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ABSTRACT

Speculative attacks, such as Spectre and Meltdown, target spec-
ulative execution to access privileged data and leak it through a
side-channel. In this paper, we introduce (SafeSpec), a new model
for supporting speculation in a way that is immune to the side-
channel leakage by storing side effects of speculative instructions
in separate structures until they commit. Additionally, we address
the possibility of a covert channel from speculative instructions to
committed instructions before these instructions are committed.
We develop a cycle accurate model of modified design of an x86-64
processor and show that the performance impact is negligible.
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1 INTRODUCTION

Speculative execution is a standard microarchitectural technique
used in virtually all modern CPUs to improve performance. The
recent Meltdown and Spectre attacks [8, 15-19, 28, 29] (we call this
class of attacks speculation attacks) have shown that speculation
can be exploited to expose information that is otherwise inaccessi-
ble. Several attack variations have been demonstrated, including
arbitrary exposure of the full memory of other processes, OS ker-
nel, hypervisor, and even SGX enclaves [3, 28] to an unprivileged
attacker, making this a dangerous open attack vector on modern
systems. We describe these attacks and present our threat model in
Section 2.

Although a number of defenses and software patches have been
proposed to mitigate Spectre and Meltdown [7, 27], they often
address only one aspect of the attack, leaving attackers with other
possible variations that are still available. In addition, these patches
often lead to high overheads: 10-30% reported on average, but often
much higher. For example, Netflix reported 800% slowdown with
the Meltdown patches on their systems [6, 26]. Most of the solutions
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target a subset of the threat models and make assumptions that can
be broken by future architectures.

In this paper, we explore whether speculation can be made leak-
age free in a principled way, enabling CPUs to retain the perfor-
mance advantages of speculation while removing the security vul-
nerabilities that speculation exposes. To this end, we introduce
SafeSpec, a design principle where speculative state is stored in tem-
porary structures that are not accessible by committed instructions.
As instructions transition from being speculative to commitable,
any speculative state is moved to the permanent structures. On the
other hand, if a speculative instruction is squashed, the specula-
tive side effects are canceled in place leaving no measurable side
effects in the permanent structures and closing the vulnerability
exploited by speculation attacks. We consider two variants that
differ in when an instruction is considered safe to commit. SafeSpec
makes no assumptions on the branch predictor behavior or on spec-
ulative execution behavior; for example, it does not prevent the
attackers from mis-training or even polluting the branch predictor,
nor does it prevent them from speculatively reading privileged data.
Rather, SafeSpec interferes with the attacker’s ability to create a
covert channel using speculative data accesses to communicate
illegally-accessed data out. We describe SafeSpec in Section 3.

We demonstrate the SafeSpec principle by building a memory
hierarchy (caches and TLBs) that are free from speculation-induced
leakage. In particular, we expand the load-store queues to store a
pointer to a temporary associative structure that holds speculatively
loaded cache lines. We also introduce a similar structure to hold
speculatively loaded translation lookaside buffer (TLB) entries. We
describe the design and some of the complexity-performance trade-
offs in Section 4.

Additionally, we identify a transient type of leakage that occurs
in the introduced speculative state (byproduct of SafeSpec) that
we call transient speculation attacks (TSAs). We explore how to
construct the shadow structures to mitigate TSAs in Section 5.
Furthermore, Section 6 presents a performance, complexity and
security analysis of SafeSpec. We also analyze the complexity of
SafeSpec including the impact of all new structures, and demonstrate
a reasonable increase in the area and power consumption. Finally,
we show that SafeSpec stops proof-of-concept implementations of
all variants of Meltdown and Spectre, as well as the new variants
that we introduced.

In summary, the paper makes the following contributions:

e We introduce the SafeSpec model to protect speculation by
isolating speculative state from committed state.

o We identify a new class of speculative attacks (Transient
Speculation Attacks) that arises in SafeSpec. We mitigate
such attacks by sizing the shadow structures to prevent con-
tention.



Instruction entered
CPU pipeline

Instruction entered
commit stage

(1) Update shadow state (2) Annul update if instruction squashed l Move changes to committed state

——————— Speculative/Squashable - —————— —>k— —— - Committed *=—=—=>

Figure 1: SafeSpec overview

o We evaluate SafeSpec for caches and TLBs from a security,
performance and complexity perspective.

