
Flowers for Automated
Malware Analysis

Chengyu Song and Paul Royal
College of Computing
Georgia Institute of Technology

Agenda
 Modern Malware
 History of Malware Analysis

–  Technologies, Detections, Transparency
Requirements

  Inverting Environment Detection
–  Flashback

 Defeating Automated Malware Analysis
–  Host Identity-based Encryption (HIE)
–  Instruction Set Localization (ISL)

 Discussion
–  Potential Countermeasures

 Conclusion

Modern Malware

Modern Malware

 The centerpiece of current threats
on the Internet
– Botnets (Spamming, DDOS, etc.)
–  Information Theft
– Financial Fraud

 Used by real criminals
– Criminal Infrastructure
– Domain of Organized Crime

Malware Cont’d

 There is a pronounced need to
understand malware behavior
– Threat Discovery and Analysis
– Compromise Detection
– Forensics and Asset Remediation

 Malware authors make analysis
challenging
– Direct financial motivation

Malware Obfuscations

 Pictorial Overview

 Project ZeroPack

ZeroPack

Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170
…

Program A

Encrypt/
Compress/
Transform

Obfuscation Tool

<Unpack Code>
(
(
(
(
…

Program A’

Machine Code
Transformed

Machine Code
(Appears as Data)

Obfuscations Cont’d

 Server-side Polymorphism
– Automate mutations

 When done professionally: Waledac
Collected on 12/30/2008

Collected on 2/25/2009

Obfuscations Cont’d

 ISA Virtualized Malware
– VMProtect, Code Virtualizer

Original Program

Px86

PL

ISA Virtualized Program

EMx86

Bytecode

Emulator
L

x86 Interface

L Interface
Translation

History of
Malware Analysis

Technologies

In-guest Tools

 Reside in the analysis environment
 Vulnerable to detection of

monitoring instrumentation
HMODULE kernel32 = NULL;
void *createfile_function_pointer = NULL;
unsigned char opcodes[2];

kernel32 = LoadLibrary("kernel32");
createfile_function_pointer =

 (void*)GetProcAddress(kernel32, "CreateFileA");
memcpy(opcodes, createfile_function_pointer, sizeof
(opcodes));

if(opcodes[0] == 0xFF && opcodes[1] == 0x25){
 puts(“Instrumentation detected.”);

}

Reduced-privilege VMMs

 Operate through sensitive data
structure relocation, binary
software translation

 Vulnerable to detection of side
effects

 In older versions of VMWare,
SYSRET treated as NOP when
executed in ring 3

Whole-system Emulators

 Operate by emulating processor
ISA (e.g., x86)

 Vulnerable to detection of unfaithful
CPU emulation

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>

int seh_handler(struct
 _EXCEPTION_RECORD
 *exception_record,
 void *established_frame,
 struct _CONTEXT *context_record,
 void *dispatcher_context)
{
 printf("Malicious code here.\n");
 exit(0);
}

int main(int argc, char *argv[]) {

 unsigned int handler =
 (unsigned int) seh_handler;

 printf("Attempting detection.\n");

 __asm("movl %0, %%eax\n\t"
 "pushl %%eax\n\t"::
 "r" (handler): "%eax");

 __asm("pushl %fs:0\n\t”
 "movl %esp, %fs:0\n\t");

 __asm(".byte 0x26, 0xcf");
 __asm("movl %esp, %eax");
 __asm("movl %eax, %fs:0");
 __asm("addl $8, %esp");

 return EXIT_SUCCESS;
}

Hardware Accelerated VMs
 Operate through use of hardware

virtualization extensions (e.g., Intel
VT-x or AMD SVM)
– Extensions to x86 ISA (new

instructions)
 Certain instructions cause VMExits

– Must be handled correctly
 Older versions of KVM terminate

with unhandled exit on guest
execution of VMREAD

Transparency Requirements

 Higher Privilege
 No Non-privileged Side Effects
 Same Instruction Execution

Semantics
 Identical Exception Handling
 Identical Notion of Time

Requirements Cont’d
 In-guest Tools

– No higher privilege
– Non-privileged side effects
– Exception handling issues

 Reduced Privilege Guests (VMware,
etc)
– Non-privileged side effects

 Emulation (QEMU, Simics)
– No identical instruction execution

semantics

State of Detection

 Analysis tool/environment detection
is a standard, inexpensive option

State of Detection Cont’d

 Detections by Popular Malware
– Conficker

•  Checks for relocated LDT
– TDL4

•  Checks for device emulation via WQL
– Bredolab

•  Checks for device emulation via
DeviceIoControl()

Inverting
Analysis Detection

Nature of the Arms Race
 Until recently, malware was “analysis

environment aware”
– Detect analysis environments
– Execute successfully otherwise

 Malware could be “analysis
environment oblivious”
– Exploit observation that malware is

overwhelmingly collected in one
environment and analyzed in another

– Bind to and successfully execute only on
originally infected host

Flashback
 Propagated in part by drive-by

downloads
 Payload is only intermediate agent

– Agent gathers hardware UUID, submits
request to C&C for full version

– Hardware UUID hashed (MD5), hash used
as decryption key to RC4 stream cipher

– Full version will only run on host with
same hardware UUID

Defeating Automated
Malware Analysis

Malware DRM

 Goal
– Make automated malware analysis

ineffective and unscalable
 Approach

– Cryptographically bind a malware
instance to the originally infected host

 Techniques
– Host Identity-based Encryption (HIE)
–  Instruction Set Localization (ISL)

Host Identity-based Encryption

 Replace random encryption key with a
key derived from host identity

  Host ID: Information that can uniquely identify a host

Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170
…

Program A

Encrypt/
Compress/
Transform

Obfuscation Tool

<Unpack Code>
(
(
(
(
…

Program A’

Collect Host ID Encryption Key

HIE Cont’d

 What to encrypt
– Full binary?

