
Collecting Autonomous Spreading Malware Using
High-Interaction Honeypots

Jianwei Zhuge1, Thorsten Holz2, Xinhui Han1, Chengyu Song1, and Wei Zou1

1 Institute of Computer Science and Technology,
Peking University, China.

{zhugejianwei|hanxinhui|songchengyu|zouwei}@icst.pku.edu.cn
2 Laboratory for Dependable Distributed Systems,

University of Mannheim, Germany.
holz@informatik.uni-mannheim.de

Abstract. Autonomous spreading malware in the form of worms or bots has
become a severe threat in today’s Internet. Collecting the sample as early as
possible is a necessary precondition for the further treatment of the spreading
malware, e.g., to develop antivirus signatures. In this paper, we present an inte-
grated toolkit called HoneyBow, which is able to collect autonomous spreading
malware in an automated manner using high-interaction honeypots. Compared
to low-interaction honeypots, HoneyBow has several advantages due to a wider
range of captured samples and the capability of collecting malware which propa-
gates by exploiting new vulnerabilities. We validate the properties of HoneyBow
with experimental data collected during a period of about nine months, in which
we collected thousands of malware binaries. Furthermore, we demonstrate the
capability of collecting new malware via a case study of a certain bot.

Keywords: Honeypots, Intrusion Detection Systems, Malware

1 Introduction

Since the outbreak of the Code Red worm in 2001, malware has become one of the
severest threats to the Internet. Especially autonomous spreading malware in the form
of worms or bots that propagates over the Internet and infects thousands of computers
all over the world in days or even minutes is a problem. In the form of botnets, the com-
prised computers can even be organized into networks that can be remotely controlled
by an attacker, and cause lots of harms following the attackers’ purposes [14].

In order to deal effectively and efficiently with the threat associated with malware,
CERTs, antivirus vendors, and security researchers need to obtain a sample of the actual
malware as quickly as possible in the early stage of propagation. This sample can then
be analyzed deeply, e.g., to study the propagation and infection mechanism, in order
to develop accurate detection signatures or an appropriate treatment strategy. Conven-
tional sample collection approaches include extraction of the binary from an infected
machine, reports from customers, exchange between AV vendors, and similar ways.
These conventional approaches generally need human interaction. With the increasing

birth rate of new malware and the speeding up of the malware propagation, e.g., in the
case of the Slammer worm [6], these malware collection approaches with human inter-
action are always too late for timely incident response. Therefore, we need a completely
automated malware collection scheme to catch these trends.

As a new active attack-decoying technology, honeypots have been used in the do-
main of Internet security threats measurement. A honeypot is defined as an information
system resource whose value lies in unauthorized or illicit use of that resource [13]. A
honeypot has no production usage, therefore, every access launched by the attackers –
including automated malware – can be captured and studied in detail. In general, honey-
pots can be distinguished into two different types: low-interaction and high-interaction
honeypots. Low-interaction honeypots offer limited interaction level to the attackers,
commonly through simulation (or emulation) of network services or operation systems.
Therefore, they can often only lure automated attacks, and can be identified by a hu-
man attackers easily. A popular example of this kind of honeypots is honeyd [8]. High-
interaction honeypots, on the other hand, use real systems for attackers to interact with.
This type of honeypots is commonly more complex, furthermore deployment and main-
tenance often takes more time. In addition, more risks are involved when deploying
high-interaction honeypots since an attacker can get complete control of the honeypot
and abuse it, e.g., to attack other systems on the Internet. Thus it is necessary to intro-
duce and implement data control mechanisms to prevent the abuse of honeypots. The
most common used setup for high-interaction honeypots are GenIII honeynets [2].

In this paper, we introduce the HoneyBow toolkit, an automated malware collection
system based on the high-interaction honeypot principle. The HoneyBow toolkit inte-
grates three malware collection tools called MwWatcher, MwFetcher, and MwHunter.
All of them use different techniques and strategies to detect and collect malware sam-
ples, in order to achieve a comprehensive collection efficiency. HoneyBow inherits the
high degree expressiveness of high-interaction honeypots: it can be constructed upon
various customized honeynet deployments, using the true vulnerable services as vic-
tims to lure malware infections, but not emulated vulnerable services. Thus HoneyBow
is capable of collecting zero-day malware even if the vulnerability exploited during the
propagation phase is unknown to the community before the malware outburst. Further-
more, we do not need to investigate the details of the vulnerabilities and implement
an emulated version of the vulnerable services, which is commonly required for low-
interaction honeypots. Thus the deployment of the HoneyBow toolkit is more flexible
and easy. On the other hand, HoneyBow has its limitation in the scalability compared to
low-interaction honeypots. Therefore, we combine HoneyBow and the low-interaction
honeypot Nepenthes [1] to build an integrated malware collection system.