2 BACKGROUND AND THREAT MODEL

Speculation attacks such as Spectre, Meltdown, and their subse-
quent variants, exploit the fact that permissions are not checked
while instructions (or subsets of instructions in the case of Melt-
down) are being executed speculatively. Conventional wisdom was
that this microarchitecture assumption, which allows aggressive
and performance-beneficial speculation, was not dangerous since
the effects are simply undone once misspeculation is discovered (or
once an exception is raised in the case of Meltdown). The attacks
showed that, the secret values that are speculatively read can be
communicated through a side channel opening this dangerous and
previously unknown class of vulnerabilities.

Spectre and Meltdown attacks differ only in how they trigger
speculation. Meltdown attacks exploit speculation within a sin-
gle instruction that will eventually fail due to permission checks,
or processor faults. Before they fail, illegal accesses are executed
speculatively and communicated through the side channel. In con-
trast, Spectre attacks manipulate the branch prediction structures
to cause the speculative execution of code that will read the secret
data and communicate it.

if (offset < arrayl_size)
y = array2[arrayl[offset] * 641];

The code snippet above demonstrates Spectre variant 1 of the
attack. In this code, the attacker mistrains the branch in the if
statement to be always taken. To launch the attack, the code is
executed with a large offset, that makes the access to arrayl read
into the kernel address space. This access is performed speculatively
since the branch has been trained to be predicted taken. Then,
resulting value is used to perform an access into array2. As we
discussed above, accesses into the array2 leaving a footprint in
the cache for array2 that can be detected by the attacker (using a
standard side channel attack such as Flush and Reload [31].

Given the large number of variants that have been discovered, it
is unlikely that simple defenses that target each variant individu-
ally would provide principled protection from this class of attacks.
SafeSpec is general and applicable to different micro-architectural
structures. However, as a demonstration, our prototype implemen-
tation only protects caches and TLBs to explore concretely the
implications and complications that result from SafeSpec. There-
fore, we further assume that other covert channels, including the
ones through the branch predictor, memory bus and DRAM buffers
are out-of-scope for the current paper, but will be addressed using
similar principles by future work. Similarly, we only consider a
system with a single core. Thus, speculation attacks against the
cache coherence and memory consistency model states [25] are
also left for future work.

Instruction exited
CPU pipeline

3 SafeSpec: LEAKAGE-FREE SPECULATION

SafeSpec is a principled approach to secure processors against spec-
ulation attacks while retaining the ability to carry out speculative
execution to benefit from its performance. The general principle
(shown in Figure 1) addresses the problem at the root by introduc-
ing shadow state to separate state that is produced speculatively
without affecting the primary structures of the processor (which
we call committed state). For example, if a speculative load instruc-
tion causes a load of a cache line, instead of loading that cache
line into the processor caches, we hold the line in a temporary
structure. If the load instruction is later squashed, these effects
are removed in place, leaving no changes to the cache from the
misspeculated instructions, and closing the vulnerability. Alterna-
tively, if the instruction commits, the cache line is moved from the
temporary structure to the L1 cache. While SafeSpec is simple in
principle, a number of questions relating to its security, complexity
and performance have to be resolved.

When to move state from speculative to committed. There
are two options available to decide when to move state from the
shadow to the committed state. In the first variation, which we
call wait-for-branch (WFB), we can assume an instruction to be no
longer speculative when all the branches (more generally, all predic-
tions) it is dependent on have been resolved. WFB stops all variants
of spectre which depend on mistraining the branch predictor/return
stack buffer; none of the mis-speculated instructions moves to the
committed state. However, it does not prevent Meltdown which
relies on speculation within a single instruction.The second vari-
ation wait-for-commit (WFC) waits until the instruction commits
before moving its effects to the committed state, and therefore also
prevents Meltdown.

Shadow state organization and size: If the shadow state struc-
tures are too small, then either speculative state is replaced (causing
a loss of an update to the committed state if this data were to be
committed later), or the instruction has to stall until there is room in
the speculative structure before it issues. From a performance per-
spective, the organization and size of the shadow structure should
be designed such that the structures can hold the speculative state
generated by speculation as measured across typical workloads.
However, we will show that security considerations introduce more
stringent requirements on the speculative state.

