
SpecASan: Mitigating Transient Execution Attacks Using
Speculative Address Sanitization

Saber Ganjisaffar
Computer Science and Engineering

Department
University of California, Riverside

Riverside, CA, USA
sganj003@ucr.edu

Esmaeil Mohmmadian Koruyeh
Samsung Research America

Mountain View, California, USA
esmaeil.mk@samsung.com

Jason Zellmer
University of California, Riverside

Riverside, CA, USA
jzell001@ucr.edu

Hodjat Asghari Esfeden
University of California, Riverside

Riverside, California, USA
hodjat.asghari@email.ucr.edu

Chengyu Song
University of California, Riverside

Riverside, California, USA
csong@cs.ucr.edu

Nael Abu-Ghazaleh
University of California, Riverside

Riverside, California, USA
naelag@ucr.edu

Abstract
Transient execution attacks (TEAs), such as Spectre and Meltdown,
exploit speculative execution to leak sensitive data through resid-
ual microarchitectural state. Traditional defenses often incur high
performance and hardware costs by delaying speculative execu-
tion or requiring additional shadow structures and dynamic in-
formation flow tracking. In contrast, our approach models these
attacks as violations of software-defined security contracts and
enforces these contracts in hardware using existing features. We
introduce Speculative Address Sanitization (SpecASan), which lever-
ages ARM’s Memory Tagging Extension (MTE) to extend memory
safety protection from the committed path to the speculative path.
When a speculative access does not pass the MTE tag comparison,
this access is delayed until speculation resolves. This ensures that
only validated accesses affect the microarchitectural state while
preserving the performance benefits of speculation. When com-
bined with Control-Flow Integrity (CFI) enforcement mechanisms,
already supported by some hardware implementations, our eval-
uation shows that SpecASan effectively mitigates a broad class of
transient execution attacks, including Spectre and Microarchitec-
tural Data Sampling (MDS). Furthermore, SpecASan achieves this
with low performance overhead and minimal hardware complexity,
highlighting its practicality and efficiency.

Keywords
Speculative Execution Attacks, Memory Safety, Address Sanitizer.

ACM Reference Format:
Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat
Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh. 2025. SpecASan:
Mitigating Transient Execution Attacks Using Speculative Address Sanitiza-
tion. In Proceedings of the 52nd Annual International Symposium on Computer
Architecture (ISCA ’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3695053.3731119

This work is licensed under a Creative Commons Attribution 4.0 International License.
ISCA ’25, Tokyo, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1261-6/25/06
https://doi.org/10.1145/3695053.3731119

1 Introduction
Speculative execution has been an essential technique for improv-
ing the performance of processors, used in most modern high-
performance processor architectures. In recent years, speculative
execution has been demonstrated to be vulnerable to transient ex-
ecution attacks (TEAs) [22]. These attacks exploit misspeculation
to access sensitive data across permission boundaries. While the
incorrectly speculated execution paths are ultimately squashed, pre-
venting the leakage of sensitive data through architectural states,
residual traces often persist in hardware components such as caches
and microarchitectural buffers. These residual states can then be
exploited via side-channel techniques to extract the sensitive data
accessed during speculation. Spectre [18, 24, 35, 42–44, 52, 69],Melt-
down [49, 74, 79, 82] and Microarchitectural Data Sampling (MDS)
[21, 68, 80] are well-known examples of TEAs.

To address the threat posed by TEAs, researchers have proposed
various mitigation strategies to protect sensitive data from leak-
age through microarchitectural side-channels. Many of these ap-
proaches are effective, preventing attackers from retrieving sensi-
tive data from observable changes to the microarchitecture states
during speculation. However, the mitigations often come with sig-
nificant hardware complexity and incur substantial performance
overhead. They typically rely on expensive techniques such as
isolating microarchitectural components [20, 41, 58, 75], replicat-
ing them with shadow structures [11, 12, 38, 65, 85], rolling back
microarchitectural state changes [61, 64], or employing dynamic
information-flow tracking [25, 50, 81, 89]. These overheads are fur-
ther compounded by the need for software stack modifications
[30, 67] or changes to microcode and microoperations [50, 75, 89].
These factors contribute to high deployment costs and pose chal-
lenges to achieving widespread adoption [63].

In this work, we propose a different approach to mitigating TEAs.
Our key observation is that TEAs are inherently more powerful
than traditional side-channel attacks due to their ability to bypass
permission boundaries during speculative execution. This allows
attackers to access sensitive data that would otherwise remain inac-
cessible along the commit paths. Therefore, by enforcing permission
boundaries during speculative execution, we can prevent these at-
tacks from accessing sensitive data in the first place. Realizing this

1

https://orcid.org/0009-0008-9463-3090
https://orcid.org/0000-0002-6584-9086
https://orcid.org/0009-0000-5365-9050
https://orcid.org/0000-0002-7200-6757
https://orcid.org/0000-0001-6617-3068
https://orcid.org/0000-0002-9485-5370
https://doi.org/10.1145/3695053.3731119
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3695053.3731119

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

mitigation strategy faces two main challenges: (1) what kind of
permission boundaries should be enforced, and (2) how to enforce
the boundaries efficiently.

We make the observation that the majority of TEAs violate mem-
ory safety properties as a core part of their attack procedure to
access sensitive data. For instance, the Spectre-v1 attack (discussed
in Section §2.1) manipulates branch predictors to bypass array
bounds checks [43]. Similarly, MDS attacks [21, 68, 80] inadver-
tently forward sensitive data from microarchitectural buffers to
unauthorized load instructions across memory boundaries. This ob-
servation allows us to classify these exploits as “speculative mem-
ory safety violations,” where speculative execution bypasses tra-
ditional memory safety mechanisms such as bounds checks (against
out-of-bound memory access), and reference counting (against use-
after-free). Therefore, by enforcing these memory safety properties
at the hardware level during speculative execution, we can mitigate
the sensitive data access phase of many TEAs.

Based on the aforementioned key observations, we present Spec-
ulative Address Sanitization (SpecASan), a novel mitigation
mechanism against TEAs. SpecASan overcomes two key challenges
to supporting speculative memory safety: (1) translating software-
level memory safety rules into enforceable hardware mechanisms,
and (2) effectively applying these mechanisms during speculative
execution, where conventional memory safety mechanisms are
often insufficient. To address the first challenge, SpecASan lever-
ages recent advancements in hardware-accelerated memory safety
technologies. In this paper, we present a design based on ARM
Memory Tagging Extension (MTE), to retrieve and enforce software-
level memory safety requirements through a lightweight memory
coloring mechanism [71] (detailed in Section §2.3). ARM MTE is
selected due to its well-established yet continuously evolving soft-
ware toolchain support [6, 7, 9, 10, 28] and its integration into
widely used consumer devices, such as the recent Google Pixel and
Samsung Galaxy smartphones [53, 62]. However, the underlying
principle of extending memory safety protections to speculative
execution is adaptable and can be applied in conjunction with al-
ternative memory safety enforcement techniques.

To achieve a balance between performance and security when en-
forcing memory safety requirements during speculative execution,
SpecASan incorporates tag checking information into various mi-
croarchitectural buffers and caches, which demands careful design
and integration. Moreover, it employs a selective delay mechanism
that only delays unsafe speculative tagged memory accesses (i.e.,
when tag mismatches), which are infrequent, until speculation is
resolved; while allowing safe, untagged, or independent memory
accesses to proceed without delay. This approach ensures that data
is propagated to microarchitectural buffers and the cache hierarchy
only after the validity of access is confirmed, thereby mitigating a
wide range of speculative execution attacks that exploit residual
data from unauthorized speculative memory accesses.

This approach offers three main advantages. First, we benefit
from extending strong safety guarantees available on the commit-
ted execution path, to those instructions executed speculatively,
effectively closing a critical vulnerability gap. Second, SpecASan
introduces negligible performance overhead (i.e., pipeline stalls)
during normal operation when there is no memory safety violation;

ACCESS TRANSMIT

ACCESS

Speculation Resolution

ACCESS TRANSMIT

TRANSMIT

Time

Speculation Window

delay

delay

C
o
m
m
i
t
t
e
d

B
e
t
t
e
r

S
e
c
u
r
i
t
y

W
o
r
s
e

P
e
r
f
o
r
m
a
n
c
e

USE

ACCESS TRANSMIT
delay

USE

USE

USE

MIS-PREDICTED BRANCH: if (X < ARRAY1_SIZE){
 ACCESS: Y = ARRAY1[X];
 USE: INDEX = Y * 4096;
 TRANSMIT: Z = ARRAY2[INDEX];}

Figure 1: Comparison of various TEA defense classes, using
a Spectre-v1 gadget as the reference code.

such violations are rare during normal execution. Finally, the solu-
tion achieves low hardware complexity by leveraging andminimally
extending existing hardware support for memory safety, ensuring
its practicality, ease of integration, and feasibility for adoption in
real-world hardware implementations.

Security analysis (Section §4) demonstrates that SpecASan is
effective in mitigating a wide range of TEAs, and can be extended
to protect against other TEA variants, such as MDS [21, 68, 80] and
Speculative Interference [17] attacks. Our performance evaluation
(Section §5) utilizing detailed gem5 simulations across standard
benchmarks such as SPEC CPU2017 and PARSEC, reveals that
SpecASan incurs a minimal performance overhead of 1.8% and 2.5%
on single-threaded and multi-threaded applications, respectively.
Notably, this overhead remains consistently lower compared to two
well-known hardware mitigation mechanisms, GhostMinion [11]
and Speculative Taint Tracking (STT) [89], which leverage shadow
structures and dynamic information flow tracking, respectively.

In summary, the key contributions of this paper are:
• We introduce SpecASan, a mitigation technique for TEAs that
leverages software-level memory safety techniques to prevent
illegal data accesses during speculative execution.

• We present a potential realization of SpecASan based on ARM
MTE. Integrating with existing hardware support for memory
safety results in getting this protection at a minimal overhead,
significantly lower than other existing solutions.

• We show that SpecASan effectively mitigates a wide range of
TEAs, addressing the majority of known variants, and, when
combined with a Control-Flow Integrity (CFI) enforcement mech-
anism, also prevents control-flow attacks.

• Performance evaluation shows that SpecASan incurs minimal
overhead (even when combined with CFI mechanisms), provid-
ing a performant, secure, and low-overhead solution to TEAs.

2 Background
In this section, we review important background related to TEAs as
well as proposed mitigations. We also introduce ARM MTE-based
memory safety enforcement, which we extend to implement our
solution.