This paper is organized as follows: Section 2 describes the related work in the area
of honeypot and automated malware collection research. Section 3 introduces the Hon-
eyBow toolkit in details, discusses the advantages and limitations of our approach, and
shows how to integrate Nepenthes, HoneyBow and the GenIII Honeynet to achieve a
fully-automated and efficient distributed malware collection solution. Section 4 com-
pares the malware collection efficiency between Nepenthes and HoneyBow. Finally, we
conclude the paper and give the further research directions in Section 5.

2 Related Work

Researchers have developed several methods and tools for malware sample collection
based on honeypot techniques, among them the Nepenthes platform [1]. Nepenthes
uses the principle of low-interaction honeypots: it emulates the vulnerable parts of net-
work services to lure and collect malware samples which attempt to infect the host by
exploiting these vulnerable services. As the comparable reference to our HoneyBow
toolkit, we compare the advantages, limitations, and the practical effects between them
throughout the paper. Using high-interaction honeypots, Levine et al. collected and an-
alyzed rootkits manually [5]. This paper is the first to introduce an automatic malware
collection schemes based on high-interaction honeypot principle. Furthermore, we are
interested in collecting all types of autonomous spreading malware, i.e., worms, bots,
and other kinds of malware, in an automated manner.

Antivirus vendors such as Symantec Inc. developed malware collection tools based
on the honeypot technology, and present their measurement status reports on the preva-
lent malware [12]. However, the actual methods and implementations used for these
projects are usually not open to the community due to the commercial benefits.

The Honeynet Project develops the GenIII honeynet [2], which composes the foun-
dation of our deployment. We use a GenIII honeynet as a building block of our system.
Portokalidis et al. introduce Argos [7], a containment high-interaction honeypot envi-
ronment to study malware as well as human-generated attacks. Argos is built upon the
Qemu x86-emulator and is capable of detecting exploitation with the help of a technique
called taint tracing. In addition, the tool generates intrusion detection signatures for a
detected attack. Argos has not implemented special mechanisms for malware sample
collection yet, but the principles behind the HoneyBow toolkit can be integrated into
Argos. The Potemkin virtual honeyfarm by Vrable et al. exploits virtual machines, ag-
gressive memory sharing, and late binding of resources to emulate more than 64,000
high-interaction honeypots using ten physical servers [16]. Although the implementa-
tion of Potemkin is not publicly available, and there are only preliminary results for the
scalability available, it shows a promising approach for improving the scalability limi-
tation of high-interaction honeypots deployment, which can be used by the HoneyBow
toolkit to overcome its limitations in the area of scalability.

A study similar to ours own was conducted by Goebel et. al [3]. They collected
2,034 valid, unique malware binaries using Nepenthes listening on about 16,000 IPs
within a university environment for a period of eight weeks, and present the measure-
ment and analysis results of autonomous spreading malware. We collect two orders of
magnitude more malware binaries by combining Nepenthes and HoneyBow. Further-
more, our study lasts for nine months, thus we can study long-term effects and the
temporal changes of malware.

Rajab et al. also use Nepenthes to collect spreading bot instances and focus their
work on botnets [10]. To support distributed deployment on the PlanetLab testbed, they
deploy a modified version of the Nepenthes platform. We propose a standalone structure
integrating Nepenthes, HoneyBow and the GenIII Honeynet for distributed honeynet
deployment, and have constructed a widely distributed honeynet on the public Internet
of China, which contains up to 50 high-interaction honeypots located at 17 nodes now.
The presented results are based on the data collected by such an infrastructure.