Mitigating Transient Speculation Attacks: SafeSpec by con-
struction prevents speculative values from affecting the state of
committed structures, which is the pathway used to communicate
data covertly in the published speculation attacks. However, it does
not create isolation between instructions that are in the speculative
state. This creates a possibility for a new variant of attacks which
we call transient speculation attacks (TSAs). In particular, since most
instructions that commit start in the speculative state, there is a
window of time where they can share the speculative state with
misspeculated instructions before they are squashed. If we are not
careful, it is possible to create a covert channel in this period to
communicate the sensitive data from the mis-speculated branch
to the branch that will be committed, allowing the data to be exfil-
trated. The attack is illustrated in Figure 2 and we discuss how to
mitigate TSA attacks in Section 5.

Filtering Delayed Side Effects: One of the issues with SafeSpec
occurs when an instruction is squashed in the middle of its execu-
tion. If the instruction has already initiated a high latency operation
such as a read from memory, we have to ensure that the response
from memory can be discarded after it is received. We handle this
situation by discarding values received if there is no matching trans-
action. However, it may also be desirable to filter these transactions
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lower in the system, such that the committed transactions commit
directly, and the squashed ones are cancelled in place. To control
the size of this filter, we include a branch id with the transactions
and track operations at the branch granularity. The filter can also
be used to mark committed branches so that memory responses
corresponding to them are committed directly.

4 SafeSpec FOR CACHES AND TLBS

To demonstrate the SafeSpec principle, we implemented it to protect
CPU caches and TLBs from leakage during speculative execution. To
provide full protection, all speculatively updated structures should
follow the SafeSpec principle. We chose the CPU caches because
they are easily exploitable targets for covert communication and
the ones used in the Spectre/Meltdown attacks.

To protect from speculative covert channels that occur during
memory accesses, and following the SafeSpec principles, we need
to add shadow state to protect the following structures.

Data caches: this is the covert channel used in all three Melt-
down/Spectre variants. We add a shadow structure to hold the
cache lines that have been fetched speculatively. The structure is
associatively-filled lookup table (filled associatively, but accessed as
a lookup-table). In the Load/Store queue, we point speculative loads
that have received their data to a corresponding entry in this table.
Speculative instructions in the same execution branch as the load
that fetched a shadow cache line that accesses this cache line can
use the value from the shadow structure. If an instruction commits
(depending on WFB or WFC), the cache line is moved from the
shadow structure to the caches. If the instruction is squashed, the
shadow structure entry is marked as available. Thus, not even the
cache replacement algorithm state is affected by the speculative
data that does not commit.

Instruction caches: we built variants of Meltdown/spectre using
the instruction cache that replaces data dependent array access
with dependent branches to a location in an array to disclose the
data through the i-cache, illustrating that it must be protected as
well [12]. To develop this attack variant, we had to overcome branch
predictor behavior: data dependent branches were using the branch
predictor, rather than the secret data. Thus, we had to initialize the
branch target buffer (BTB) to a third location, and then introduce
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sufficient delay in the pipeline for the data dependent branch such
that it has time to register the data dependent location in the i-cache.
TLBs: we also conjectured that the TLBs may be used as a covert
channel vector. Given recent attacks such as Foreshadow [28] and
TLBleed [5] which directly target the page translation behavior for
speculation attacks, its critical to protect these structures.

To implement SafeSpec for the data cache, we add an associatively-
filled lookup table to hold speculatively read cache lines. It is im-
portant to note that memory consistency models, such as Total
Store Order (TSO) semantics of the x86-64, often ensure that store
side-effects appear in order; in other words, the cache is not up-
dated until the store commits, making stores robust to speculation
attacks. We augment the load store queue with a pointer to the
shadow cache line for load operations that are speculative. Any
instruction dependent on the speculative load reads the cache line
from the shadow structure. Once the load instruction commits, the
shadow cache line is written to the caches according to the inclusion
policy of the caches (in our case, since the caches are inclusive, it is
written to all levels of the cache) and freed in the shadow structure.
If the load is squashed, the value is freed in the shadow structure.
For the i-cache and the TLBs, we create similar shadow structures,
and augment the reorder buffer (ROB) with pointers to the shadow
state entries if the instruction is speculative and the cache line (or
TLB entry) were fetched speculatively.