•  May not be a good idea
•  Leaves hint for brute-force cracking

–  Instead, only encrypt critical
mechanisms
•  For example, encrypt C&C domain names

or portions of domain name generation
algorithm (DGA)

HIE Cont’d

 Requirements for Host ID
– Unique
–  Invariant (to avoid false positives)

•  Can be as short as lifecycle of the
malware campaign (e.g., days or weeks)

– Can be gathered without privileges
– No special hardware support

HIE Cont’d
 Prototype Host ID (Windows)

– Subset of Process Environment Block
•  Username, Computer Name, CPU

Identifier
– MAC Address
– GPU Information

•  GetAdapterIdentifier
– User Security Identifier (SID)

•  Randomly generated by the OS
•  Unique across a Windows domain

HIE Cont’d

 Key Derivation Function (KDF)
– Key = KDF(ID, Salt, Iteration)
–  ID = Concatenation of all information
–  Salt = Random number >= 64 bits
–  Work Factor/Iteration = 10+/100+
–  KDF = Bcrypt or SHA family

HIE Cont’d

 Deployment Logistics
– Host ID must be determined before

malware instance is installed
•  Use intermediate downloader agent

–  Intermediate agent could be used by
researchers to obtain instance bound
to analysis environment
•  Use short-lived, one-time URLs similar to

password reset procedures

HIE Cont’d

 Advantages
– Protections of Modern Cryptography

•  Knowledge of how key is derived does not
affect the integrity of the protection

– Sample Independence
•  Intelligence collected from one malware

instance provides no advantage in
analyzing another

Instruction Set Localization

 Why ISL?
– Pure host-based protection is not

sufficiently resistant to forgery
 Goal of ISL

– Use C&C server to “authenticate”
malware client based on both host and
network identity

– Decouple malicious functionality to
prevent offline analysis

ISL Cont’d
 Malware as Platform-as-a-Service

– HIE-protected binary contains no
malicious functionality

– Binary acts as interpreter of bytecode
for malicious tasks served by C&C

– Task Bytecode
•  Can be unique to each executable

– A different bytecode ISA for each host
•  Alternatively, can be protected by key

derived from both host and network-level
identifiers

Malware

ISL Cont’d
 Replace random instruction set with

instruction set bound to the host

Client C&C Server

Host-ID Network ID PL

Malicious
Functionality

(PX86)

Translation

Bytecode
(PL)

Host-ID
Generation

Module

Emulator
(EMx86)

ISL Cont’d

 Prototype Network ID
– Geo-location

•  Granularity of state/province level (IP
address is not stable)

–  Permits certain level of mobility

– Autonomous System Number (ASN)
•  Geo-location may be outdated or incorrect

– Collected at C&C
•  Considered intractably difficult to forge

ISL Cont’d
 Alternative to Unique Instruction Sets

–  Instruction set derivation is not trivial
– Use task decryption key

•  Assigned when the malware instance is
delivered to the host

•  Encrypt bytecode tasks using the unique
ID (the key derived from host ID and
network ID)

– KDF = HMAC(unique ID), or keyed hash, with
the secret key kept at C&C server

ISL Cont’d

 Advantages
– HIE-protected binary is only an

interpreter (contains no malicious
functionality)
•  Instance cannot be analyzed offline

– Complementary to HIE for tasks
served to the interpreter
•  Unless the analyst can correctly mimic the

host and network environment, tasks will
not decrypt/execute

Discussion

Operational Security

 Both HIE and ISL use modern
cryptography
– Same environment must be provided

for successful analysis
– Without access to original

environment, entire key space must be
searched
•  Key space can be of arbitrary size

– Some configurations may be
impossible to duplicate

Operational Security Cont’d
 HIE and ISL are insensitive to

analysis techniques
– General knowledge of these

techniques does not compromise
protections offered

– Granularity of analysis used does not
affect protections

– Protections can be broken only if the
configuration parameters of the
original execution environment are
matched

Potential Countermeasures
 Analyze malware on the original infected

host
–  Approach would require allowing otherwise

blocked suspicious/known malware to
execute on a legitimate system

•  Could impact business operations and continuity
•  Would have complex legal and privacy

implications
 Use high-interaction honeypot

–  Bind malware to analysis environment by
replicating compromise circumstances

•  Inefficient
•  Bound samples will comprise only a small portion

of all collected samples

Countermeasures Cont’d

 Collect and duplicate host and
network environment information
– Depending on the information, may

have privacy and policy problems
– Duplicating network identifier requires

analysis system deployment on an
unprecedented and globally
cooperative scale

Countermeasures Cont’d

 Collect and duplicate only host
identifier, record and replay the
network interaction in separate
environment
– Without small additional protection,

could bypass ISL
– Mitigated by using SSL/TLS to encrypt

the C&C channel

Countermeasures Cont’d
 Employ allergy attack

– Make the information used by HIE and
ISL unstable

•  For example, change MAC address,
username, SID for every program invocation

•  Malware would not execute correctly
successfully on the infected host

– Would affect a variety of legitimate
software

– Success would depend on the
willingness of users to accept security
over usability

Conclusion
 Historically, malware has been
“analysis environment aware”

 Recent developments (e.g.,
Flashback) show that malware can be
“analysis environment oblivious”
– Primitive DRM-like technologies can be

matured (e.g., HIE and ISL)
 Future work must mitigate these

protections or examine alternatives to
threat detection and analysis

Please fill out your
feedback forms.

Questions?