3 The HoneyBow Toolkit

In this section, we introduce the HoneyBow toolkit in detail. We present the individual
building blocks HoneyBow is based on, and show how the high-interaction honeypot
principle can be used to construct an automated malware collection approach, especially
for collecting malware samples that use unknown or new vulnerabilities.

A high-interaction honeypot is a conventional computer system, deployed to be
probed, attacked, and compromised [13]. Such a system has no production usage in the
network and no regularly active users. Thus it should neither have any unusual activ-
ities on the system nor generate any network traffic. These assumptions aid in attack
detection: every interaction with the honeypot is suspicious by definition. HoneyBow
uses this idea and is an approach to collect malware with high-interaction honeypots.
Compared to Nepenthes, this has the advantage that we do not need to emulate any
vulnerable services: we can use a conventional machine, patch it to an arbitrary patch-
level, deploy the honeypot, and wait for successful compromises. The key concept is
that a malware binary usually propagates itself through the network and installs a copy
of itself into the victim’s file system after a successful compromise. If we thus monitor
the network flow stream and the changes to the file system, we can detect an infection
attempt and also obtain a binary copy of the malware sample.

3.1 Architecture of the HoneyBow Toolkit

The HoneyBow toolkit uses similar concept as the GenIII honeynet architecture, the
most common setup for high-interaction honeypots used nowadays. In the honeynet re-
search area, there are two well-known methods to deploy high-interaction honeynets:
the first is called physical honeynets and the second one is called virtual honeynets [9].
Physical honeynets use normal machines for deploying high-interaction honeypots, and
use an actual networking device to link them together into a honeynet. In contrast to
this, virtual honeynets use virtual machines (VMs) like VMware or Virtual PC to set up
virtual honeypots. Obviously, virtual honeypots have advantages due to lower deploy-
ment costs and easier management compared to physical honeynet. On the other hand,
this kind of honeypots also has several disadvantages, e.g., in the area of performance
degradation, single point of failure, and higher risk of fingerprinting.

The HoneyBow toolkit supports both methods of high-interaction honeynet deploy-
ment. As depicted in Figure 1, the HoneyBow toolkit consists of three malware collec-
tion tools: MwWatcher, MwFetcher, and MwHunter, all of which implement different
malware collection strategies. Additionally, two tool called MwSubmitter and MwCol-
lector support distributed deployment and malware collection.

The individual building blocks of HoneyBow perform the following tasks:

– MwWatcher is one of the three malware collection tools implemented in the Honey-
Bow toolkit. It is based on the essential feature of honeypot – no production activity
– and watches the file system for suspicious activity caused by malware infections
in real time. The tool is executed on a high-interaction honeypot and exploits a
characteristic feature of propagating malware: when some malware successfully
exploits a vulnerable service and infects the honeypot, the malware sample will

Fig. 1: Schematic Overview of the HoneyBow architecture.

commonly transfer a copy of itself to the victim and stored it in the file system.
MwWatcher will then detect this change of the filesystem and catch a binary copy
of the malware sample. This sample is moved to a hidden directory and waits for
further collection by another tool called MwFetcher.

– MwFetcher is the second malware collection tool in the toolkit. This tool runs pe-
riodically on the host OS, issues a command to shutdown the honeypot OS, and
generates a listing of all files from the hard disk image of the honeypot system.
Then this listing is compared to a file list generated formerly from the clean sys-
tem, and all added or modified files are extracted since they could be artifacts of
successful infections. The samples collected by MwWatcher are also extracted and
aggregated with the MwFetcher results. After sample extracting, MwFetcher will
activate a restore procedure which reverts the honeypot OS to a clean state.

– MwHunter is the third malware collection tool in the toolkit and it is based on the
PE Hunter [18] tool. MwHunter is implemented as a dynamic preprocessor plu-
gin for Snort, an open source network intrusion detection system, and can be inte-
grated into the Snort instance running at inline mode on the Honeywall of a standard
GenIII honeynet [15]. MwHunter relies on the stream4 and stream reassembly
preprocessor build in the Snort daemon: it extracts Windows executables in PE for-
mat from the reassembled network stream and dumps them to the disk. The tool
tries to find a PE header based on the DOS header magic MZ and PE header magic
PE|00|, and then uses a simple heuristic to calculate the file length. Starting at the
position of the header, the resulting number of bytes is then dumped to a file. When
an executable has been successfully identified, MwHunter will treat the captured
binary as a malware sample due to the properties of the honeynet environment.
MwHunter generates an alert including the five tuple (source IP, source port, IP
protocol, destination IP, destination port) of the network stream, timestamp, and
MD5sum of the captured sample.