2

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

2.1 Transient Execution Attacks (TEAs)
Speculative execution is one of the most important techniques
used by modern processors to achieve high performance. Rather
than stalling the processor pipeline when unresolved dependen-
cies (e.g., a branch target) are encountered, speculative execution
keeps processors’ pipeline busy by predicting these dependencies
and speculatively executing the dependent instructions. Once the
dependency is resolved, execution seamlessly proceeds if the predic-
tions are correct. If the predictions prove incorrect, the speculative
instructions are squashed, restoring the correct state of execution
prior to the start of the speculation.

Since the program architectural state is restored once misspec-
ulation is detected, common wisdom held that allowing arbitrary
speculation posed no significant risk and could be leveraged to
maximize performance. For example, speculative execution could
bypass or delay operations like permission checks. However, the
Spectre [43], Meltdown [49], and Microarchitectural Data Sampling
(MDS) [21, 68, 80] attacks demonstrated that data accessed during
speculative execution can be disclosed through side channels, as it
leaves observable traces in the microarchitectural state.

An attacker can cause misspeculation to a carefully selected
code gadget by manipulating prediction mechanisms. The gadget
exploits speculative execution to access sensitive data across per-
mission boundaries, encoding the data as observable traces within
microarchitectural components (e.g., caches). Subsequently, the
attacker extracts the sensitive information via side-channel tech-
niques, such as cache timing analysis [34, 59, 87], exploiting the
residual microarchitectural state left by speculative execution.

Transient execution attacks, shown in the top row of Figure 1,
typically follow three stages. First, in the ACCESS stage, a secret
that is inaccessible in the normal execution path is speculatively
accessed. Next, in the USE stage, the secret may be optionally pro-
cessed. Finally, in the TRANSMIT stage, the secret is transmitted by
modifying a microarchitectural structure, such as the cache, in a
way dependent on the value of the secret.

Figure 1 provides an example of a Spectre-v1 attack code. In
this scenario, the adversary manipulates the processor’s branch
predictor to mispredict the branch as taken, even when the index
X is greater than the ARRAY1_SIZE. As a result, the subsequent
ACCESS instruction speculatively loads a secret value using an out-
of-bound index ARRAY1[X]. The secret is then processed in the USE
stage, where it is encoded into an INDEX value. Finally, the TRANSMIT
instruction accesses ARRAY2 with this INDEX, leaving observable
traces in the cache. Once speculation is over, the attackers can
extract the secret through a cache timing side-channel.

Existing transient execution mitigations differ in their choice of
delaying the ACCESS [16, 23, 57, 75, 77, 90], USE [13, 30, 67, 81, 89],
or TRANSMIT [11, 12, 20, 38, 41, 50, 58, 64–66, 85] stages of the
TEA until speculation is resolved [36], as depicted in the bottom
three rows of Figure 1. Delaying the TRANSMIT stage offers better
performance but provides limited security. In contrast, delaying the
ACCESS stage ensures the strongest security guarantee, but incurs
high performance overheads which sometimes even translates to
disabling the speculative execution entirely. Regardless of the stage
they target, these defenses often require complex hardware and
software mechanisms to implement effectively [36, 63].

0x0 ...

0xb 0

0xb 0

0x0 ...

0x3 'S'

0x3 'E'

0x3 'C'

0x3 'R'

0x3 'E'

0x3 'T'

0x0 ...

Allocation Tags
(Locks)

Address Tags
(Keys)

Address SpaceVirtual Addresses
(pointers)

0x0 b 000003fb104c3e

0x0 3 0000066c13bff0

0x0 b 0000066c13bff3

Figure 2: Overview of MTE memory tagging

2.2 Memory Safety Vulnerabilities
Memory safety vulnerabilities occur when programs improperly
access memory, violating intended permission boundaries. These
issues often result from programming errors such as buffer over-
flows, use-after-free, use-before-initialization, or failing to validate
pointers. Various software and hardware techniques have been pro-
posed to enforce memory safety, aiming to prevent unauthorized
accesses while balancing performance and compatibility.

Traditionally, software-based approaches such as Address San-
itizer (ASan) [72], SafeCode [27], and SoftBound [54] have been
employed to detect and mitigate memory safety violations. While
ASan is a powerful tool for development, its significant runtime
overhead makes it impractical for deployment in production envi-
ronments. To address this limitation, hardware-assisted solutions
such as HWASAN [73] have emerged. HWASAN utilizes hardware
acceleration to streamline ASan’s memory checks, offering a signif-
icant improvement over software-based solutions alone. However,
HWASAN still introduces a considerable performance penalty. To
further improve memory safety without sacrificing performance,
hardware-based mechanisms such as memory tagging have been
developed. The success of these mechanisms has prompted manu-
facturers to integrate them into their production hardware. ARM,
for example, introduced the Memory Tagging Extension (MTE) [71]
as part of the ARMv8.5 architecture.

2.3 Memory Tagging
Memory tagging has been proposed as a tool to associate metadata
with memory, at a finer granularity than the page size, to enable a
range of security related capabilities, including protection against
memory safety vulnerabilities. For instance, the ARMMTE [71] em-
ploys a 4-bit allocation tag referred to as a lock with each 16-byte
of memory called a tag granule. Pointers that access these memory
locations also carry a 4-bit address tag, known as a key, stored in the
top byte of the pointer. ARM’s Top-Byte Ignore (TBI) feature repur-
poses this typically unused top byte for address tag storage without
affecting address translation. During memory accesses, the hard-
ware compares the pointer’s key with the memory location’s lock.

3

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

Any mismatch triggers a fault, preventing unauthorized access, as
shown in Figure 2.

Heap memory allocation serves as an example of ARM MTE’s
functionality. The malloc() call assigns a tag to both the allocated
memory block (in 16-byte chunks) and the returned pointer. Subse-
quent accesses using this pointer are validated against the memory
block’s tag. By assigning unique tags to different memory regions,
MTE can detect out-of-bounds accesses, and by updating the tag
of a memory region after it is freed, MTE can detect use-after-free
errors. However, while memory tagging mechanisms such as ARM
MTE are effective in detecting traditional, non-speculative memory
accesses, they are not used to limit accesses during speculative
execution.

3 SpecASan Design and Implementation
To address the challenge of preventing unauthorized speculative
memory accesses exploited by various TEAs, we propose Speculative
Address Sanitization (SpecASan). SpecASan builds on memory tag-
ging hardware support such as ARM’s MTE, and the software stack
supporting it, to extend memory safety to speculative execution
with minimal overhead. As a result, it provides robust protection
without compromising performance when the speculation does
not break memory safety, but delays speculative memory accesses
when they appear to break memory safety. This section overviews
the design and implementation of SpecASan.

3.1 Threat Model and Protection Scope
We assume a powerful adversary capable of exploiting specula-
tive execution vulnerabilities to read arbitrary memory locations,
and of using any microarchitectural covert or side channels to
exfiltrate the sensitive data accessd during speculation. Consis-
tent with typical TEAs assumptions such as Spectre-type attacks
[18, 24, 35, 42–44, 52, 69], the attacker is assumed to have the ability
to execute unprivileged code. The attacker’s objective is to bypass
privilege boundaries and address space limitations to access and
exfiltrate information residing anywhere within the system’s mem-
ory; these include the boundaries of a sandbox, a user process, a
virtual machine, or secure enclave.

Scope of SpecASan Mitigation: SpecASan’s primary goal is
to prevent unauthorized speculative memory accesses in the first
place from forwarding data to caches and internal microarchitec-
tural buffers during speculative execution. SpecASan deliberately
excludes committed (or bound-to-commit) memory accesses from
protection, as these are no longer speculative operations. These
accesses can be analyzed by programmers and compilers, and exist-
ing memory safety mechanisms like ARM MTE offer protection for
such scenarios. It also allows safe speculative memory operations
where the instruction tag matches the memory tag. Additionally,
physical attacks employing methods such as electromagnetic or
power analysis [26, 31] fall outside the scope of SpecASan. TEAs
that aim to leak the MTE tag [40] are also out-of-scope, as soft-
ware is in charge of defining protection boundaries with tags. More
importantly, software can define the boundaries in flexible ways,
including using deterministic tag assignment [33], where leaking
the tag would not allow attackers to bypass protection boundaries.

3.2 Overview and Design Goals
The high-level design principle of SpecASan is to enforce memory
tagging-based protection boundaries during speculative execution.
In particular, we aim to achieve the following design goals:
G1: We aim to prevent any memory load operation executed spec-

ulatively from receiving data with a mismatched tag.
G2: We aim to prevent any memory store operation executed spec-

ulatively from altering any in-transient memory state when
tags mismatch.

G3: We aim to prevent any unsafe load/store operation executed
speculatively from altering microarchitectural states (i.e., leav-
ing traces in microarchitectural components such as caches).

These requirements prevent unsafe memory accesses from exe-
cution (G1 and G2), including any alteration of microarchitecture
state (G3). As a result, an attacker cannot read a secret speculatively,
preventing the essential first step of TEAs. Specifically, SpecASan
ensures that speculative access to all potential memory sources and
destinations, including microarchitectural components is permitted
only if the accessed memory has a matching tag with the corre-
sponding memory access instruction. If there is a tag mismatch, the
speculative access is delayed. In most cases, mismatched accesses
are an indicator of misspeculation, and delaying them does not
affect performance. By ensuring that even speculative accesses sat-
isfy memory safety requirements, systems can be protected against
transient execution attacks.

3.3 Microarchitectural Changes
This section overviewsmicroarchitectural changes and assumptions
made to achieve our design goals. It describes the various locations
in the memory access path and explains how they are protected,
including key microarchitectural resources such as the Load/Store
Queue (LSQ) and the Line-Fill Buffer (LFB).

3.3.1 L1 and Lower Level Caches. Each 16-byte data granule is
assigned a 4-bit allocation tag (i.e. lock). Consequently, a 64-byte
cache line would hold four allocation tags, as illustrated in Figure 3.
Assuming this cache model, the two highest address offset bits can
be used to concurrently look up the allocation tag for each cache
line, alongside the regular cache tag lookup. A mismatch between
the retrieved allocation tag associated with the cache line and the
address tag (i.e. key) embedded in the memory request address’ top
byte signifies a tagmismatch/memory safety violation. Additionally,
SpecASan modifies the cache to propagate the tag check operation
to the earliest point that tag checking is possible and forwards the
tag check outcome back to the core. The L1 cache utilizes a dedicated
signal for this purpose, while lower-level caches incorporate a
single-bit flag within Miss Status Handling Register (MSHR) entries,
which is also included in thememory access response to indicate the
tag check outcome (safe or unsafe). Dedicated cache maintenance
operations, such as clean and invalidate operations, ensure the
coherence of the stored allocation tags in the cache with the tags
stored for the same address in other caches within the system.

