
Flowers for Automated
Malware Analysis

Chengyu Song and Paul Royal
College of Computing
Georgia Institute of Technology

Agenda
 Modern Malware
 History of Malware Analysis

–  Technologies, Detections, Transparency
Requirements

  Inverting Environment Detection
–  Flashback

 Defeating Automated Malware Analysis
–  Host Identity-based Encryption (HIE)
–  Instruction Set Localization (ISL)

 Discussion
–  Potential Countermeasures

 Conclusion

Modern Malware

Modern Malware

 The centerpiece of current threats
on the Internet
– Botnets (Spamming, DDOS, etc.)
–  Information Theft
– Financial Fraud

 Used by real criminals
– Criminal Infrastructure
– Domain of Organized Crime

Malware Cont’d

 There is a pronounced need to
understand malware behavior
– Threat Discovery and Analysis
– Compromise Detection
– Forensics and Asset Remediation

 Malware authors make analysis
challenging
– Direct financial motivation

Malware Obfuscations

 Pictorial Overview

 Project ZeroPack

ZeroPack

Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170
…

Program A

Encrypt/
Compress/
Transform

Obfuscation Tool

<Unpack Code>
(
(
(
(
…

Program A’

Machine Code
Transformed

Machine Code
(Appears as Data)

Obfuscations Cont’d

 Server-side Polymorphism
– Automate mutations

 When done professionally: Waledac
Collected on 12/30/2008

Collected on 2/25/2009

Obfuscations Cont’d

 ISA Virtualized Malware
– VMProtect, Code Virtualizer

Original Program

Px86

PL

ISA Virtualized Program

EMx86

Bytecode

Emulator
L

x86 Interface

L Interface
Translation

History of
Malware Analysis

Technologies

In-guest Tools

 Reside in the analysis environment
 Vulnerable to detection of

monitoring instrumentation
HMODULE kernel32 = NULL;
void *createfile_function_pointer = NULL;
unsigned char opcodes[2];

kernel32 = LoadLibrary("kernel32");
createfile_function_pointer =

 (void*)GetProcAddress(kernel32, "CreateFileA");
memcpy(opcodes, createfile_function_pointer, sizeof
(opcodes));

if(opcodes[0] == 0xFF && opcodes[1] == 0x25){
 puts(“Instrumentation detected.”);

}

Reduced-privilege VMMs

 Operate through sensitive data
structure relocation, binary
software translation

 Vulnerable to detection of side
effects

 In older versions of VMWare,
SYSRET treated as NOP when
executed in ring 3

Whole-system Emulators

 Operate by emulating processor
ISA (e.g., x86)

 Vulnerable to detection of unfaithful
CPU emulation

#include <stdlib.h>
#include <stdio.h>
#include <windows.h>

int seh_handler(struct
 _EXCEPTION_RECORD
 *exception_record,
 void *established_frame,
 struct _CONTEXT *context_record,
 void *dispatcher_context)
{
 printf("Malicious code here.\n");
 exit(0);
}

int main(int argc, char *argv[]) {

 unsigned int handler =
 (unsigned int) seh_handler;

 printf("Attempting detection.\n");

 __asm("movl %0, %%eax\n\t"
 "pushl %%eax\n\t"::
 "r" (handler): "%eax");

 __asm("pushl %fs:0\n\t”
 "movl %esp, %fs:0\n\t");

 __asm(".byte 0x26, 0xcf");
 __asm("movl %esp, %eax");
 __asm("movl %eax, %fs:0");
 __asm("addl $8, %esp");

 return EXIT_SUCCESS;
}

Hardware Accelerated VMs
 Operate through use of hardware

virtualization extensions (e.g., Intel
VT-x or AMD SVM)
– Extensions to x86 ISA (new

instructions)
 Certain instructions cause VMExits

– Must be handled correctly
 Older versions of KVM terminate

with unhandled exit on guest
execution of VMREAD

Transparency Requirements

 Higher Privilege
 No Non-privileged Side Effects
 Same Instruction Execution

Semantics
 Identical Exception Handling
 Identical Notion of Time

Requirements Cont’d
 In-guest Tools

– No higher privilege
– Non-privileged side effects
– Exception handling issues

 Reduced Privilege Guests (VMware,
etc)
– Non-privileged side effects

 Emulation (QEMU, Simics)
– No identical instruction execution

semantics

State of Detection

 Analysis tool/environment detection
is a standard, inexpensive option

State of Detection Cont’d

 Detections by Popular Malware
– Conficker

•  Checks for relocated LDT
– TDL4

•  Checks for device emulation via WQL
– Bredolab

•  Checks for device emulation via
DeviceIoControl()

Inverting
Analysis Detection

Nature of the Arms Race
 Until recently, malware was “analysis

environment aware”
– Detect analysis environments
– Execute successfully otherwise

 Malware could be “analysis
environment oblivious”
– Exploit observation that malware is

overwhelmingly collected in one
environment and analyzed in another

– Bind to and successfully execute only on
originally infected host

Flashback
 Propagated in part by drive-by

downloads
 Payload is only intermediate agent

– Agent gathers hardware UUID, submits
request to C&C for full version

– Hardware UUID hashed (MD5), hash used
as decryption key to RC4 stream cipher

– Full version will only run on host with
same hardware UUID

Defeating Automated
Malware Analysis

Malware DRM

 Goal
– Make automated malware analysis

ineffective and unscalable
 Approach

– Cryptographically bind a malware
instance to the originally infected host

 Techniques
– Host Identity-based Encryption (HIE)
–  Instruction Set Localization (ISL)

Host Identity-based Encryption

 Replace random encryption key with a
key derived from host identity

  Host ID: Information that can uniquely identify a host

Push EBP
MOV EBP, ESP
SUB ESP, 8
CALL 00401170
…

Program A

Encrypt/
Compress/
Transform

Obfuscation Tool

<Unpack Code>
(
(
(
(
…

Program A’

Collect Host ID Encryption Key

HIE Cont’d

 What to encrypt
– Full binary?