From a performance perspective, the structures should be sized
such that they accommodate the speculative state needed by rep-
resentative workloads. If the shadow structures are full, we could
either drop some of the shadow state (leading to loss of updates to
the committed state with performance, rather than correctness im-
plications), or block until there is space in the shadow state before
issuing an instruction (also with performance implications). We will
see later that the constraints introduced by security requirements
to eliminate TSAs are more stringent than those required by perfor-
mance. Figures 3 show the distribution of the size of the speculative
state sampled over time for the SPEC 2017 benchmarks. The shadow
d-cache for 3 of our benchmarks grows occasionally to almost the
maximum possible size (bound by the size of the load-store queue).
A shadow i-cache with about 25 cache lines is sufficient for all of
the benchmarks. In addition, less than 10 entries are sufficient for
speculative iTLB misses, but some benchmarks require more dTLB
entries (up to 25). Given that the overhead of supporting WFC is
small, we elect to support WFC to get the increased protection to
cover Meltdown.

5 TRANSIENT SPECULATION ATTACKS

The SafeSpec principle prevents direct side-channel leakage from
the speculative state to the committed state, closing all known
speculation attacks. However, although the committed instructions



Table 1: Configuration of the Simulated architecture

Parameter Configuration

CPU 6-way issue, 96 Issue Queue entries, out-of-order,
no SMT, 72 Load Queue entries, 56 Store Queue entries,
224 ROB entries, 64 iTLB entries, 64 dTLB entries,
commit up to 6 Micro-Ops/cycle

Private L1 i-/d-Cache 32 KB, 8-way, 64B line, 4 cycle hit

Shared L2 Cache 256 KB, 4-way, 64B line, 12 cycle hit

Shared L3 Cache 2 MB, 16-way, 64B line, 44 cycle hit

and the speculative instructions eventually reside in separate struc-
tures, creating the separation and closing the channel, eventually
committed instructions can start out as speculative. During this
window, the eventually committed instructions share the shadow
state with any speculative instructions that will be squashed. If the
shadow structures are not designed carefully, covert channels can
be created during this transient window to communicate sensitive
data (which can only be read by a mis-speculated path) to an in-
struction pathway that will be committed such that the leakage
results are visible to the program. It is important to emphasize
that these attacks (which we call Transient Speculation Attacks,
or TSAs) are substantially more difficult than Spectre/Meltdown
because there is only a limited window of speculation in which
the malicious Trojan code must not only read sensitive data, but
also create measurable contention to the spy before either of their
predicate branches commits.

TSAs are possible only if the shadow structures are shared and
sized such that they enable contention. Consider an example where
we size the TLB shadow structures based on typical program behav-
ior. Since programs do not have many pending TLB misses within
a speculation window;, it stands to reason to size these structures
to be small. In the rare case when the shadow structures are full,
we may handle this by either discarding updates or by blocking the
issue of requests when there is no room in the shadow structure.
Either of these behaviors provides potential for a covert channel.
Consider that the Trojan fills the structures with TLB misses if it
wants to communicate a 1. If updates are discarded, a spy can detect
a communication if its TLB accesses are not committed (they were
discarded). Alternatively, if we block TLB accesses when the struc-
tures are full, the spy can detect a communication of 1 if its TLB
accesses are delayed causing a longer TLB miss time. The attack is
illustrated in Figure 2.

To prevent TSAs through the shadow structures, we elect to
provision them for the worst case scenario to make sure that tran-
sient contention cannot be created within a speculation window.
This approach guarantees that no contention on the shadow struc-
tures is possible, at the cost of provisioning fairly large associative
structures. We believe that with some more analysis, or with some
detection defense that detects an attack when the shadow struc-
tures grow abnormally large, this worst case provisioning can be
substantially relaxed without introducing leakage.

6 EVALUATION

We conduct experiments with MARSSx86 [21], which is a cycle-
accurate full-system simulator of out-of-order x86 cores. We con-
figured the CPU and cache models of MARSSx86 to simulate the
Intel Skylake processor as shown in Table 1.