3.3.2 Load/Store Queue (LSQ). The LSQ is a core microarchitec-
tural component in the memory access path of high-performance,
out-of-order processors. It is responsible for ensuring the correct
ordering of memory access instructions in a way that satisfies the

4

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

Out-Of-Order Engine Memory Pipeline

MSHR

MSHRMSHR

L
2

T
L
B

L
1
D

T
L
B

L
1
I

T
L
B

L1D $

LFB

F
r
o
n
t
-
E
n
d

Exec Units

AGU

ALU

LD/ST

ROB
LSQ Unit

MDU LQSQ

TSH

I

S

!S

W

L1I $

Minor Modifications Newly Added

L2 $

Caches and LFB

16B 16B 16B

C
a
c
h
e

L
i
n
e
s

Tag

A
d
d
r
e
s
s

V

04614565963

OffsetSet IndexTagKey

Hit?

=

Data

16B
11 10 01 00

Locks

Safe?=

Figure 3: Overview of the SpecASan architectural modifications (left) and the conceptual cache and line fill buffer design to
support allocation tag storage and tag checking (right).

memory consistency model. The LSQ consists of two dedicated
buffers: the Load Queue (LQ) and the Store Queue (SQ), which track
in-flight load and store operations respectively. SpecASan extends
memory tagging into these microarchitectural buffers to enforce
memory safety during speculative execution. We introduce a wait-
ing mechanism within the LSQ to address potential speculative
memory safety vulnerabilities. Specifically, SpecASan augments
LSQ entries with a two-bit tag check status (tcs) field, which
tracks different states of a tag check operation and it can be in one
of four states: "init" (00), "safe" (01), "unsafe" (10), or "wait" (11). A
dedicated Tag-Check Status Handler (TSH) is introduced within the
LSQ to manage tag verification outcomes in coordination with the
Reorder Buffer (ROB). This mechanism is used to ensure the desired
actions, such as evaluating tag checking outcome, delaying memory
access instructions until their validity is confirmed or generating
tag check faults as necessary.

3.3.3 Line Fill Buffer (LFB). The LFB is another component in
out-of-order processors designed to enhance performance by sup-
porting non-blocking writes and cache line-fill operations. The role
of the LFB is to hold cache values in transit to allow the cache to
continue handling other operations while it is waiting for events
such as a cache line fill following a cache miss. The LFB is also used
when a store instruction requests ownership to change the state
of a cache line from shared to exclusive. During this process, any
shared instances of the cache line in other caches are invalidated,
but the cache is not stalled. An LFB entry is allocated to track the
status of the pending cache line fill or ownership change. Once
the requested data is returned from lower-level caches or when
exclusive ownership is granted, the cache line is written back into
the cache. In the meantime, if another memory request targets the
same cache line, and the cache line is not yet valid in the cache, it
can be fetched directly from the LFB.

The LFB can be exploited in certain types of TEAs called Mi-
croarchitectural Data Sampling (MDS) attacks, where speculative
execution accesses data in the LFB before it is written back to the
cache. Attackers can use speculative instructions to trigger cache
misses or line fill operations, then use side-channel techniques to
infer the contents of the LFB, potentially exposing sensitive data

[21, 68, 80]. To mitigate these risks, it is crucial to make the LFB
safer by enhancing its access controls and validation mechanism.

To ensure safe access to data residing in the LFB, SpecASan
extends LFB entries to include allocation tags associated with the
cache lines. A lightweight tag-checking mechanism, similar to the
one used in the cache, is integrated into the LFB. This allows the
system to verify memory access requests by checking the requested
address tag against the allocation tag stored in the LFB. The cache
maintenance and coherency mechanisms are extended to manage
the allocation tags not just in the cache but also in the LFB. For
instance, allocation tag store operations, such as the ARM MTE’s
STG instruction, must now also check the LFB to update allocation
tag values associated with specific tag granules within cache lines.
This ensures that allocation tag integrity is maintained throughout
both cache and LFB operations, enabling memory safety during
access to the LFB.

3.3.4 Main Memory and Memory Controller. SpecASan uses a sim-
ilar approach to the ARM MTE extension for handling memory tag
allocation, storage, and check in the main memory and memory
controller. In the main memory, tags are stored in a separate address
space called tag storage with a specific base address. The memory
controller handles the tag check operation by creating two separate
memory access requests to the data memory and the tag storage si-
multaneously. The fetched allocation tag, which is stored in the tag
storage, is checked against the address tag of the memory access
operation to validate its safety. SpecASan modifies the memory
controller to communicate the tag check outcome (safe or unsafe
access) to the upper levels of the memory subsystem. In the event of
a tag mismatch, the data is not returned to the upper memory levels
or the core along with the memory response. Instead, the empty
data field in the response could be utilized to integrate or encode the
correct tag, enabling faster validation of subsequent requests to the
same address at higher levels. However, this is a design choice and
is not incorporated into the current implementation of SpecASan
mechanism.

5

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

init wait

safe

unsafe

SSA=1

1

TSH ROB

4

3

5

6
7

2

SSA=0

Figure 4: the state machine representing SpecASan’s high-
level mechanism.

3.4 SpecASan Operation
Figure 4 illustrates a high-level state machine of the operations im-
plemented by SpecASan. This state machine outlines the sequence
of stages involved in evaluating tag-check outcomes for load and
store operations, as well as the coordination between the Reorder
Buffer (ROB) and the Tag-Check Status Handler (TSH).

Upon issuing a load/store instruction, corresponding entries are
allocated in the LQ/SQ, and ROB. The tcs field associated with these
instructions is initialized to the "init" state, indicating the start of
the tag validation process.

No Store-to-Load Forwarding: Before a load in the LQ is issued
to the memory subsystem, it checks for matching store instructions
in the SQ with the same address. If all younger store addresses are
resolved and there is no match, the LSQ sends a memory access
request to the L1D Cache (or LFB) and the TSH updates the load
instruction’s tcs to the "wait" state 1 , where it remains until the
tag-checking operation completes and its outcome is returned 2 .
During this access, a tag check operation compares the allocation
tag with the address tag of the request. If there’s a tag match, the
access is deemed safe, and the requested data is returned to the
LSQ. The TSH transitions the tcs to the "safe" state 3 , and notifies
the ROB that this is a safe speculative access (SSA = 1) 4 . If there’s
a tag mismatch, the request is considered a potential unsafe access,
and it must wait until speculation is resolved. To prevent leaving
microarchitectural traces, the load does not return data; only a
response containing the tag-checking outcome returns to the LSQ.
The TSH changes the tcs to the "unsafe" state 5 and signals the
ROB of an unsafe speculative access (SSA = 0) 6 , preventing the
ROB and dependent instructions from proceeding until speculation
is resolved 7 . SpecASan allows any independent instruction or any
instruction under the speculation of another independent branch to
proceed without waiting for speculation resolution. Furthermore,
the ROB sends a signal to the TSH to mark any dependent mem-
ory load/store instructions within the LQ/SQ as "unsafe" 6 . In a
small-scale ROB with efficient broadcasting, marking dependent
instructions could approximate a single-cycle operation. However,
in a larger ROB with complex dependency tracking, it is more likely
to require multiple cycles due to architectural constraints.

If the branch was speculated correctly and an unsafe speculative
access occurred during the speculation window, the ROB raises a
tag-check fault, which is immediately addressed. However, if the
branch was speculated incorrectly, all misspeculated instructions
are flushed without leaving any microarchitectural trace.

Store-to-Load Forwarding: If all preceding store instructions
are resolved and a load-store match exists, store-to-load forwarding
occurs only if address tags match. In this case, the TSH transitions
the tcs to "safe" state 3 and notifies the ROB of a safe speculative
access (SSA=1) 4 . If address tags mismatch, store-to-load forward-
ing is prevented 5 , and the TSH notifies the ROB of a speculative
unsafe access (SSA=0) 6 , either waiting for branch speculation res-
olution or raising a tag-check fault if the instructions are not under
another branch speculation 7 . If unresolved stores precede the
load, the Memory Disambiguation Unit (MDU) may speculate an
address mismatch with all older stores, opening a memory depen-
dency speculation window. In this case, a memory access request is
sent to the cache to fetch data. During this window, two scenarios
may occur: (1) The response returns before speculation is resolved.
If the tag-check outcome indicates a safe access (tcs="safe", SSA=1)
4 , the fetched data is allowed to be used by dependent instructions.
However, if there’s a tag mismatch, the data is not forwarded, the
TSH transitions tcs to "unsafe," and the ROB is notified of a specu-
lative unsafe access (SSA=0) 6 . (2) One or more stores are resolved
before the response returns. To maintain correct memory ordering,
the response is discarded. Store-to-load forwarding occurs if ad-
dress tags match; otherwise, it is prevented, and a tag-check fault
is raised if the instructions are not under another speculation 6 .

With this support in place, all speculative accesses to data are
regulated using the memory safety property enjoyed by commit-
ted path instructions. From a performance perspective, SpecASan
enables all accesses that are safe to speculatively execute, incur-
ring little to no overhead for these instructions. It is worthwhile
to note that unsafe accesses are likely to be either misspeculated
instructions or memory safety violations. Stopping these instruc-
tions should have little to no impact on performance, since neither
productively advances the computation. By guiding the memory
safety decisions through the compiler/program analysis, SpecASan
provides this protection without requiring complex overheads to
identify which instructions to delay.

4 Security Evaluation
This section delves into the security evaluation of SpecASan. We

will systematically assess how SpecASan mitigates various TEAs,
highlighting its strengths and potential limitations compared to
existing solutions.

4.1 Attacks Exploiting Memory Safety
SpecASan robustly mitigates transient execution attacks that ex-
ploit unsafe or unauthorized memory accesses. By delaying unsafe
speculative loads and stores until speculation is resolved, SpecASan
ensures that speculative memory accesses cannot leak sensitive
data through microarchitectural side channels.

Spectre-v1 (Bounds-Check Bypass) [43], is a powerful TEA where
the attacker mispredicts a branch to bypass software-based bounds
checks, allowing speculative execution to access out-of-bounds
memory and leak sensitive data. SpecASan detects the speculative
out-of-bounds access via tag mismatch, and delays the memory load
until the branch condition is resolved. This ensures that speculative

6

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

Addr

LQ

0x0 b 00000010000111

tcs

S
!S

 Cache Tag

0x0000002000

L1D$

0x0000001000
Locks

 3 3 b b
 1 1 1 1

0x0 0 00000040000444

Instr

ROB

B

spec

0
1

CMP

seq

009
012

seq

010
011

1

SSA

n/a
n/a

LDR 1012 ?

