
Flowers for Automated Malware Analysis

Chengyu Song and Paul Royal
Georgia Institute of Technology

csong84@gatech.edu, paul@gtisc.gatech.edu

ABSTRACT

To handle the large volume of malware samples collected each

day, numerous automated malware analysis techniques have been

developed. In response, malware authors have made analysis en-

vironment detections increasingly popular and commoditized. In

turn, security practitioners have created systems that make an anal-

ysis environment look like a normal system. Thus far, neither side

has claimed a definitive advantage.

In this paper, we demonstrate techniques that, if widely adopted

by the criminal underground, would permanently disadvantage au-

tomated malware analysis by making it ineffective and unscalable.

To do so, we turn the problem of analysis environment detection on

its head. That is, instead of trying to design techniques that detect

specific analysis environments, we instead propose malware that

will fail to execute correctly on any environment other than the one

originally infected.

1. INTRODUCTION

Malware analysis is the process of understanding the be-
havior of malicious programs. As intelligence produced by
malware analysis systems and tools [3, 7–9] can endanger
the cyber criminal’s profit model, attackers have continu-
ously developed techniques to prevent malware from being
analyzed. In response, defenders have created new tech-
niques [5,11–13] to address malware analysis resistance. Thus
far, neither side has yet claimed a definitive advantage.

In this paper we propose techniques capable of render-
ing automated malware analysis ineffective and unscalable.
Specifically, we introduce concepts that, at the host and net-
work levels, interrelate the successful execution of a malware
sample with the unique properties of the original host it in-
fects. Note that these techniques are not intended to prevent
a human analyst from employing manual efforts to under-
stand the behavior of a particular piece of malware (e.g.,
Stuxnet).

2. DEFEATING AUTOMATED MALWARE

ANALYSIS

The decades-old antivirus model consists of four phases:
artifact collection, analysis, signature generation, and run-
time detection. The techniques we describe in this section
exploit the observation that collection (e.g., via antivirus
client submission or malware exchange) and analysis occur
in two different environments. Instead of trying to detect a
particular analysis environment, a sample can mitigate the

analysis step by failing to correctly execute in any environ-
ment that is different from the original one infected. This
goal is achieved through two techniques: host identity-based
encryption (HIE) and instruction set localization (ISL).

2.1 Host Identity-based Encryption (HIE)
Before deploying a malware instance on a given system,

information (based on system hardware and software) that
can uniquely identify this system is collected. This infor-
mation is then used to derive a key (or host ID) that will
be used to encrypt certain portions of the malware instance.
At runtime, the malware instance will gather the same set
of information again and use it to derive a decryption key.
Thus, if the instance is put into a different execution envi-
ronment, decryption will fail and the sample will not exhibit
malicious behavior.

Instead of using the host ID to protect the entire binary,
the most appropriate use of this technique may involve en-
cryption of only mechanisms critical to the malware. As
an example, portions of code or data associated with the
sample’s domain name generation algorithm (used to con-
tact C&C servers) could be encrypted. If decryption fails
(e.g., during the analysis phase), the sample will attempt to
resolve or connect to the wrong C&C server. The malware
analysis system would in turn treat this information as real.

HIE has two major advantages. First, it uses modern
cryptography, which means that knowledge of how a key
is derived does not affect the integrity of the protection.
Unless the defender can guess the same decryption key, they
cannot unlock the sample. Second, any two instances of
malware will possess different decryption keys, which means
that intelligence gathered from successfully analyzing one
malware instance provides no advantage in analyzing the
second.

Information used to generate the host ID must be unique,
invariant, and require no privilege to obtain. In Windows,
the following could be used:

• The Environment Block. When a process is cre-
ated, Windows stores environment information in the
process’ address space. In our design we use the pro-
cess owner’s username, computer name, and CPU iden-
tifier. As the environment block is directly accessible
by code that executes inside a given process, this in-
formation can be easily obtained.

• MAC address. The MAC address of the NIC can be
obtained from the GetAdaptersInfo API.

1



• GPU info. GPU information can be obtained from
the GetAdapterIdentifier method of IDirect3D9Ex
interface. In our design, we use the device description.

• SID of the user. Using the token of a process, the
GetTokenInformation API can be used to obtain the
SID of the process’ owner. This identifier is unique
across a Windows domain.

Once collected, this information can be concatenated and
used as an input to a cryptographic hash function (e.g.,
bcrypt [10]) to generate the host identifier, which will then
be used as the encryption/decryption key.

In addition to generation of the host identifier, deployment
logistics must be worked out that include the use of inter-
mediate code agents that determine the host ID to which
delivered malware instance will be bound. Solutions to this
problem are complicated by exploit reliability concerns that
mandate shellcode be as small as possible. Thus, gathering
information used to produce the host identifier must instead
be deferred to an intermediate downloader agent.