In a virtual honeynet deployment, apparently, the host OS refers to the operation
system where the virtual machine software is installed, and the restore procedure can
be easily implemented using the revert functionality that almost all of the virtual ma-
chines such as VMware support. But in a physical honeypot deployment, generally, we
need to manually reinstall the operation system or restore the file system using system
management software such as Norton Ghost. To achieve automated malware collection
and honeypot operation, we introduce a full-automatic system restore procedure for
physical honeypots based on the IPMI (Intelligent Platform Management Interface1)
and PXE (Preboot Execution Environment [4]) protocol. A schematic overview of the
system is given in Figure 2. In a physical honeynet deployment, the host OS refers to
the little customized Linux kernel which is downloaded and activated via the PXE pro-
tocol. MwFetcher operates after step 4 (load base OS) and before step 5 (download the
backup honeypot OS image).

Fig. 2: Full-automatic system restore procedure for physical honeypots

MwSubmitter and MwCollector support a distributed deployment: multiple Mw-
Fetcher instances can be deployed in a distributed honeynet and each instance sends
the collected information to MwSubmitter. This tool monitors the capture logs of the
different malware collection tools and the collected binaries, and submits new collected
samples to MwCollector. MwCollector is a network daemon at a central malware col-
lection server, accepting MwSubmitter’s sample submissions, and storing all collected
information and samples in a central database.

Because malware for the Windows operating system constitutes the vast majority
of malware in the wild, we implemented the HoneyBow toolkit for now only for Win-
dows. For other platforms such as Linux or FreeBSD, the mechanism of real-time file
system monitoring behind MwWatcher, and executables identification and extraction
behind MwHunter, can also be implemented. The implementation details differ, but the
principle remains the same.

1 www.intel.com/design/servers/ipmi/

3.2 Comparison of Advantages and Limitations

The HoneyBow toolkit integrates three malware collection tools using different mal-
ware identification and collection techniques: MwWatcher runs on the honeypot and
adopts real-time file system monitoring to detect and collect the changed files as mal-
ware samples. MwFetcher is executed periodically on the host OS and uses cross-view
file system list comparing technique to extract added/modified files. MwHunter is in-
tended to sit inline at the network level in front of high-interaction honeypots, and it can
identify and extract Windows executables from the network stream. Due to the nature of
honeynet environments, the resulting files collected by these three tools can be treated
as malware samples with a low false negative rate.

Although these three tools achieve the same objective, each has their own advan-
tages and limitations when comparing them with one another. We summarize and list the
comparison results in Table 1. MwWatcher can be easily detected and bypassed if the
malware implements some evading detection mechanisms. In contrast, MwFetcher and
MwHunter operate outside the honeypot box and are thus hard to detect by malware.
As MwWatcher and MwHunter monitor the file system and the network, respectively, in
real time, they can both deal with temporary files which delete themselves after execu-
tion. MwHunter can even capture some forms of memory-only malware samples which
do not store a copy of themselves on the permanent storage. MwFetcher can not collect
temporary files because they have been already eliminated when MwFetcher compares
the listing after a certain period. However, MwFetcher has its advantages on detecting
concealed malware, including rootkits, which protect themselves from exposing to the
application level APIs and tools. MwHunter relies on the signatures of Windows exe-
cutables during the transmission through the network: if the executable is compressed,
encrypted, or encoded, then they can not be detected by MwHunter.

Collection technique Advantages Limitations
MwWatcher Real-time file system

monitoring
Can deal with temporary files Can be easily detected

by malware
MwFetcher Cross-view file system

list comparing
Can deal with concealed mal-
ware, such as rootkits; Hard to
be detected by malware

Can not collect tempo-
rary files; Loss of exact
time and attacker infor-
mation

MwHunter Identification and ex-
traction from network
streams

Can deal with temporary files
and some memory-only sam-
ples; Passive, hard to be de-
tected by malware

Can not deal with
some specially crafted
binaries, e.g., self-
extracting archives

Table 1: Comparison of advantages and limitations among the three different HoneyBow tools.