Dst

-
-
X5

2

0LDR009 safeX1
0MOV008 n/aXZR

 1 b ≠

$ Hit

3

LSL 1013 n/aX6
ADD 1014 n/aX7
LDR 1015 ?X8

Not Resolved W015

Addr

LQ

0x0 b 00000010000111

tcs

S
!S

 Cache Tag

0x0000002000

L1D$

0x0000001000
Locks

 3 3 b b
 1 1 1 1

0x0 0 00000040000444

Instr

ROB

B

spec

0
1

CMP

seq

009
012

seq

010
011

SSA

n/a
n/a

LDR 1012 unsafe

Dst

-
-
X5

0LDR009 safeX1
0MOV008 n/aXZR

4

LSL 1013 n/aX6
ADD 1014 n/aX7
LDR 1015 unsafeX8

Not Resolved !S015

6

Addr

LQ

0x0 b 00000010000111

tcs

S
!S

 Cache Tag

0x0000002000

L1D$

0x0000001000
Locks

 3 3 b b
 1 1 1 1

0x0 0 00000040000444

Instr

ROB

B

spec

0
1

CMP

seq

009
012

seq

010
011

SSA

n/a
n/a

ADD 0016 n/a

Dst

-
-
X9

0LDR009 safeX1
0MOV008 -XZR

LSL 1013 n/aX6
ADD 1014 n/aX7
LDR 1015 unsafeX8

Not Resolved !S015

7

8

Committed

Head

Long Latency

S
p
e
c
u
l
a
t
e
d

5

Committed

Flushed

Flushed

Flushed

Flushed

Flushed

Tag

Mismatch!

(step 1) (step 2) (step 3)

Figure 5: An example of SpecASan’s mitigation mechanism, demonstrating its effectiveness in blocking a Spectre-v1 attack.

paths cannot access unauthorized memory, fully mitigating Spectre-
v1. To illustrate the SpecASan mitigation process against Spectre-
v1 attack, Figure 5 presents a step-by-step breakdown. The code
snippet in Listing 1 highlights the instructions exploited by Spectre-
v1 to speculatively access sensitive data during a mispredicted
execution path and subsequently leak this information through an
attacker controlled side channel.

The attack begins with a load instruction (seq=009) that accesses
ARRAY1_SIZE, resulting in a cache miss and initiating a long latency
memory fetch operation. During this latency, the subsequent com-
pare instruction (seq=010) is delayed. Exploiting this delay, the
mistrained branch predictor directs execution along an attacker-
crafted speculative path (spec_v1_path). All instructions issued
from this point forward are speculative until the branch is resolved.
When the speculative load instruction (seq=012) is issued, the LQ
allocates an entry and marks its tcs as "wait” (W). A memory read
request is then sent to the L1 data cache 1 . Although the address

1 LDR X1, [ARRAY1_SIZE]
2 mistrained_branch:
3 CMP X0, X1 // X < ARRAY1_SIZE
4 B.LO spec_v1_path
5 spec_v1_path:
6 LDR X5, [X2] // ACCESS: load ARRAY1[X]
7 LSL X6, X5, #12 // USE: Y * 4096
8 ADD X7, X3, X6
9 LDR X8, [X7] // TRANSMIT: load ARRAY2[Y*4096]
10 safe_path:
11 ADD X9, X9, #1

Listing 1: ARM Aarch64 assembly PoC code demonstrating
the out-of-bound access used by the Spectre-v1 attack.

hits in the cache, a tag mismatch occurs, indicating an unsafe mem-
ory access 2 . The L1 data cache responds with a tag mismatch
signal, preventing data forwarding to the core and LSQ 3 .

Upon receiving the signal, the TSH transitions the load instruc-
tion’s tcs field to "unsafe" (!S), and notifies the ROB of the unsafe
speculative access. The ROB updates the SSA of the load instruction
to 1, marking it as unsafe 4 . Consequently, the ROB also marks all
dependent younger memory instructions (seq=015) as unsafe and
signals the TSH to transition their corresponding tcs fields in both
the LQ and SQ to "unsafe" 5 .

The ROB then stalls executing the unsafe memory accesses and
their dependent instructions until the branch prediction is resolved
6 , while allowing the independent instructions to proceed. Since
the branch was mispredicted, all instructions executed specula-
tively are flushed from the ROB, including the unsafe load and its
dependents 7 . The ROB subsequently initiates a new entry for the
correct path’s next instruction (seq=016). It also signals the LQ and
SQ to flush all speculative entries, including the unsafe accesses 8 .

By delaying unsafe memory accesses until branch resolution,
SpecASan prevents unauthorized speculative memory accesses
from propagating data to microarchitectural components or de-
pendent instructions. This comprehensive mechanism eliminates
information leakage, effectively mitigating Spectre-v1 attacks.

Spectre-STL (Spectre-V4) [35], another TEA, targets data-flow
dependencies in programs by exploiting the relationship between
loads and preceding stores to the same memory address. Modern
processors utilize memory disambiguators to predict dependencies
between loads and stores, allowing loads to execute speculatively
before the exact addresses of preceding stores are resolved. Spectre-
STL leverages this speculative execution window by manipulating
these predictions, enabling speculative bypass of store instructions.

7

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

This creates an opportunity for attackers to access stale or unautho-
rized data via speculative loads, potentially leading to information
leakage through microarchitectural side channels.

SpecASan effectively mitigates this attack by delaying tagged
speculative memory load instructions until the dependency specu-
lation is resolved by the SQ. Meanwhile, a memory access request
is issued to verify the address tag of the instruction against the
allocation tag stored in the memory subsystem. If the prediction is
incorrect, and the tag check was also a mismatch, the load instruc-
tion is squashed without propagating any sensitive data to caches
or other microarchitectural buffers, thus preventing potential TEAs.
For correct predictions, the load instruction is replayed based on
the memory subsystem’s tag check outcome. An unsafe access,
indicated by a tag mismatch, triggers a tag check fault, alerting the
system to a potential memory vulnerability. For a safe access, the
data is already brought into caches, allowing the replayed load to
access the requested data with minimal overhead. This mechanism
effectively mitigates Spectre-STL type attacks by blocking the mali-
cious speculative memory load instructions from propagating any
data and modifying the microarchitectural state of the processor
such as caches.

MDS attacks such as Fallout [21], RIDL [80], and ZombieLoad [68]
rely on the fact that speculative execution can inadvertently or
maliciously access stale, uninitialized, or in-flight data present in
microarchitectural buffers. For example, Fallout [21] targets stale
entries in the SQ, while RIDL [80] and ZombieLoad [68] exploit
in-flight data residing in components such as the LFB. By extending
its memory safety enforcement to these microarchitectural buffers,
SpecASan ensures that speculative accesses to such transient data
are delayed until proper validation is completed, preventing unau-
thorized or unsafe data usage.

SpecASan achieves this by introducing memory tagging meta-
data to microarchitectural buffers, enabling robust validation of
speculative memory accesses. Each buffer entry is associated with
memory tagging metadata, as illustrated in Figure 3. Before specu-
lative execution can consume data from these buffers, SpecASan
enforces strict tag checks to verify that the access is both autho-
rized and safe. In the event of a validation failure, such as a tag
mismatch, the speculative operation is delayed, and all dependent
speculative instructions are similarly stalled until the speculation
is resolved. This mechanism prevents speculative execution paths
from leveraging microarchitectural buffers to leak sensitive data.
Unlike traditional mitigations that rely on flushing buffers or dis-
abling speculative execution optimizations—often at a significant
performance cost—SpecASanmaintains system performance by per-
mitting validated speculative execution while blocking only unsafe
operations. This comprehensive approach ensures that speculative
execution adheres to robust memory safety principles, effectively
neutralizing not only MDS attacks but also other speculative exe-
cution vulnerabilities that exploit lapses in memory safety.

Speculative Contention Channel (SCC) attacks, such as Specula-
tive Interference [17], SMoTHERSpectre [18], and SpectreRewind [29],
exploit timing variations in microarchitectural components like
ALUs, MSHRs, and Reservation Stations. These attacks do not rely
on cache-based leaks but instead manipulate execution timing and
contention to infer secret data. Speculative Interference [17] and

Table 1: Comparison of different mitigation mechanisms for
various classes of TEAs. Symbols indicate full (), partial (),
or no mitigation (). (-) denotes unimplemented mitigations.

Attack Variant ST
T

G
ho

st
M
in
io
n

Sp
ec
C
FI

Sp
ec
A
Sa

n

Sp
ec
A
Sa

n+
C
FI

Spectre
PHT (aka Spectre v1) [43] -
BTB (aka Spectre v2) [43]
RSB (aka Spectre v5) [44, 52]
STL (aka Spectre v4) [35] -
BHB (BHI) [14, 15]

MDS
Fallout [21]
RIDL [80]
ZombieLoad [68]

SCC
SMoTHERSpectre [18]
Spec. Interference [17]
SpectreRewind [29]

SpectreRewind [29] introduce timing delays that influence follow-
ing instructions, while SmotherSpectre [18] exploits execution unit
port contention to leak information through resource conflicts;
this is also true for any potential side channel transmitter [55].
SpecASan mitigates these attacks since it blocks the unauthorized
speculative accesses of the secret, preventing it from transmission
by influencing microarchitectural timing behavior. This class of
attacks highlights the advantage of stopping speculative execution
at the “access” stage rather than mitigating side effects afterward.
By enforcing strict speculative memory safety, SpecASan eliminates
the root cause of speculative timing/contention leaks.

4.2 Attacks Exploiting Control-Flow
Control-flow integrity (CFI) attacks are a class of transient execu-
tion vulnerabilities that exploit speculative execution to redirect
a program’s control flow to malicious paths or disclosure gadgets.
These attacks manipulate various microarchitectural components,
such as the Pattern History Table (PHT), Branch Target Buffer
(BTB), Return Stack Buffer (RSB), and Branch History Buffer (BHB),
to mispredict branch outcomes or return addresses. Examples in-
clude early Spectre variants like Spectre-PHT, Spectre-BTB [43], and
Spectre-RSB (ret2spec) [44, 52], as well as more recent attacks such as
Spectre-BHB [14, 15], Inception [76], RETBLEED [84], and InSpectre
Gadgets [83]. Despite targeting different microarchitectural predic-
tors, the core mechanism of these attacks remains consistent: they
divert speculative execution to attacker-controlled gadgets, which
access unauthorized memory or process sensitive data, and leak
this information through side channels.