6.1 Performance Analysis

The first experiment measures the performance of SafeSpec com-
pared to the baseline processor under conservative condition. In
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particular, we consider the shadow state access time to be equivalent
to the access time of the L1 cache (4 cycles), when it is substantially
smaller, and accessed as a lookup table. Figure 4, shows the IPC
values for all SPEC2017 benchmarks. We see a small improvement
in performance with a geometric mean of about 3%. We believe that
this advantage results from a combination of effects including the
larger effective cache size and avoiding polluting the cache with
wrong path speculative state.

To gain more insight into the observed performance, Figure 5
shows the miss rate on read operations in the d-cache. There is
little difference in behavior between SafeSpec and the baseline with
respect to the data accesses. Figure 6 shows the percentage of the
reads that hit the shadow structures.

The i-cache behavior is significantly different than the d-cache.
Figure 7 shows the miss rate on the i-cache. For the i-cache, there are
more substantial differences between WFC and the baseline. Some
outlier behavior such as Pop2 and imagick where the percentage of
i-cache misses drops significantly could be due to the larger size
of the shadow structures expanding the effective size of the cache
reducing conflict and capacity misses. Moreover, we see in Figure 8
that most of the hits occur in the shadow i-cache structure reflecting
the high spatial locality of the access patterns in the i-cache; in other
words, while a cache line is still speculative, several instructions
execute from the same cache line. In contrast, the d-cache has less
spatial locality, resulting in fewer accesses hitting the shadow state.
We note that the cache miss rates are combined for all instructions
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Table 2: Security Analysis of Meltdown/Spectre
Spectre WFC WFB | Meltdown WFC WFB
Spectre-PHT [14, 15] v v Meltdown [17] v X
Spectre-BTB [15] v v Foreshadow [28, 29] v X
Spectre-STL [9] v X Variant 3a [1] v X
Spectre-RSB [16, 18] v v Lazy FP [24] v X
Variant 1.2 [14] v X

(i.e., we do not exclude instructions that are squashed); therefore,
many of these hits in the shadow structures may not end up being
productive.

To understand the benefits of the shadow structure in filter-
ing misspeculated accesses, Figure 9 shows the percentage of the
shadow state that ends up being committed for the i-cache and the
d-cache. We observe that a substantially higher percentage of the
d-cache state ends up being committed, perhaps due to the fact
that speculative loads are issued later in the pipeline making them
more likely to commit. For both the d-cache and especially the i-
cache, the shadow structure filters a large number of misspeculated
accesses that are squashed without cluttering the caches.

Table 3: SafeSpec hardware overhead at 40nm.

Power (mW) Power (%) Area(mm?) Area (%)
Secure 290.27 26.4 9.79 17
WEC 35.14 3 1.17 2

6.2 Security Analysis

Table 2 shows that both WFC and WFB close Spectre attacks, but
only WFC is guaranteed to also stop Meltdown attacks. We evalu-
ated our proof of concept code implementing Spectre in the simula-
tor and found indeed that the attack fails under both WFC and WFB
models. We evaluated the protection coverage for Spectre-style at-
tacks targeting structures other than the d-cache (i-cache, iTLB,
and dTLB). All three side channels were closed. We tested proof
of concept code for the i-cache and a transient attack through the
d-cache and observed that the attack fails on the SafeSpec protected
CPU. We could not get TLB-based attacks working in the simulator,
perhaps because of the large delays of page walks, or due to the
limitations of the MarSSx86 models of the TLBs.

6.3 Hardware overhead

SafeSpec introduces hardware overheads to the CPU pipeline due
to the addition of the shadow structures. We compared the hard-
ware overhead for two different sizes for the shadow structures; 1)
Secure: shadow structure size equal to the maximum speculative
state during speculation; and 2) SafeSpec with WFC: shadow struc-
ture sizes were optimized based on 99.99% speculative state size for
SPEC2017 benchmarks using the WFC implementation. We report
the area, power, and access time values, as well as a percentage
compared to the Skylake CPU L1 cache configuration (shown in
Table 1), using CACTI v5.3 [23] in Table 3. The results show that
the area overhead is tolerable for the secure design, making the

design highly practical.