Since these three tools have their unique advantages and limitations, we integrate
them into the HoneyBow toolkit, and hope to achieve better coverage of collecting
autonomous spreading malware.

Compared with the Nepenthes platform based on the low-interaction honeypot prin-
ciple, the HoneyBow toolkit has several advantages. First, HoneyBow is capable of col-
lecting zero-day malware samples which exploit unknown vulnerabilities. This feature
is significant for CERTs and AV vendors, since they can then obtain a malware sample
in the early stage of their propagation. For example, we could capture samples of bots
that use new attack vectors (e.g., MocBot which uses MS06-040 for propagation [11],
see Section 4.2) which were not caught by Nepenthes. Second, the high-interaction ap-
proach taken by HoneyBow does not need any signature of the malware, including no
detailed information about the exploited vulnerability. Thus we do not need to inves-
tigate the specific vulnerability and implement an emulated version of the vulnerable
service. The deployment and maintenance of the HoneyBow toolkit is quite easy. Third,
we can customize the patch level, installed network services, and existing vulnerabili-
ties of the deployed high-interaction honeypots, to satisfy the different requirements of
malware collection. Such a customization does not need to modify or re-configure the
HoneyBow toolkit and demonstrates the flexibility and easy-of-use of the tool. Fourth,
HoneyBow has the capability of collecting the second-stage samples (and possibly even
more stages) downloaded by the initial malware.

On the other hand, HoneyBow has several limitations: First, the scalability of Hon-
eyBow is limited. Although we can assign several IP addresses to a high-interaction
honeypot to enlarge the measurement scope and improve the malware collection effect,
HoneyBow lacks a large scalability compared with Nepenthes, which can emulate more
than 16,000 different IP addresses on a single physical machine. With techniques sim-
ilar to the ones used by Potemkin [16], this could be addressed in the future. Second,
HoneyBow relies on special hardware conditions (IPMI-enabled motherboard) when
deployed in the physical honeynet mode, and the cost of such a hardware is relative
high. When deployed in the virtual honeynet mode, the malware sample can detect the
virtual environment (e.g. VMware) and the presence of MwWatcher in order to evade
the collection and analysis. Third, HoneyBow can only collect malware samples that re-
motely exploit security vulnerabilities and infect the honeypot successfully by sending
a binary to the victim. Malware that propagates via e-mail or via drive-by downloads
can not be captured with such an approach.

Since both malware collection tools have their own advantages and limitations, we
should combine these two different malware collection methods adequately, exploiting
their advantages while restraining their limitations, to achieve the best malware collec-
tion efficiency and coverage.

3.3 Integration of HoneyBow, Nepenthes, and the GenIII Honeynet

To measure security threats on the Internet, we have constructed a distributed honeynet
based on the architecture shown in Figure 3. One of the most important objectives of the
distributed honeynet is to collect autonomous spreading malware samples in the early
stage of their propagation. Furthermore, we want to measure the prevalence of specific
malware samples. To achieve these objectives, we integrate HoneyBow, Nepenthes, and
the GenIII Honeynet into one architecture. Each honeynet site contains two physical
machines: one is used to deploy a standard GenIII virtual honeynet setup based on

VMware, and the other takes the role of a Site Server. This machine is responsible for
the storage, upload, and analysis of the collected samples and attack data.

Fig. 3: Integration of HoneyBow, Nepenthes and GenIII Honeynet

The HoneyBow tools are installed at different components of the honeynet site:
MwWatcher runs on the honeypot guest OS. We use both Windows 2000 and Windows
XP as guest OS, in order to cover the two common OS installed on end-user machines.
MwFetcher is executed on the host machine of the virtual honeynet, and MwHunter is
placed on the Honeywall in front of the honeypots. In order to integrate malware col-
lection methods based on the low-interaction honeypot principle, we install Nepenthes
in a Linux VM and place it behind the Honeywall. All of the malware samples col-
lected by MwWatcher, MwFetcher, MwHunter, and Nepenthes are aggregated to an
NFS-mounted directory on the Site Server. From there, all samples are submitted by
MwSubmitter to the MwCollector located at a central server site.