If security practitioners capture exploit shellcode or the
intermediate downloader, they could use these agents to ob-
tain a malware instance bound to their analysis environ-
ment. To solve this problem, we propose using one-time
URLs similar to those offered in password reset procedures.
More specifically, before the shellcode or downloader is sent
to the infected host, the server will assign it a unique path to
download the next stage. Although the operational specifics
will vary based on the attack vector (e.g., drive-by download
versus email attachment), in all cases the one-time URL will
also be short-lived.

2.2 Instruction Set Localization
Despite its advantages, host identity-based encryption is

not considered sufficiently resistant to forgery. Thus, we
also propose a network-based identifier that is derived at the
C&C server (and thus intractably difficult to forge). Specif-
ically, we selected the following:

• Geo-location. The IP address is the most straight-
forward candidate for the network identifier, but is not
sufficiently stable. For this reason the geo-location of
the IP address should be used instead, at the granu-
larity of state or province.

• Autonomous System Number (ASN). In general,
geo-location alone comprises a sufficient network iden-
tifier. However, as the publication of this information
is not mandatory, geo-location databases can contain
outdated or incorrect data. For this reason, the ASN
should be used as well.

The combination of host and network-based keys are used
by instruction set localization (ISL), a second technique that
provides a malware instance running on an infected system
with its actual malicious behavior.

Before detailing instruction set localization, brief mention
of instruction set virtualization (ISV) is merited. ISV (e.g.,
as used in VMProtect [2] and Code Virtualizer [1]) is an
obfuscation technique that protects software by transform-
ing the source code, intermediate representation, or native
machine code of a program into bytecode for an arbitrarily

chosen instruction set architecture. At runtime, the exe-
cution semantics of the original program are fulfilled by a
native interpreter bundled with the bytecode.

At a high level, instruction set localization binds (or local-
izes) a virtualized instruction set to a specific environment.
In this scenario, a malware instance deployed on a given
system represents only an interpreter of bytecode for a vir-
tualized instruction set. All malicious tasks, which will be
requested from and provided by the C&C server, represent
bytecode to be interpreted.

The interpreter’s request for a task includes the host iden-
tifier of the infected system. The C&C server combines the
host identifier with a network identifier and uses this infor-
mation as part of virtualizing the native code representing
the malicious task. The bytecode given to the infected host
will thus only run on that specific host, as determined by
forgery-resistant host and network-based identifiers.

In instruction set localization, each malware instance re-
ceives a task decryption key derived from the unique ID (the
combination of host and network-level identifiers) when de-
ployed. When responding to a task request, the C&C server
will encrypt the task using a key derived from the malware
instance’s unique ID. If there is a mismatch (e.g., in the net-
work identifier used to create the unique ID), the decryption
routine will generate invalid or incorrect bytecode that does
not reveal the malicious task. To prevent attacks associated
with the use of the task decryption key, its derivation should
use the unique ID as input to a keyed hash (e.g., HMAC);
the private key used in the keyed hash would be kept on the
C&C server and known only to the botnet operator.

Like host identity-based encryption, instruction set local-
ization offers several advantages. First, unless the inter-
preter deployment-time (or infection-time) signature matches
the runtime signature, the task cannot be executed correctly
due to incorrect bytecode interpretation. Second, the only
way to understand the task is to correctly determine its in-
terpretation, such as by brute-forcing the combination of
host and network identifiers.

3. DISCUSSION

Operational Security. Both HIE and ISL are imple-
mented using modern cryptography and thus are immune
to knowledge of how keys are generated– the only way to
break their protections is to derive the correct keys. As se-
curity organizations automatically analyze malware in envi-
ronments separate from those originally infected, derivation
of the correct keys requires searching through the entire key
space, which is of non-trivial size. Moreover, some config-
uration information (i.e., that used to derive the network
identifier) may be impossible to duplicate.

Another advantage of HIE and ISL is that they are insen-
sitive to analysis techniques. That is, regardless of the em-
ployed analysis granularity (e.g., fine-grained dataflow anal-
ysis used in [14] or high-level, blackbox network intelligence
collection), the resistance offered by HIE and ISL can be
broken only if the configuration parameters of the original
execution environment are successfully matched.

Potential Countermeasures. One straightforward idea
for bypassing the protections provided by HIE and ISL is to
analyze samples in the original environments they infected.

2



While such an approach may work for samples collected by
high-interaction honeypots, for a variety of practical rea-
sons the use of this method is not feasible for other sources.
Challenges include monitoring system capability limitations
(e.g., of low-interaction honeypots), legal and privacy con-
siderations and impact on business operations and continu-
ity (e.g., for client submissions). As samples collected by
high-interaction honeypots represent only a small portion of
all collected samples, the effectiveness of this approach is
limited.