SpecASan partially mitigates this class of attacks by enforcing
memory safety within speculative paths. It ensures that speculative
memory accesses in diverted paths are validated against memory
safety rules, before being executed. This prevents unauthorized
memory accesses within disclosure gadgets and blocks sensitive
data from propagating to side channels. However, SpecASan does
not stop speculative control flow redirection, allowing execution to
follow mispredicted branches to attacker-controlled gadgets. As a
result, the system remains vulnerable if disclosure gadgets access
memory with valid tags or operate on already-loaded sensitive data.

8

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

To achieve comprehensive protection against control-flow in-
tegrity attacks, SpecASan must be integrated with complementary
mechanisms such as SpecCFI [45]. SpecCFI follows the same philos-
ophy as SpecASan of bringing CFI, a program analysis for ensuring
control flow safety, to speculatively executed code. SpecCFI vali-
dates speculative control flow and delays execution of branches that
do not match the legal control flow until speculation is resolved.
Together, these mechanisms address both speculative control-flow
integrity and memory safety, ensuring robust mitigation against
TEAs.

4.3 Empirical Security Evaluation
Evaluating mitigation mechanisms on a microarchitectural simu-
lator has always been a challenge [86], primarily due to the com-
plexity of accurately modeling timing-dependent behaviors. Many
TEAs rely on precise timing variations across microarchitectural
components, such as caches, to leak secrets, making an end-to-end
attack implementation infeasible in simulation environments. How-
ever, since SpecASan enforces software-level safety constraints to
validate speculative memory accesses, its effectiveness can be eval-
uated by whether it successfully blocks unsafe speculative accesses
to sensitive data. This approach is analogous to memory sanitizers,
where security violations are flagged. For existing proof-of-concept
implementations, we assess SpecASan’s effectiveness by monitor-
ing detection logs for malicious speculative accesses, rather than
measuring secret leakage. For other TEAs without available im-
plementations, we reconstructed attack patterns based on prior
research and verified whether the simulator (detailed in §5.1) cor-
rectly identified and reported unauthorized speculative accesses,
ensuring SpecASan’s enforcement of memory safety.

Table 1 summarizes the mitigation capabilities of SpecASan
alone and in combination with SpecCFI, demonstrating its ability
to address a broader spectrum of TEAs. Full mitigation signifies
that the attack is entirely prevented, whereas partial mitigation
means the defense reduces but does not completely eliminate the
attack surface. This arises for control flow speculation attacks such
as Spectre-BTB and RSB. When control flow is diverted, memory
safety is still enforced preventing a speculative load that violates
MTE. However, the attacker may redirect control flow to a gadget
with a load that has a matching tag to the secret data, enabling the
secret to be speculatively read. Thus, partial mitigation refers to
reducing the available attack gadgets rather than eliminating the
threat completely. Preventing the exploitation of malicious control
flow misspeculation is the primary reason we use SpecCFI.

To compare SpecASan with GhostMinion [11] and STT [89], we
reference their security evaluations and claims from their original
papers. Both STT and GhostMinion provide protection against all
known Spectre variants; however, they remain vulnerable to MDS
attacks [21, 68, 80] and offer only limited mitigation against SCC
attacks, including the newer variants of Speculative Interference at-
tacks [86]. In contrast, SpecASan is the only mitigation mechanism
that effectively defends against MDS attacks and, when integrated
with CFI enforcement mechanisms such as SpecCFI, provides com-
prehensive protection against SCC attacks.

5 Performance and Complexity Evaluation
In this section, we first present our experimental methodology and
the ARM MTE model. We also present the baselines we compare
against. We then present an experimental evaluation of SpecASan.

5.1 Experimental Methodology
We conducted our evaluations using the gem5 cycle-level architec-
tural simulator [51], configured to model ARM’s Memory Tagging
Extension (MTE) and the microarchitectural modifications intro-
duced by SpecASan. Detailed configuration parameters for the
simulated system are provided in Table 2.

Modeling certain TEAs, such as MDS variants that exploit secret
leakage from the LFB [68, 80], required modifying and extending
the baseline ARM architecture to incorporate an LFB-like structure.
Since the ARM architecture natively lacks an LFB, we implemented
a simplified LFB model, inspired by the Intel processor’s design,
to accurately simulate speculative data forwarding behavior and
evaluate potential vulnerabilities.

To evaluate the performance of SpecASan, we compared it
against two other mitigation techniques: GhostMinion [11] and
STT [89]. These represent two distinct approaches to mitigating
speculative execution attacks: GhostMinion employs shadow struc-
tures to minimize the visibility of speculative side effects, while STT
tracks speculatively accessed data and prevents their transmission.
In our performance evaluations (Section §6), we use the default STT
variant (i.e., STT-Default). The more stringent STT-Future variant,
which extends taint tracking to include registers, is excluded from
our evaluations due to the lack of memory tagging support for
registers.

To implement SpecCFI on our baseline ARM architecture, we
leveraged binaries instrumented with ARM’s Branch Target Identi-
fication (BTI) instructions [8] as a substitute for the Intel’s Control-
Flow Enforcement (CET) [5] instructions originally utilized by Spec-
CFI. Furthermore, we extended the CPU model to incorporate the
required logic for performing control-flow enforcement checks,
aligning with the assumptions and design principles outlined in
SpecCFI [45].

With respect to benchmarks, we use the SPEC CPU2017 [2]
and PARSEC [19] benchmark suites, representing both single-
threaded and multi-threaded workloads, respectively. Following
the methodology described in GhostMinion [11] and STT [89], the
SPEC CPU2017 benchmarks were executed using the ref input size
in syscall emulation mode. Each benchmark was fast-forwarded
for 10 billion instructions, followed by a detailed simulation of 1
billion instructions. For the PARSEC benchmarks, simulations were
conducted with the simsmall input size in full-system mode, con-
figured with 4 cores. We could not compile and therefore excluded
a number of the benchmarks (8 out of 23 for SPEC CPU2017 and 6
out of 13 for PARSEC). For most of these benchmarks, tools in the
required toolchain did not support memory tagging: for example,
certain benchmarks required a Fortran compiler, which currently
does not provide memory tagging support.

5.2 Modeling ARMMTE
To simulate ARM MTE and memory tagging functionality, we ex-
tended the Out-of-Order (O3) CPU model in gem5, configured to

9

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

500
.pe
rlbe

nch
_r

502
.gc
c_r

505
.mc

f_r

508
.na
md

_r

510
.pa
res
t_r

511
.po

vra
y_r

520
.om

net
pp_

r

523
.xa
lan

cbm
k_r

525
.x2
64_

r

526
.ble

nde
r_r

531
.de
eps

jen
g_r

538
.im

agi
ck_

r

541
.lee

la_
r

544
.na
b_r

557
.xz_

r

Geo
me

an
0.5

1

1.5

2
4.62 2.39 5.68 10.24 4.67 5.72 3.66 4.48 5.68 5.23 4.64 5.64 3.58 7.54 3.84 4.9

N
or
m
al
iz
ed

Ex
ec
ut
io
n
Ti
m
e

Speculative Barriers STT GhostMinion SpecASan

Figure 6: Performance on SPEC CPU2017 benchmarks normalized to unsafe baseline.

utilize the ARM Instruction Set Architecture (ISA). Additionally,
significant modifications were made to key components of the
memory subsystem, including caches and the memory controller,
to incorporate memory tagging capabilities as detailed in Section §3.
We also extended the cache coherence protocol and cache mainte-
nance operations in gem5 to support tag management and ensure
coherence within the memory subsystem. The current implementa-
tion of the ARM MTE supports all the main instructions added by
this extension. These instructions facilitate random allocation, tag
generation, tag insertion into addresses, and tag store/load to/from
memory [1, 3]. Having a complete model of MTE allows us to take
advantage of existing software toolchains to automatically inject
MTE instructions for stack and heap memory safety [6, 7].

5.3 Performance Evaluation
Figure 6 presents the relative performance overhead (normalized
execution time) of SpecASan in comparison to alternative mitiga-
tion techniques across selected SPEC CPU 2017 benchmarks. The
results show that SpecASan and GhostMinion achieve similar per-
formance with minimal overhead. However, SpecASan offers the
advantage of lower hardware complexity. In contrast, STT imposes
a substantial overhead compared to GhostMinion and SpecASan,
making it significantly less practical for real-world deployment.
The primary source of SpecASan’s overhead stems from the latency
associated with handling unsafe speculative accesses; however, due
to their infrequent occurrence in benign applications, the impact
remains negligible.

Similarly, Figure 7 illustrates the performance overhead of
SpecASan in multi-threaded workloads from the PARSEC bench-
mark suite. Most of the observed overhead originates from the

Table 2: Configuration of the simulated CPU

Parameter Configuration
CPU ARM Cortex A76
Issue/Commit 8-way issue, 8 micro-ops/cycle commit
IQ/ROB 32-entry Issue Queue, 40-entry Reorder Buffer
Load/Store Queues (LDQ/STQ) 16-entry each
TLBs (iTLB/dTLB) 32-entry each
L1 I-Cache 32 KB, 2-way, 64B line, 1 cycle hit
L1 D-Cache 32 KB, 2-way, 64B line, 2 cycle hit, tagged
L2 Cache 1 MB, 16-way, 64B line, 12 cycle hit, tagged
Line Fill Buffer (LFB) 16-entry (cache line), 2 cycle hit, tagged

bl
ac
ks
ch
ol
es

ca
nn

ea
l

fe
rr
et

flu
id
an
im

at
e

fr
eq
m
in
e

st
re
am

cl
us
te
r

sw
ap
tio

ns

ge
om

ea
n0

1

2

3

4
4.1 6.57 5.67 5.15 5.72 4.93 4.89

N
or
m
al
iz
ed

Ex
ec
ut
io
n
Ti
m
e

Speculative Barriers STT GhostMinion SpecASan

Figure 7: PARSEC Performance normalized to unsafe base-
line.

baseline ARM MTE mechanism rather than the SpecASan frame-
work itself. Consequently, the additional overhead introduced by
SpecASan is minimal, reinforcing its efficiency in securing specula-
tive memory accesses while maintaining high performance.

Figure 8 illustrates the proportion of delayed instructions across
the mitigation techniques, highlighting SpecASan’s ability to ef-
fectively mitigate TEAs while minimizing unnecessary instruc-
tion restrictions and delays. This results in fewer pipeline stalls
and improved overall performance. The upper section of Figure 8
presents data for the SPEC CPU 2017 benchmarks. SpecASan re-
stricts only 0.76% of the total instructions on average, a substantial
improvement compared to the 39.12% average restriction imposed
by speculative barrier or fence-based methods and the 17.59% re-
striction caused by STT. This demonstrates SpecASan’s efficiency in
reducing instruction delays while maintaining security. The lower
section of Figure 8 extends the analysis to the PARSEC benchmarks,
where SpecASan similarly outperforms alternative approaches. On
average, SpecASan restricts just 0.81% of total instructions, signifi-
cantly lower than the 51.75% and 21.07% restrictions imposed by
speculative barrier or fence-based methods and STT, respectively.
These results emphasize SpecASan’s capability to deliver robust
protection against transient execution vulnerabilities with minimal
impact on performance.