•  May not be a good idea
•  Leaves hint for brute-force cracking

–  Instead, only encrypt critical
mechanisms
•  For example, encrypt C&C domain names

or portions of domain name generation
algorithm (DGA)

HIE Cont’d

 Requirements for Host ID
– Unique
–  Invariant (to avoid false positives)

•  Can be as short as lifecycle of the
malware campaign (e.g., days or weeks)

– Can be gathered without privileges
– No special hardware support

HIE Cont’d
 Prototype Host ID (Windows)

– Subset of Process Environment Block
•  Username, Computer Name, CPU

Identifier
– MAC Address
– GPU Information

•  GetAdapterIdentifier
– User Security Identifier (SID)

•  Randomly generated by the OS
•  Unique across a Windows domain

HIE Cont’d

 Key Derivation Function (KDF)
– Key = KDF(ID, Salt, Iteration)
–  ID = Concatenation of all information
–  Salt = Random number >= 64 bits
–  Work Factor/Iteration = 10+/100+
–  KDF = Bcrypt or SHA family

HIE Cont’d

 Deployment Logistics
– Host ID must be determined before

malware instance is installed
•  Use intermediate downloader agent

–  Intermediate agent could be used by
researchers to obtain instance bound
to analysis environment
•  Use short-lived, one-time URLs similar to

password reset procedures

HIE Cont’d

 Advantages
– Protections of Modern Cryptography

•  Knowledge of how key is derived does not
affect the integrity of the protection

– Sample Independence
•  Intelligence collected from one malware

instance provides no advantage in
analyzing another

Instruction Set Localization

 Why ISL?
– Pure host-based protection is not

sufficiently resistant to forgery
 Goal of ISL

– Use C&C server to “authenticate”
malware client based on both host and
network identity

– Decouple malicious functionality to
prevent offline analysis

ISL Cont’d
 Malware as Platform-as-a-Service

– HIE-protected binary contains no
malicious functionality

– Binary acts as interpreter of bytecode
for malicious tasks served by C&C

– Task Bytecode
•  Can be unique to each executable

– A different bytecode ISA for each host
•  Alternatively, can be protected by key

derived from both host and network-level
identifiers

Malware

ISL Cont’d
 Replace random instruction set with

instruction set bound to the host

Client C&C Server

Host-ID Network ID PL

Malicious
Functionality

(PX86)

Translation

Bytecode
(PL)

Host-ID
Generation

Module

Emulator
(EMx86)

ISL Cont’d

 Prototype Network ID
– Geo-location

•  Granularity of state/province level (IP
address is not stable)

–  Permits certain level of mobility

– Autonomous System Number (ASN)
•  Geo-location may be outdated or incorrect

– Collected at C&C
•  Considered intractably difficult to forge

ISL Cont’d
 Alternative to Unique Instruction Sets

–  Instruction set derivation is not trivial
– Use task decryption key

•  Assigned when the malware instance is
delivered to the host

•  Encrypt bytecode tasks using the unique
ID (the key derived from host ID and
network ID)

– KDF = HMAC(unique ID), or keyed hash, with
the secret key kept at C&C server

ISL Cont’d

 Advantages
– HIE-protected binary is only an

interpreter (contains no malicious
functionality)
•  Instance cannot be analyzed offline

– Complementary to HIE for tasks
served to the interpreter
•  Unless the analyst can correctly mimic the

host and network environment, tasks will
not decrypt/execute

Discussion

Operational Security

 Both HIE and ISL use modern
cryptography
– Same environment must be provided

for successful analysis
– Without access to original

environment, entire key space must be
searched
•  Key space can be of arbitrary size

– Some configurations may be
impossible to duplicate

Operational Security Cont’d
 HIE and ISL are insensitive to

analysis techniques
– General knowledge of these

techniques does not compromise
protections offered

– Granularity of analysis used does not
affect protections

– Protections can be broken only if the
configuration parameters of the
original execution environment are
matched

Potential Countermeasures
 Analyze malware on the original infected

host
–  Approach would require allowing otherwise

blocked suspicious/known malware to
execute on a legitimate system

•  Could impact business operations and continuity
•  Would have complex legal and privacy

implications
 Use high-interaction honeypot

–  Bind malware to analysis environment by
replicating compromise circumstances

•  Inefficient
•  Bound samples will comprise only a small portion

of all collected samples

Countermeasures Cont’d

 Collect and duplicate host and
network environment information
– Depending on the information, may

have privacy and policy problems
– Duplicating network identifier requires

analysis system deployment on an
unprecedented and globally
cooperative scale

Countermeasures Cont’d

 Collect and duplicate only host
identifier, record and replay the
network interaction in separate
environment
– Without small additional protection,

could bypass ISL
– Mitigated by using SSL/TLS to encrypt

the C&C channel

Countermeasures Cont’d
 Employ allergy attack

– Make the information used by HIE and
ISL unstable

•  For example, change MAC address,
username, SID for every program invocation

•  Malware would not execute correctly
successfully on the infected host

– Would affect a variety of legitimate
software

– Success would depend on the
willingness of users to accept security
over usability

Conclusion
 Historically, malware has been
“analysis environment aware”

 Recent developments (e.g.,
Flashback) show that malware can be
“analysis environment oblivious”
– Primitive DRM-like technologies can be

matured (e.g., HIE and ISL)
 Future work must mitigate these

protections or examine alternatives to
threat detection and analysis

Please fill out your
feedback forms.

Questions?