4 Collection Results of Autonomous Spreading Malware

In this section, we present the results of collecting and analyzing autonomous spreading
malware with the help of a widely distributed honeynet deployment containing 17 sites
and up to 50 honeypots around the public Internet of China. Each site is constructed
based on the topological structure shown in Figure 3, except the MwHunter tool because
it was integrated in the architecture just recently. Our collection and analysis results are
based on nine months in-the-wild measurements, which took place during October 2006
and June 2007.

4.1 Statistical Results

With the help of the distributed honeynet setup integrating Nepenthes, HoneyBow and
GenIII Honeynet, we had a hit count of about 800,000. The hit count specifies the
total number of downloaded samples, i.e., how often we successfully captured a binary,
disregarding multiple copies of the same binary. As a metric for uniqueness we use
the MD5sum. While this has same problems, e.g., small changes in a binary result in a
completely different MD5sum, it allows us to quickly determine whether or not we have
seen a particular binary before. Using this metric, we collected nearly 100,000 unique
sample binaries during the measurement period of nine months.

This means that we have on average about 2,800 collected and 360 new unique
binaries per day. The large amount of collected binaries is to some degree due to our
weak measurement of uniqueness: by using MD5 hash values, even slight differences
in two binaries cause a completely different hash value. This implies that if we capture
a polymorphic worm, we can not efficiently differentiate different versions of the same
binary. As part of our future work, we plan to develop better metrics to differentiate
between malware binaries.

All collected binaries were analyzed with MwScanner, a tool that combines nine
common antivirus (AV) engines, to identify the known malware variations and fami-
lies, and to examine the detection rates of these AV engines. Using MwScanner, each
collected sample is scheduled to be scanned several times: immediately after collection,
after 1 day, after 3 days, after 2 weeks, and finally after 1 month. These results allow us
to study the response rates of common AV engines to the threat brought by autonomous
spreading malware. In general, the detection rates are rather low. The detection rates
vary between 50.4% and 92.8% for the nine engines in the first scan. Even the best
engine in our test detected only 93.7% of the samples in the last scan one whole month
after the samples was collected.

Table 2 summarizes the comparison of collected malware samples for both Ne-
penthes and HoneyBow. On average, Nepenthes collects 1,539 samples per day and
HoneyBow 1,359, thus Nepenthes captures slightly more samples per day. Nepenthes
has predominance on the number of captures because of their capacity to capture unsuc-
cessful infections and some forms of exclusive samples. However, the situation changes
when comparing the number of unique samples per day: We collect about 63.7 unique
samples with Nepenthes and 296 unique samples with HoneyBow per day. HoneyBow
thus yields a higher number of unique malware samples than Nepenthes, mainly be-
cause it does not rely on known vulnerabilities. With the help of MwScanner, we are

able to compare the numbers of collected malware variations and families between Ne-
penthes and HoneyBow: We use the output of an AV-engine to assign a given malware
sample to a malware family and malware variant. For example, if binary A has the AV-
label Trojan.Delf-1470 and binary B the label Trojan.Delf-142, both belong to the same
family, but are different variants. As shown in Table 2, during the measurement period,
Nepenthes collected 467 different malware variations of 64 families, but HoneyBow
achieved 1,011 variations of 171 families.

Captures (hit count) Binaries Variants Families
Nepenthes (Total) 427,829 17,722 467 64
HoneyBow (Total) 376,456 82,137 1,011 171

Nepenthes (Average per day) 1,539 63.7 15.0 8.2
HoneyBow (Average per day) 1,359 296.0 17.8 10.6

Table 2: Comparison of total / average number of collected malware samples for number of
captures, binaries, variants, and families between Nepenthes and HoneyBow

In Figure 4, we illustrate the temporal distribution of hit counts and number of
unique samples captured over the period of nine months. The hit count in Figure 4(a)
shows that both tools collect a comparable amount of binary samples per day, disre-
garding duplicate copies. Figure 4(b) shows clearly the advantages of HoneyBow for
collecting unique binaries: on almost all days, we collect more unique binaries with
HoneyBow than with Nepenthes.