As detailed in Section §4.3, the integration of SpecASan, which
enforces memory safety requirements during speculative execu-
tion, with a mitigation mechanism like SpecCFI, which ensures

10

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

50
0.
pe
rlb

en
ch
_r

50
2.
gc
c_
r

50
5.
m
cf
_r

50
8.
na
m
d_
r

51
0.
pa
re
st
_r

51
1.
po

vr
ay
_r

52
0.
om

ne
tp
p_

r

52
3.
xa
la
nc
bm

k_
r

52
5.
x2
64
_r

52
6.
bl
en
de
r_
r

53
1.
de
ep
sj
en
g_
r

53
8.
im

ag
ic
k_
r

54
1.
le
el
a_
r

54
4.
na
b_
r

55
7.
xz
_r

Av
er
ag
e0

20

40

60

80

100

%
of

Re
st
ric

te
d
In
st
ru
ct
io
ns

Speculative Barriers STT SpecASan

bla
cks

cho
les

can
nea

l
ferr

et

flui
dan

ima
te

freq
min

e

stre
am

clu
ste
r

swa
ptio

ns

Ave
rag

e
0

20

40

60

80

100

%
of

Re
st
ric

te
d
In
st
ru
ct
io
ns

Figure 8: Comparison of different mitigation mechanisms
on SPEC CPU2017 (top) and PARSEC (bottom) benchmarks
based on the percentage of restricted speculative instruc-
tions.

50
0.
pe
rlb

en
ch
_r

50
2.
gc
c_
r

50
5.
m
cf
_r

50
8.
na
m
d_
r

51
0.
pa
re
st
_r

51
1.
po

vr
ay
_r

52
0.
om

ne
tp
p_

r

52
3.
xa
la
nc
bm

k_
r

52
5.
x2
64
_r

52
6.
bl
en
de
r_
r

53
1.
de
ep
sj
en
g_
r

53
8.
im

ag
ic
k_
r

54
1.
le
el
a_
r

54
4.
na
b_
r

55
7.
xz
_r

G
eo
m
ea
n0.95

1

1.05

1.1

N
or
m
al
iz
ed

Ex
ec
ut
io
n
Ti
m
e

SpecCFI SpecASan SpecASan+CFI

Figure 9: Performance comparison of SpecASan, SpecCFI, and
the integration of both mitigation mechanisms normalized
to unsafe baseline on SPEC CPU 2017.

control-flow integrity during speculation, significantly strength-
ens defenses against a broad spectrum of TEAs. The performance
impact of these measures is summarized in Figure 9, showing geo-
metric mean overheads of 2.6% for SpecCFI, 1.9% for SpecASan, and
4% for their combined implementation. These results prove the ef-
fectiveness of speculative execution regulation by enforcing software
safety constraints on speculative execution, leveraging well-defined
ISA extensions and microarchitectural support to achieve robust
security with minimal performance costs.

5.4 Hardware Implementation Overhead
Table 3 presents the hardware cost and integration complexity of
ARM MTE, SpecASan, and SpecASan+CFI across various CPU mi-
croarchitectural components. Our analysis focuses on the affected
core-level structures, deliberately excluding higher-level caches,

Table 3: Comparison of hardware cost and complexity for ARM
MTE, SpecASan, and SpecASan+CFI across various affected CPU
microarchitectural components (percentage increase from baseline).
The values in parentheses indicate the increase in the respective
metric compared to the baseline ARMMTE.

Components Metric ARMMTE SpecASan SpecASan+CFI

L1 D-Cache
Area Overhead (%) 3.84 0.0 0.0
Static Power (%) 3.31 0.0 0.0
Dynamic Energy (%) 0.74 0.0 0.0

LFB
Area Overhead (%) 0.0 3.72 3.72
Static Power (%) 0.0 3.11 3.11
Dynamic Energy (%) 0.0 0.68 0.68

ROB/LSQ/MSHR
Area Overhead (%) 0.0 0.92 0.92
Static Power (%) 0.0 0.88 0.88
Dynamic Energy (%) 0.0 0.81 0.81

CFI Extensions
Area Overhead (%) 0.0 0.0 0.10
Static Power (%) 0.0 0.0 0.34
Dynamic Energy (%) 0.0 0.0 0.41

Total Core Area Overhead (%) 0.17 0.28 (+0.11) 0.38 (+0.21)
Total Core Static Power (%) 0.22 0.31 (+0.09) 0.65 (+0.43)

DRAM tag storage, the memory controller, and coherence mech-
anisms to provide a precise evaluation of in-core overheads. To
quantify these costs, we utilized CACTI [47] at a 22nm technology
node for SRAM-based structures. Additionally, we implemented
the necessary logic components—such as tag-check logic and the
TSH within the LSQ—in Verilog, followed by synthesis and cost
estimation using Synopsys Design Compiler 2017.09 at the same
technology node. The reported overheads in Table 3 reflect the in-
crease relative to baseline components.While the LFB is not a native
feature of ARM architectures, it must be modeled and extended for
memory tagging. This overhead applies only to processors that in-
corporate an LFB. To evaluate the impact on CPU core area, power,
and energy, we modeled an ARM CPU core with configuration
parameters similar to our Gem5 ARM O3 model using McPAT [46].
The overhead of SpecCFI extensions is assessed based on their rel-
ative increase over the baseline CPU core. Additionally, the last
two rows of Table 3 indicate the overall increase in total core area
and static power consumption resulting from the integration of
different mechanisms into the core microarchitecture.

6 Discussion
Our security and performance evaluations (Sections §4 and §6)
demonstrate that SpecASan offers a balanced approach to mitigat-
ing TEAs, effectively trading off performance for security. While
SpecASan’s primary goal is to showcase the feasibility of hardware-
enforced software memory safety contracts as a robust and efficient
mitigation strategy, we acknowledge its limitations, especially our
ARM MTE-based implementation.
Limitation of ARM MTE: Recall that the key insight behind
SpecASan is that most, if not all, TEAs violate software-level permis-
sion boundaries to access sensitive data. Therefore, if we can utilize
ISA extension to allow software to communicate those software-
level permission boundaries to the hardware, and enforce the bound-
aries during speculative execution; then we can prevent a wide
range of TEAs. Apparently, the effectiveness of SpecASan depends
on how good the ISA extension is. Specifically, if an ISA extension
cannot allow software to reliably specify fine-grained permission
boundaries (e.g., ARM MTE), then SpecASan will also be limited

11

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

on preventing TEAs aiming to bypass such boundaries. On the
contrary, if an ISA extension allows software to clearly specify fine-
grained permission boundaries, then SpecASan can also provide
more reliable defense against TEAs.

In this work, we choose to use ARM MTE to demonstrate
SpecASan because of its wide adoption (real hardware and
toolchains). However, ARM MTE also limits SpecASan’s ability
to prevent attacks. In particular, ARM MTE only supports 16 differ-
ent tags, and its protection granularity is 16-byte. As a result, any
tag collision will allow attackers to bypass the protection; and any
out-of-bound access within the 16-byte cannot be detected.

For example, recent research has shown that it is possible to
leak ARMMTE tag through brute-force attacks and timing analysis
[4, 32, 33, 40]. So, if the software relies on using random tag to
define isolation boundaries, then such boundaries may be bypassed,
both in committed paths and during speculative execution. How-
ever, if the software uses deterministic tagging, and only apply
it to protect security-critical data (e.g., cryptographic keys, pass-
words, authentication- or authorization-related metadata), as done
in [39, 67], then the protection, including SpecASan’s protection,
will not be vulnerable to tag leaking attacks. Ongoing research is
also exploring deterministic memory tagging and improved mecha-
nisms to address this limitation [33, 48, 60, 70, 78].
Limitation of Memory Safety: SpecASan is designed to prevent
TEAs that violate memory safety properties to access sensitive data.
However, not all TEAs violates memory safety properties, or aim
to perform unauthorized memory access. For instance, LVI attacks
inject malicious values into microarchitectural buffers, which are
then consumed speculatively by victim instructions. This makes
Load Value Injection (LVI) fundamentally different, as it targets the
integrity of the data being processed during speculation, rather
than simply exploiting unauthorized memory accesses. SpecASan
enforces strict memory tagging and validation for all speculative
accesses to microarchitectural buffers, ensuring that only validated
and authorized data can propagate through speculative paths. If
injected or unauthorized data is accessed, SpecASan’s tag validation
mechanism detects the mismatch, stalling or squashing the specu-
lative operation and its dependents. By ensuring that speculative
execution operates only on safe and validated data, SpecASan effec-
tively neutralizes the primary mechanism behind many LVI attacks.
However, some LVI attacks target untagged resources, such as reg-
isters, bypassing SpecASan’s protections. For example, an attacker
may inject malicious values into registers or exploit speculative data
paths unrelated tomemory accesses, such as influencing speculative
arithmetic or branch conditions. Such attacks cannot be mitigated
by SpecASan. Another avenue for strengthening the enforcement of
memory safety is extending it to hardware prefetchers [56], which
can speculatively fetch unauthorized memory into microarchitec-
tural buffers, such as caches. Integrating security mechanisms into
prefetchers could address these risks while maintaining perfor-
mance. We leave this direction for future work.

7 Related Work
Since the disclosure of the first variants of TEAs, a battle has
emerged between proposing robust mitigation techniques and un-
covering new attack variants that circumvent existing defenses.

The primary objective of all mitigation techniques is to ensure that
the microarchitectural side effects of speculatively executed instruc-
tions cannot be exploited by adversaries through side channels. To
achieve this, mitigation strategies are broadly categorized into three
general directions [36].

The first category focuses on proactively stopping potentiallyma-
licious “access” to sensitive data. Software-based techniques, such
as inserting fences, as well as Retpoline-style mitigations [16, 77]
and Speculative Load Hardening (SLH) [23, 90], have been employed
to stop speculative execution until the validity of the access is
confirmed. Hardware based approaches in this class include auto-
matic insertion of fences before speculative load instructions [75].
SpecASan similarly prevents the “access” phase of attacks. Unlike
other mechanisms in this category, it leverages software-defined
memory safety requirements, enforcing them during speculative
execution. By selectively delaying unsafe memory accesses, which
are infrequent, rather than all speculative accesses, it effectively
minimizes performance overhead.

