels. DIFUZE [10] uses a
specific interface recovered from statically analyzing kernel
drive code to generate correctly-structured input for fuzzing
kernel drivers.

The combination of whitebox fuzzing and blackbox/grey-
box fuzzing results in hybrid fuzzing. Pak’s master thesis [24]
first uses symbolic execution to discover frontier nodes rep-
resenting unique paths and then launches blackbox fuzzing
to explore deeper code along the paths from these nodes.
Stephens et al. [35] develop Driller that launches selective
symbolic execution to generate new seed inputs when the grey-
box fuzzing could not make any new progress due to complex
constraints in program branches. Furthermore, Shoshitaishvili
et al. [33] extend Driller to incorporate human knowledge.
DigFuzz [56] proposes a novel Monte Carlo based probabilis-
tic model to prioritize paths for concolic execution in hybrid
fuzzing. QSYM [55] designs a fast concolic execution en-

gine that integrates symbolic execution tightly with the native
execution to support hybrid fuzzing.

In addition, Skyfire [36] proposes a novel data-driven ap-
proach to generate correct, diverse, and uncommon initial
seeds for fuzzing to start with via leveraging knowledge in-
cluding syntax features and semantic rules learned from a
large scale of existing testcase samples. Xu et al. design new
operating primitives to improve the performance of fuzzing
with shortening the execution time for an input, especially
when it runs on multiple cores in parallel [52]. T-Fuzz [26]
develops transformational fuzzing that automatically detects
and removes sanity checks making it get stuck in the target
program to improve coverage and then reproduces true bugs
in the original program via a symbolic execution-based ap-
proach.

7 Conclusion

In this paper, we conducted the first systematic study on
the impact of coverage metrics on greybox fuzzing with the
DARPA CGC dataset, the LAVA-M dataset, and real-world
binaries. To this end, we formally define the concept of sensi-
tivity when comparing two coverage metrics, and selectively
discuss several metrics that have different sensitivities. Our
study has revealed that each coverage metric leads to find
different sets of vulnerabilities, indicating there is no grand
slam that can beat others. We also showed a combination of
different metrics helps find more crashes and find them faster.
We hope our study would stimulate research on developing
more coverage metrics for greybox fuzzing.
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Figure 11: Time to first crash per binary of CGC dataset.
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