An alternative to analyzing malware on the systems orig-
inally infected is the collection and duplication of host and
network-level environment information. However, for simi-
lar (though perhaps less significant) policy and privacy rea-
sons, the implementation of this idea would face significant
hurdles. Moreover, even if the host identifier can be suc-
cessfully forged, duplication of the correct network identifier
would require analysis system deployment on an unprece-
dented and globally cooperative scale.

Another potential countermeasure is to record and col-
lect the network activity between an infected host and the
C&C server, then replay that communication during analy-
sis. Without one additional protection, this approach would
bypass ISL and could be combined with attacks or coopera-
tive efforts to forge the host identifier. However, the use of
SSL/TLS for C&C communication mitigates the successful
use of this response.

Finally, the very manner by which HIE and ISL protect
a malware instance could be leveraged by the security com-
munity to create instability in a set of host or network iden-
tifiers and thus prevent successful or correct execution (i.e.,
the allergy attack [4]). However, this countermeasure could
also make legitimate software systems that use the same in-
formation equally unreliable. As such, the success of this
response may depend on the willingness of users to accept
security over usability.

4. CONCEPT INTEGRATION

In September 2011, Flashback [6] emerged as malware that
targeted Mac OS X. By April 2012, the botnet representing
Flashback-infected systems had grown to over 600,000 Mac-
intosh systems. The initial Flashback agent connects to its
C&C server and downloads one or more additional payloads
(e.g., those that can illegally monetize the victim’s use of
search engines). When requesting a payload, the agent sub-
mits the hardware UUID of the infected system. This value
is then hashed (via MD5) to create a key that, in combi-
nation with the RC4 stream cipher, binds the payload to
that system. Like HIE, unless the hardware UUID of the
system matches the one used to create the payload, it will
not execute successfully.

Flashback’s use of an infected system’s hardware UUID as
a decryption key demonstrates that malware authors have
already begun using protections like those described in this
paper. Security researchers must therefore prepare for a
possible future of malicious software that will only run on
the systems it originally infects.

5. CONCLUSION

In this paper we proposed two obfuscation techniques–

host identity-based encryption (HIE) and instruction set lo-
calization (ISL)–that make the successful execution of a mal-
ware sample dependent on the unique properties of the orig-
inal host it infects. Going forward, researchers must include
ways to mitigate these protections or examine alternatives
to threat detection and analysis. To highlight the current
and future importance of the associated concerns, we briefly
discussed the Flashback botnet’s use of a similar technique
to prevent the automated analysis of its samples.

6. REFERENCES
[1] Code Virtualizer Overview.

http://oreans.com/codevirtualizer.php.

[2] VMProtect Software Protection. http://vmpsoft.com.

[3] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling Active Botnet Infiltration Using
Automatic Protocol Reverse-Engineering. In
Proceedings of the 16th ACM Conference on Computer
and Communication Security, 2009.

[4] S. Chung and A. Mok. Allergy attack against
automatic signature generation. In Proceedings of the
8th International Symposium on Recent Advances in
Intrusion Detection, 2006.

[5] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization
extensions. In Proceedings of the 15th ACM conference
on Computer and Communications Security, 2008.

[6] Intego. Mac flashback trojan horse masquerades as
flash player installer package, September 2011.

[7] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and
R. Kemmerer. Behavior-based spyware detection. In
Proceedings of the USENIX Security Symposium, 2006.

[8] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and efficient malware
detection at the end host. In Proceedings of the 18th
conference on USENIX security symposium, 2009.

[9] A. Lanzi, M. I. Sharif, and W. Lee. K-tracer: A
system for extracting kernel malware behavior. In
Proceedings of the 16th Symposium on Network and
Distributed System Security (NDSS’09), 2009.

[10] N. Provos and D. Mazieres. A future-adaptable
password scheme. In In Proceedings of the 1999
USENIX Annual Technical Conference, FREENIX
Track, 1999.

[11] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and
W. Lee. Polyunpack: Automating the hidden-code
extraction of unpack-executing malware. In
Proceedings of the 22nd Computer Security
Applications Conference (ACSAC), 2006.

[12] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic
reverse engineering of malware emulators. In
Proceedings of the 30th IEEE Symposium on Security
and Privacy, 2009.

[13] A. Vasudevan and R. Yerraballi. Stealth Breakpoints.
In Proceedings of the 21st Computer Security
Applications Conference (ACSAC), 2005.

[14] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing system-wide information flow
for malware detection and analysis. In Proceedings of
the 14th ACM conference on Computer and
Communications Security, 2007.

3