The second category of mitigations focuses on preventing the
“use” of sensitive data accessed during speculative execution. Mit-
igations in this class often employ costly mechanisms, such as
Dynamic Information-Flow Tracking (DIFT), to track speculatively
accessed data and its “use” in dependent instructions until the
access’s validity is confirmed [13, 25, 30, 81, 88, 89]. An example
of this approach is ConTExT [67], a hardware-software co-design
that enables software to specify a subset of safety-critical memory
objects, with hardware modifications delaying the use of these ob-
jects until speculation is resolved. While effective against TEAs,
these methods introduce significant hardware complexity and incur
substantial performance overhead.

The third approach to mitigating TEAs focuses on preventing
speculative “transmit” instructions from modifying microarchitec-
tural states until the corresponding memory access is committed.
Techniques in this category encompass various strategies, including
isolation [20, 41, 58], hiding via shadow structures [11, 12, 38, 65, 85],
rollback or cleanup mechanisms [64], or simply delaying execution
until speculation is resolved [37, 50]. These methods typically in-
volve considerable performance and hardware overhead, posing
challenges to their practical adoption in real-world systems. More-
over, many of these mitigations have been demonstrated to remain
vulnerable to certain variants of TEAs [63].

8 Concluding Remarks
Program analysis techniques such as address sanitization, or con-
trol flow integrity, have increasingly been leveraged to improve the
security of software by enforcing invariants during run-time. In this
paper, we introduce a new mitigation against transient execution
attacks, SpecASan, that extends these program analysis techniques
to regulate speculative accesses to data, extending the benefits of
memory safety to speculative execution. SpecASan extends the im-
plementation of ARMMemory Tagging Extension (MTE) to provide
this protection at low additional hardware cost, and with little im-
pact on performance. When combined with control-flow integrity

12

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

enforcement mechanisms, SpecASan provides comprehensive pro-
tection against almost all known transient execution attacks, includ-
ing those with limited practical defenses, such as Microarchitectural
Data Sampling (MDS) attacks.

Acknowledgments
This research was partially supported by the U.S. National Science
Foundation under grants CNS-1955650 and CCF-2212426.

References
[1] 2013. ARM® Architecture Reference Manual, ARMv8.
[2] 2017. SPEC. Standard Performance Evaluation Corporation SPEC CPU 2017.

spec:org/cpu2017/
[3] 2019. Arm. Limited. Armv8.5-A Memory Tagging Extension White Paper. https:

//developer.arm.com/documentation/102925/latest/
[4] 2019. Arm. Limited. Speculative oracles on memory tagging. https://developer.

arm.com/documentation/109544/0100
[5] 2019. Intel Corporation. Control-flow enforcement technology preview. https:

//kib.kiev.ua/x86docs/Intel/CET/334525-003.pdf.
[6] 2019. MemTagSanitizer — LLVM 19.0.0. https://llvm.org/docs/MemTagSanitizer.

html
[7] 2020. Scudo Hardened Allocator. https://llvm.org/docs/ScudoHardenedAllocator.

html
[8] 2021. ARM Limited. Arm® a64 instruction set architecture. https://developer.

arm.com/documentation/ddi0596/2021-12.
[9] 2024. Chromium Partition Allocator. https://source.chromium.org/chromium/

chromium/src/+/main:base/allocator/partition_allocator/src/partition_alloc/
partition_bucket.cc?q=TagMemoryRangeRandomly&start=21

[10] 2024. Linux Tag-based Kernel Address Sanitizer (KASAN). https://docs.kernel.
org/dev-tools/kasan.html

[11] SamAinsworth. 2021. Ghostminion: A strictness-ordered cache system for spectre
mitigation. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture. 592–606.

[12] Sam Ainsworth and Timothy M Jones. 2020. Muontrap: Preventing cross-domain
spectre-like attacks by capturing speculative state. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 132–144.

[13] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019.
Specshield: Shielding speculative data from microarchitectural covert channels.
In 2019 28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 151–164.

[14] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch History Injection: On the Effectiveness of Hardware Miti-
gations Against {Cross-Privilege} Spectre-v2 Attacks. In 31st USENIX Security
Symposium (USENIX Security 22). 971–988.

[15] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch history injection: On the effectiveness of hardware mitigations
against {Cross-Privilege} spectre-v2 attacks. In 31st USENIX Security Symposium
(USENIX Security 22). 971–988.

[16] Markus Bauer, Lorenz Hetterich, Christian Rossow, and Michael Schwarz. 2024.
Switchpoline: A Software Mitigation for Spectre-BTB and Spectre-BHB on
ARMv8. In Proceedings of the 2024 ACM Asia Conference on Computer and Com-
munications Security.

[17] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Neil
Zhao, Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, Adam
Morrison, et al. 2021. Speculative interference attacks: Breaking invisible spec-
ulation schemes. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems. 1046–
1060.

[18] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. Smother-
spectre: exploiting speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
785–800.

[19] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. 72–81.

[20] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. 2019. Mi6: Secure enclaves in a speculative out-of-order
processor. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. 42–56.

[21] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Marina
Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, et al.

2019. Fallout: Leaking data on meltdown-resistant cpus. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. 769–784.

[22] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
systematic evaluation of transient execution attacks and defenses. In 28th USENIX
Security Symposium (USENIX Security 19). 249–266.

[23] Chandler Carruth. 2018. RFC: Speculative Load Hardening (a Spectre variant1
mitigation). https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html.

[24] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 142–157.

[25] Rutvik Choudhary, Jiyong Yu, Christopher Fletcher, and Adam Morrison. 2021.
Speculative privacy tracking (SPT): Leaking information from speculative ex-
ecution without compromising privacy. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 607–622.

[26] Jean-Sébastien Coron. 1999. Resistance against differential power analysis for
elliptic curve cryptosystems. In Cryptographic Hardware and Embedded Systems:
First InternationalWorkshop, CHES’99 Worcester, MA, USA, August 12–13, 1999
Proceedings 1. Springer, 292–302.

[27] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. 2006. SAFECode: Enforc-
ing alias analysis for weakly typed languages. ACM SIGPLAN Notices 41, 6 (2006),
144–157.

[28] Vincenzo Frascino and Catalin Marinas. 2020. Memory Tagging Extension
(MTE) in AArch64 Linux. https://docs.kernel.org/arch/arm64/memory-tagging-
extension.html

[29] Jacob Fustos, Michael Bechtel, and Heechul Yun. 2020. SpectreRewind: Leaking
secrets to past instructions. In Proceedings of the 4th ACM Workshop on Attacks
and Solutions in Hardware Security. 117–126.

[30] Jacob Fustos, Farzad Farshchi, and Heechul Yun. 2019. Spectreguard: An efficient
data-centric defense mechanism against spectre attacks. In Proceedings of the
56th Annual Design Automation Conference 2019. 1–6.

[31] Daniel Genkin, Itamar Pipman, and Eran Tromer. 2015. Get your hands off my
laptop: physical side-channel key-extraction attacks on pcs: Extended version.
Journal of Cryptographic Engineering 5 (2015), 95–112.

[32] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and Cristiano
Giuffrida. 2020. Speculative probing: Hacking blind in the Spectre era. In Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security. 1871–1885.

[33] Floris Gorter, Taddeus Kroes, Herbert Bos, and Cristiano Giuffrida. 2024. Sticky
Tags: Efficient and Deterministic Spatial Memory Error Mitigation using Persis-
tent Memory Tags. In 2024 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 217–217.

[34] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+ Flush: a fast and stealthy cache attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment: 13th International Conference, DIMVA
2016, San Sebastián, Spain, July 7-8, 2016, Proceedings 13. Springer, 279–299.

[35] John Horn. 2018. speculative execution, variant 4: speculative store bypass.
[36] Guangyuan Hu, Zecheng He, and Ruby B Lee. 2021. Sok: Hardware defenses

against speculative execution attacks. In 2021 International Symposium on Secure
and Private Execution Environment Design (SEED). IEEE, 108–120.

[37] Hai Jin, Zhuo He, and Weizhong Qiang. 2023. SpecTerminator: Blocking specula-
tive side channels based on instruction classes on RISC-V. ACM Transactions on
Architecture and Code Optimization 20, 1 (2023), 1–26.

[38] Khaled N Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry
Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2019. Safespec: Ban-
ishing the spectre of a meltdown with leakage-free speculation. In 2019 56th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[39] Juhee Kim, Jinbum Park, Yoochan Lee, Chengyu Song, Taesoo Kim, and Byoungy-
oung Lee. 2024. PeTAL: Ensuring Access Control Integrity against Data-only
Attacks on Linux. In Proceedings of the 31st ACM Conference on Computer and
Communications Security (CCS), Salt Lake City, UT.

[40] Juhee Kim, Jinbum Park, Sihyeon Roh, Jaeyoung Chung, Youngjoo Lee, Taesoo
Kim, and Byoungyoung Lee. 2024. TikTag: Breaking ARM’s Memory Tagging
Extension with Speculative Execution. arXiv preprint arXiv:2406.08719 (2024).

[41] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 974–987.

[42] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative buffer overflows:
Attacks and defenses. arXiv preprint arXiv:1807.03757 (2018).

[43] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2020.
Spectre attacks: Exploiting speculative execution. Commun. ACM 63, 7 (2020),
93–101.

[44] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. 2018. Spectre returns! speculation attacks using the return stack
buffer. In 12th USENIX Workshop on Offensive Technologies (WOOT 18).

13

spec:org/cpu2017/
https://developer.arm.com/documentation/102925/latest/
https://developer.arm.com/documentation/102925/latest/
https://developer.arm.com/documentation/109544/0100
https://developer.arm.com/documentation/109544/0100
https://kib.kiev.ua/x86docs/Intel/CET/334525-003.pdf
https://kib.kiev.ua/x86docs/Intel/CET/334525-003.pdf
https://llvm.org/docs/MemTagSanitizer.html
https://llvm.org/docs/MemTagSanitizer.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://llvm.org/docs/ScudoHardenedAllocator.html
https://developer.arm.com/documentation/ddi0596/2021-12
https://developer.arm.com/documentation/ddi0596/2021-12
https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/src/partition_alloc/partition_bucket.cc?q=TagMemoryRangeRandomly&start=21
https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/src/partition_alloc/partition_bucket.cc?q=TagMemoryRangeRandomly&start=21
https://source.chromium.org/chromium/chromium/src/+/main:base/allocator/partition_allocator/src/partition_alloc/partition_bucket.cc?q=TagMemoryRangeRandomly&start=21
https://docs.kernel.org/dev-tools/kasan.html
https://docs.kernel.org/dev-tools/kasan.html
https://lists.llvm.org/pipermail/llvm-dev/2018-March/122085.html
https://docs.kernel.org/arch/arm64/memory-tagging-extension.html
https://docs.kernel.org/arch/arm64/memory-tagging-extension.html

ISCA ’25, June 21–25, 2025, Tokyo, Japan Saber Ganjisaffar, Esmaeil Mohmmadian Koruyeh, Jason Zellmer, Hodjat Asghari Esfeden, Chengyu Song, and Nael Abu-Ghazaleh

[45] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shirazi, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. 2020. Speccfi: Mitigating spectre attacks
using cfi informed speculation. In 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 39–53.