(a) Number of malware samples captured (hit
count) per day

(b) Number of unique malware binaries cap-
tured per day

Fig. 4: Comparison of malware collection effects between Nepenthes and HoneyBow

The spikes in Figure 4(b) (and also Figure 4(a)) are mainly caused by polymorphic
worms: in each iteration, such a worm changes certain parts of itself and thus the MD5
hash value is different. Due to our metric of uniqueness, a polymorphic worm thus

generates many hits and a large amount of unique binaries. In the wild, we commonly
see polymorphic worms like All.Aple which cause such spikes.

In Figure 5, we illustrate the temporal distribution of number of different malware
variants and families captured over the period of nine months. In both areas, HoneyBow
usually outperform Nepenthes. This is mainly due to the fact that Nepenthes relies on
static signatures of how to respond to an incoming attack. If a malware binary uses a
vulnerability that Nepenthes does not know how to emulate (or sometimes even a slight
variation of a known vulnerability), the tool can not capture a copy of this particular
binary. On the other hand, HoneyBow follows the high-interaction principle and uses a
real system, thus the actual system replies to an incoming attack and we do not need to
emulate a vulnerability.

(a) Number of different malware variants cap-
tured per day

(b) Number of different malware families cap-
tured per day

Fig. 5: Comparison of malware collection effects between Nepenthes and HoneyBow

4.2 MocBot case

With the help of an anecdotal report, we want to show how HoneyBow is also able to
capture malware samples that use an unknown or recent vulnerability.

During the MocBot outbreak in August 2006 [11], our distributed honeynet de-
ployment and the HoneyBow toolkit played an important role. In the early stages of
the MocBot outbreak, our HoneyBow system captured the sample for the first time at
03:54 pm of August 13 (Beijing time - CST). After the MocBot sample was downloaded
and executed on the high-interaction honeypot, it connected to an IRC-based botnet.
The Command and Control (C&C) server used the domain bniu.househot.com, and
the bot joined an obfuscated channel to accept the botherder’s commands. After several
hours, the MocBot sample received an obfuscated command which could be decoded
as e http://media.pixpond.com/[removed].jpg. The bot was thus instructed to
download and execute a file from a remote location. This command installed a second-
stage infection Trojan named Ranky. As shown in Table 3, HoneyBow collected both
samples in a very early time. MwScanner was executed by schedule at 04:10 am with
latest signature base: none of the AV engines was able to identify the MocBot sample.

Sample MD5 Family Timestamp (CST) Honeypot
9928a1e6601cf00d0b7826d13fb556f0 IRCBot 2006-08-13 03:54 vmpot.2k
4e618ca11b22732f412bafdac9028b19 Ranky 2006-08-13 11:14 vmpot.2k

Table 3: MocBot samples captured by the HoneyBow toolkit in its early stages of propagation

Since the exploited vulnerability (MS06-040) was not implemented in Nepenthes
(and is not implemented as of today), this tool can not deal with malware that ex-
ploits this particular vulnerability. After a deep analysis of the captured sample binary,
CNCERT/CC took appropriate strategies, announced the situation and treatment mecha-
nisms to the public. With the help of this information, the botnet constructed by MocBot
was then taken down and its propagation was restrained.

5 Conclusion and Future Work

In this paper, we presented an integrated toolkit called HoneyBow to collect samples of
autonomous spreading malware. HoneyBow is based on the high-interaction honeypot
principle and can collect malware in an automated manner. The HoneyBow toolkit con-
tains MwWatcher, MwFetcher, and MwHunter, each of them using a different malware
collection strategy. Compared with the Nepenthes platform based on the low-interaction
honeypot principle, HoneyBow has its advantages due to a larger range of captured sam-
ples and the capability of collecting malware samples that use new vulnerabilities. The
toolkit has its limitation mainly in the area of scalability. Thus we introduced a topolog-
ical structure which integrates Nepenthes, HoneyBow, and GenIII honeynets, to achieve
an even better malware collection coverage. Measurement results of a nine-month pe-
riod and the MocBot case validated that HoneyBow has better collection coverage com-
pared to Nepenthes and that it is capable of capturing unknown malware samples.

Nepenthes and HoneyBow are both only intended for malware sample collection:
they ignore some valuable information about malware propagation including informa-
tion about the attackers, targeted services, and exploited vulnerabilities. As an improve-
ment, we extend these tools to support the collection of more detailed information.
Even with the combination of Nepenthes and HoneyBow, we can not collect malware
that uses other propagation vectors like e-mails or exploitation of browsers. We plan to
extend our system with client-side honeypots [17] which can be used to fill this gap.