7 RELATED WORK

Multiple variants of Spectre have been proposed that exploit dif-
ferent control flow speculation triggers; Spectre versions that ex-
ploit the Pattern History Table which predicts a branch direc-
tion [4, 14, 15], the Branch Target Buffer [15], speculative the
store-to-load forwarding [9], and the Return Stack Buffer [16, 18]
have been demonstrated. On the other hand, Meltdown-type at-
tack exploits speculative out-of-order instructions that lead to an
exception. Multiple variants have been proposed: Meltdown-PF
(Meltdown [17] and Foreshadow [28, 29]) exploit the page fault,
Meltdown-BR (Variant 1.2 [14]) exploit the bound range exceeded
exception, Meltdown-NM (Lazy FP [24]) exploit the device-not-
available exception, and Meltdown-GP (Variant 3a [1]) exploit the
general protection fault. Canella et al. summarize these and addi-
tional variants [2].

A range of defenses are starting to be proposed to prevent one
or more components of speculative attacks including speculation
prevention, providing secret data isolation, or that interfere with
side channel communication. In general, these solutions are ad
hoc, often focused on a specific attack. Moreover, most result in
substantial performance impact. We overview some of the most
promising defenses in the remainder of this section.

Speculation prevention: These defenses focus on preventing
speculation by preventing misprediction [10, 11, 14, 20, 27] or
faults [28]. They focus on protecting against specific attack or



attack type; Spectre-PHT [10, 14, 20], Spectre-BTB [10, 27], Spectre-
RSB [11], or Spectre-STL [14]. Furthermore, they hurt performance,
potentially significantly, since they limit the speculation.

Secret data protection: These defenses focus on making sure that
secret data can not be reached [7, 17]. However, they have limita-
tions: Kernel Page-Table Isolation (KPTI) [7, 17] have performance
overhead and some privileged memory locations must always re-
main mapped in user space due to x86 design [2], and Site Isola-
tion [22] limits the amount of data that is exposed to side-channel
attacks but attacks are still possible.

Dynamically Allocated Way Guard (DAWG): DAWG [13] is a
method to securely partition the cache at the cache way granularity
to provide isolation between protection domains. Therefore, it re-
quires changes to the cache and coherence protocol. In addition, it
requires domains enforcement management in software. While this
solution, similar to our defense, prevents leaking the data through
a side-channel, it only protects across isolation domains and not
those performed within the same address space or isolation domain.
InvisiSpec: most relevant to our work, and developed concurrently
with it (SafeSpec technical report was disclosed in June, 2018 [12]),
is an architectural solution called InvisiSpec [30]. Like SafeSpec,
InvisiSpec is designed to make transient loads invisible in the cache
hierarchy. InvisiSpec focus is on cache coherence and memory
consistency rather than understanding the implications on a single
core. They did not consider transient side channels on the shadow
structures, sizing issues, or carry out overhead characterization.
Moreover, InvisiSpec was focusing on protecting the d-cache while
we developed attacks and defenses on i-cache and the TLB, applying
the principle more widely.

8 CONCLUDING REMARKS

We presented a general principle for supporting speculative ex-
ecution in a way that makes out-of-order processors immune to
speculation-based attacks. The principle relies on leaving specu-
lative state in shadow structures, and only committing this state
once the instructions that generate them are guaranteed to commit.
Thus, side-effects of misspeculation are hidden from the primary
structures of the CPU, closing the vulnerability. We demonstrated
the principle to protecting caches and TLBs of the CPU. Our design
completely closes all published attacks, as well as new variants that
we developed to leak through the i-cache or the TLBs. We showed
that careful design is needed to prevent a form of leakage that can
arise while instructions share the speculative state. We mitigate
this leakage by sizing the speculative state conservatively. Con-
structed this way, transient attacks also become impractical. The
performance of the SafeSpec CPU was actually slightly higher than
an unmodified CPU, despite conservative estimates on the shadow
state. We believe that the presented design represents a first step of
many towards a principled protection of speculative execution. To
provide complete protection, other microarchitectural states that
can be updated speculatively should use the same principle.
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