[46] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
annual ieee/acm international symposium on microarchitecture. 469–480.

[47] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B Brockman, and Norman P Jouppi. 2011.
CACTI-P: Architecture-level modeling for SRAM-based structures with advanced
leakage reduction techniques. In 2011 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 694–701.

[48] Hans Liljestrand, Carlos Chinea, Rémi Denis-Courmont, Jan-Erik Ekberg, and N
Asokan. 2022. Color My World: Deterministic Tagging for Memory Safety. arXiv
preprint arXiv:2204.03781 (2022).

[49] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, et al. 2020.
Meltdown: Reading kernel memory from user space. Commun. ACM 63, 6 (2020),
46–56.

[50] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. 2021. {DOLMA}: Securing speculation with
the principle of transient {Non-Observability}. In 30th USENIX Security Sympo-
sium (USENIX Security 21). 1397–1414.

[51] Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico
Amslinger, Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Brad Beckmann,
Srikant Bharadwaj, et al. 2020. The gem5 simulator: Version 20.0+. arXiv preprint
arXiv:2007.03152 (2020).

[52] Giorgi Maisuradze and Christian Rossow. 2018. ret2spec: Speculative execution
using return stack buffers. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2109–2122.

[53] Brand Mark. 2023. First handset with MTE on the market. https:
//googleprojectzero.blogspot.com/2023/11/first-handsetwith-mte-on-
market.html

[54] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly compatible and complete spatial memory safety for C.
In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 245–258.

[55] Sumon Nath, Agustin Navarro-Torres, Alberto Ros, and Biswabandan Panda.
2024. Secure Prefetching for Secure Cache Systems. In 2024 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). 92–104. doi:10.1109/
MICRO61859.2024.00017

[56] Sumon Nath, Agustin Navarro-Torres, Alberto Ros, and Biswabandan Panda.
2024. Secure Prefetching for Secure Cache Systems. In 2024 57th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 92–104.

[57] Oleksii Oleksenko, Bohdan Trach, Tobias Reiher, Mark Silberstein, and Christof
Fetzer. 2018. You shall not bypass: Employing data dependencies to prevent
bounds check bypass. arXiv preprint arXiv:1805.08506 (2018).

[58] Hamza Omar and Omer Khan. 2020. Ironhide: A secure multicore that efficiently
mitigates microarchitecture state attacks for interactive applications. In 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 111–122.

[59] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Topics in Cryptology–CT-RSA 2006: The Cryptogra-
phers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005.
Proceedings. Springer, 1–20.

[60] Aditi Partap and Dan Boneh. 2022. Memory Tagging: A Memory Efficient Design.
arXiv preprint arXiv:2209.00307 (2022).

[61] Arash Pashrashid, Ali Hajiabadi, and Trevor E Carlson. 2023. HidFix: Efficient
mitigation of cache-based spectre attacks through hidden rollbacks. In 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE,
1–9.

[62] Andy Qin, Irene Ang, Kostya Serebryany, and Evgenii Stepanov. 2023. MTE - The
promising path forward for memory safety. https://security.googleblog.com/
2023/11/mte-promising-path-forward-for-memory.html

[63] Allison Randal. 2023. This is how you lose the transient execution war. arXiv
preprint arXiv:2309.03376 (2023).

[64] Gururaj Saileshwar and Moinuddin K Qureshi. 2019. Cleanupspec: An" undo"
approach to safe speculation. In Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 73–86.

[65] Christos Sakalis, Mehdi Alipour, Alberto Ros, Alexandra Jimborean, Stefanos
Kaxiras, and Magnus Själander. 2019. Ghost loads: What is the cost of invis-
ible speculation?. In Proceedings of the 16th ACM International Conference on
Computing Frontiers. 153–163.

[66] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-
nus Själander. 2019. Efficient invisible speculative execution through selective
delay and value prediction. In Proceedings of the 46th International Symposium on
Computer Architecture. 723–735.

[67] Michael Schwarz, Moritz Lipp, Claudio Alberto Canella, Robert Schilling, Florian
Kargl, and Daniel Gruss. 2020. Context: A generic approach for mitigating spectre.
In Network and Distributed System Security Symposium 2020.

[68] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, andDaniel Gruss. 2019. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 753–768.

[69] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and Daniel Gruss.
2019. Netspectre: Read arbitrary memory over network. In Computer Security–
ESORICS 2019: 24th European Symposium on Research in Computer Security, Lux-
embourg, September 23–27, 2019, Proceedings, Part I 24. Springer, 279–299.

[70] Jiwon Seo, Junseung You, Donghyun Kwon, Yeongpil Cho, and Yunheung Paek.
2023. ZOMETAG: Zone-based memory tagging for fast, deterministic detection
of spatial memory violations on ARM. IEEE Transactions on Information Forensics
and Security (2023).

[71] Kostya Serebryany. 2019. ARM memory tagging extension and how it improves
C/C++ memory safety. The Usenix Magazine 44, 2 (2019), 12–16.

[72] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In USENIX
ATC 2012. https://www.usenix.org/conference/usenixfederatedconferencesweek/
addresssanitizer-fast-address-sanity-checker

[73] Kostya Serebryany, Evgenii Stepanov, Aleksey Shlyapnikov, Vlad Tsyrklevich,
and Dmitry Vyukov. 2018. Memory Tagging and how it improves C/C++ memory
safety. arXiv preprint arXiv:1802.09517 (2018).

[74] Julian Stecklina and Thomas Prescher. 2018. Lazyfp: Leaking fpu register state
using microarchitectural side-channels. arXiv preprint arXiv:1806.07480 (2018).

[75] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-
sensitive fencing: Securing speculative execution via microcode customization.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 395–410.

[76] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. 2023. Inception: Exposing
new attack surfaces with training in transient execution. In 32nd USENIX Security
Symposium (USENIX Security 23). 7303–7320.

[77] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection.

[78] Martin Unterguggenberger, David Schrammel, Pascal Nasahl, Robert Schilling,
Lukas Lamster, and Stefan Mangard. 2023. Multi-tag: A hardware-software
co-design for memory safety based on multi-granular memory tagging. In Pro-
ceedings of the 2023 ACM Asia Conference on Computer and Communications
Security. 177–189.

[79] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdomwith transient
{Out-of-Order} execution. In 27th USENIX Security Symposium (USENIX Security
18). 991–1008.

[80] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue in-flight data load. In 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 88–105.

[81] OfirWeisse, Ian Neal, Kevin Loughlin, Thomas FWenisch, and Baris Kasikci. 2019.
NDA: Preventing speculative execution attacks at their source. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
572–586.

[82] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Raoul Strackx, Thomas F Wenisch, and Yuval Yarom.
2018. Foreshadow-NG: Breaking the virtual memory abstraction with transient
out-of-order execution. (2018).

[83] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos, and Cristiano Giuffrida.
2024. InSpectre Gadget: Inspecting the residual attack surface of cross-privilege
Spectre v2. In USENIX Security.

[84] Johannes Wikner and Kaveh Razavi. 2022. {RETBLEED}: Arbitrary speculative
code execution with return instructions. In 31st USENIX Security Symposium
(USENIX Security 22). 3825–3842.

[85] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. Invisispec: Making speculative execution
invisible in the cache hierarchy. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 428–441.

[86] Yuheng Yang, Thomas Bourgeat, Stella Lau, and Mengjia Yan. 2023. Pensieve:
Microarchitectural modeling for security evaluation. In Proceedings of the 50th
Annual International Symposium on Computer Architecture. 1–15.

[87] Yuval Yarom and Katrina Falkner. 2014. {FLUSH+ RELOAD}: A high resolution,
low noise, l3 cache {Side-Channel} attack. In 23rd USENIX security symposium
(USENIX security 14). 719–732.

[88] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W
Fletcher. 2020. Speculative data-oblivious execution: Mobilizing safe predic-
tion for safe and efficient speculative execution. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). IEEE, 707–720.

14

https://googleprojectzero.blogspot.com/2023/11/first-handsetwith-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handsetwith-mte-on-market.html
https://googleprojectzero.blogspot.com/2023/11/first-handsetwith-mte-on-market.html
https://doi.org/10.1109/MICRO61859.2024.00017
https://doi.org/10.1109/MICRO61859.2024.00017
https://security.googleblog.com/2023/11/mte-promising-path-forward-for-memory.html
https://security.googleblog.com/2023/11/mte-promising-path-forward-for-memory.html
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker
https://www.usenix.org/conference/usenixfederatedconferencesweek/addresssanitizer-fast-address-sanity-checker

SpecASan: Mitigating Transient Execution Attacks Using Speculative Address Sanitization ISCA ’25, June 21–25, 2025, Tokyo, Japan

[89] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and
Christopher W Fletcher. 2019. Speculative taint tracking (stt) a comprehensive
protection for speculatively accessed data. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 954–968.

[90] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe,
and Yuval Yarom. 2023. Ultimate {SLH}: Taking Speculative Load Hardening
to the Next Level. In 32nd USENIX Security Symposium (USENIX Security 23).
7125–7142.

15

	Abstract
	1 Introduction
	2 Background
	2.1 Transient Execution Attacks (TEAs)
	2.2 Memory Safety Vulnerabilities
	2.3 Memory Tagging

	3 SpecASan Design and Implementation
	3.1 Threat Model and Protection Scope
	3.2 Overview and Design Goals
	3.3 Microarchitectural Changes
	3.4 SpecASan Operation

	4 Security Evaluation
	4.1 Attacks Exploiting Memory Safety
	4.2 Attacks Exploiting Control-Flow
	4.3 Empirical Security Evaluation

	5 Performance and Complexity Evaluation
	5.1 Experimental Methodology
	5.2 Modeling ARM MTE
	5.3 Performance Evaluation
	5.4 Hardware Implementation Overhead

	6 Discussion
	7 Related Work
	8 Concluding Remarks
	Acknowledgments
	References