Acknowledgments

This work was supported in part by the 863 High-Tech Research and Development
Program of China under Grant No. 2006AA01Z445, Chinese Information Security Re-
search Plan under Grant No. 2006A30, and the Electronic Development Fund of Min-
istry of Information Industry of China under Grant No. [2006]634. The first author
Jianwei Zhuge was supported by a IBM Ph. D. Fellowship Plan.

We would like to thank the anonymous reviewers for valuable comments on a pre-
vious version of this paper.

Availability
The HoneyBow toolkit is released under the GNU General Public License (GPL). The
software is available for download at http://honeybow.mwcollect.org/.

References
1. Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix C. Freiling.

The nepenthes platform: An efficient approach to collect malware. In Proceedings of 9th
Symposium on Recent Advances in Intrusion Detection (RAID’06), pages 165–184, 2006.

2. Edward Balas and Camilo Viecco. Towards a Third Generation Data Capture Architecture
for Honeynets. In Proceeedings of the 6th IEEE Information Assurance Workshop, 2005.

3. Jan Goebel, Thorsten Holz, and Carsten Willems. Measurement and Analysis of Au-
tonomous Spreading Malware in a University Environment. In Proceeding of 4th Conference
on Detection of Intrusions & Malware, and Vulnerability Assessment (DIMVA’07), 2007.

4. Intel Corporation and SystemSoft. The preboot execution environment specification v2.1,
September 1999. http://www.pix.net/software/pxeboot/archive/pxespec.pdf.

5. John Levine, Julian Grizzard, and Henry Owen. Application of a methodology to charac-
terize rootkits retrieved from honeynets. In Proceedings of the 5th Information Assurance
Workshop, pages 15–21, 2004.

6. David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and Nicholas
Weaver. Inside the slammer worm. IEEE Security and Privacy, 1(4):33–39, 2003.

7. Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an emulator for fingerprint-
ing zero-day attacks for advertised honeypots with automatic signature generation. SIGOPS
Oper. Syst. Rev., 40(4):15–27, 2006.

8. Niels Provos. A virtual honeypot framework. In Proceedings of the 13th USENIX Security
Symposium, August 2004.

9. Niels Provos and Thorsten Holz. Virtual Honeypots: From Botnet Tracking to Intrusion
Detection. Addison-Wesley Professional, 2007.

10. Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis. A multifaceted ap-
proach to understanding the botnet phenomenon. In Proceedings of the 6th ACM SIGCOMM
Conference on Internet Measurement, pages 41–52, New York, NY, USA, 2006. ACM Press.

11. Joe Stewart. Mocbot/MS06-040 IRC bot analysis, August 2006. Internet: http://www.
secureworks.com/research/threats/mocbot-ms06040/.

12. Symantec Inc. Symantec Internet security threat report: Trends for January - June
07, September 2007. Internet: http://www.symantec.com/business/theme.jsp?
themeid=threatreport.

13. The Honeynet Project. Know Your Enemy. Internet: http://honeynet.org/.
14. The Honeynet Project. Know Your Enemy: Tracking Botnets, March 2005. Internet:

http://www.honeynet.org/papers/bots/.
15. The Honeynet Project. Honeywall CDROM, March 2007. Internet:

http://honeynet.org/tools/cdrom/.
16. Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C. Snoeren, Ge-

offrey M. Voelker, and Stefan Savage. Scalability, fidelity, and containment in the potemkin
virtual honeyfarm. SIGOPS Oper. Syst. Rev., 39(5):148–162, 2005.

17. Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev, Chad Verbowski, Shuo Chen, and
Samuel T. King. Automated web patrol with strider honeymonkeys: Finding web sites that
exploit browser vulnerabilities. In NDSS, 2006.

18. Tillmann Werner. honeytrap: Ein Meta-Honeypot zur Identifikation und Analyse neuer An-
griffstechniken. In Proceedings of the 14th DFN-CERT Workshop Sicherheit in vernetzten
Systemen, 2007. http://honeytrap.mwcollect.org.

