
Chengyu Song 01/24/2022

CS255: Computer Security
Memory Safety

Memory Errors

• Spatial errors: out-of-bound memory access

• Stack buffer overflow

• HeartBleed

• Temporal erros

• Use-before-initialization (UBI)

• Use-after-free (UAF)

https://heartbleed.com/

HeartBleed
A simple bug in the OpenSSL library

• A out-of-bound memory read vulnerability in the implementation of the
heartbeat extension (RFC6520) of the TLS (Transportation Layer Security)
protocol

• Allows attackers to steal sensitive information from the vulnerable website
(e.g., the private key of a X509 certificate)

• It was introduced into the software in 2012 and publicly disclosed in April
2014

HeartBleed
Impacts

System administrators were frequently slow to patch their systems. As of 20 May 2014,
1.5% of the 800,000 most popular TLS-enabled websites were still vulnerable to
Heartbleed.[9] As of 21 June 2014, 309,197 public web servers remained vulnerable.
[10] As of 23 January 2017, according to a report[11] from Shodan, nearly 180,000
internet-connected devices were still vulnerable.[12][13] As of 6 July 2017, the number had
dropped to 144,000, according to a search on shodan.io for "vuln:cve-2014-0160".[14] As
of 11 July 2019, Shodan reported[15] that 91,063 devices were vulnerable. The U.S. was
first with 21,258 (23%), the top 10 countries had 56,537 (62%), and the remaining
countries had 34,526 (38%). The report also broke the devices down by 10 other
categories such as organization (the top 3 were wireless companies), product (Apache
httpd, nginx), or service (https, 81%).

https://en.wikipedia.org/wiki/Heartbleed#cite_note-9
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Graham-2014-06-21-10
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Shodan-report-DCPO7BkV-11
https://en.wikipedia.org/wiki/Shodan_(website)
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Schwartz-2017-01-30-12
https://en.wikipedia.org/wiki/Heartbleed#cite_note-MacVittie-2017-02-02-13
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Carey-2017-07-10-14
https://en.wikipedia.org/wiki/Heartbleed#cite_note-Shodan-report-2019-15

HeartBleed
Background

• Transportation Layer Security (TLS) protocol (RFC 8446)

• A cryptographic protocol for secure communication

• Two sub-protocols

• Handshake Protocol: for authentication

• Record Protocol: for confidentiality and integrity

• The underlying protocol of https://

https://datatracker.ietf.org/doc/html/rfc8446

HeartBleed
The TLS Handshake Protocol

• Verify the identify of the
server [and the client]

• Exchange a secret to
derive the session key
for the Record Protocol

HeartBleed
How authentication is done

• Based on public key
cryptographic

HeartBleed
The TLS Record Protocol

HeartBleed
The HeartBeat Extension

• Motivation: how to know if the peer is still alive

• Renegotiation (handshake) is expensive

• Solution: a heartbeat message

• The Heartbeat protocol messages consist of their type and an arbitrary
payload and random padding of at least 16 bytes

• When a HeartbeatRequest message is received and sending a
HeartbeatResponse is not prohibited as described elsewhere in this document,
the receiver MUST send a corresponding HeartbeatResponse message
carrying an exact copy of the payload of the received HeartbeatRequest

HeartBleed
The vulnerability

• Could you image what
is the bug/
vulnerability?

struct {
 HeartbeatMessageType type;
 uint16 payload_length;
 opaque payload[HeartbeatMessage.payload_length];
 opaque padding[padding_length];
} HeartbeatMessage;

Spatial Memory Errors
Definition

• Spatial Memory Errors occur when the access is out-of-bound

• How to define the bound?

• A1: pointer as a capability —> SoftBound

• A2: undefined memory —> AddressSanitizer

http://www.pl-enthusiast.net/2014/07/21/memory-safety/
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports)
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf

Pointer as a Capability
Creation of pointers

• What are legitimate ways to create pointers?

• Allocation

• Stack and global: declaration means allocation

• Heap: explicit (e.g., malloc)

• Address taken

• of code: fp = &func

• of data: p = &d

Pointer as a Capability
Creation of pointers

• Propagation

• p1 = p2

• Pointer arithmetic

• p = &array[index]

• p = &struct->field

• Type casting

• p1 = type_cast(p2)

Pointer as a Capability
How to track capabilities

• Fat pointer: p := {bounds, address}

• Fastest bounds lookup, but breaks binary compatibility

• Lotfat pointer: p := {meta_addr, address}

• Faster bounds lookup, but requires special memory layout

• Decoupled metadata: meta(p) = lookup(p)

• Slow bounds lookup, but has good binary compatibility

https://dl.acm.org/doi/pdf/10.1145/503272.503286
https://dl.acm.org/doi/pdf/10.1145/3192366.3192388
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports

Pointer as a Capability
Capability reduction

• What is the expected capability of a pointer?

• Based on allocation size?

• Based on type?

• A combination of both: whichever is smaller

Pointer as a Capability
Challenges

• Type casting: how to recover (allocation) capabilities

• Track the allocation type (e.g., EffectiveSan)

• Different capabilities for different operations

• char *p = “abc”; *p; p++;

• Atomicity

• How to make sure (decoupled) capabilities are always sync with the pointer

https://www.comp.nus.edu.sg/~gregory/papers/pldi18types.pdf
https://intel-mpx.github.io/

Pointer as a Capability
Capability forgery

• Recall our stack buffer overflow case, what did we forge?

 bottom of top of
 memory memory
 buffer sfp ret *str
 <=----- [AAAAAAAAAAAAAAAA][AAAA][AAAA][AAAA]

 top of bottom of
 stack stack

Pointer as a Capability
How to prevent forgery?

• Encryption: PointerGuard, Pointer Authentication Code (PAC)

• Usually not strong enough

• Tagged memory: the CHERI architecture

• Requires hardware changes

• Decoupled and protected metadata: SoftBound, Intel Memory Protection
Extension (MPX)

https://www.usenix.org/event/sec03/tech/full_papers/cowan/cowan_html/
https://www.usenix.org/system/files/sec19fall_liljestrand_prepub.pdf
https://ieeexplore.ieee.org/iel7/7160813/7163005/07163016.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1941&context=cis_reports

Pointer as a Capability
Capability Revocation

• When a memory object is freed, all pointers point to the region should
become invalid

• Dangling pointers: pointers point to freed memory objects (the whole region)

• UAF: deference a dangling pointer

• Dangling pointers are common, but UAF is much rare

• How to exploit a UAF vulnerability?

Pointer as a Capability
Capability revocation

• Nullification: p = NULL

• Automated pointer nullification

• Key/version invalidation: key(p) != key(m)

• Each pointer and memory has a key/version (e.g., using memory tags)

• Delayed free

• Conservative garbage collection

https://lifeasageek.github.io/papers/lee-dangnull.pdf
https://repository.upenn.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1744&context=cis_papers
https://www.eecis.udel.edu/~hnw/paper/ccs18.pdf

Accessing Undefined Memory
Address Sanitizer

• Undefined memory (redzones) is not allowed to access

• What regions are undefined?

• Spatial: out-of-bound regions —> insert redzones between allocated
memory objects

• Temporal: freed regions mark freed objects as redzones

Accessing Undefined Memory
Address Sanitizer: shadow memory

Accessing Undefined Memory
Address Sanitizer

• Advantages

• Compatibility: user-mode programs, kernel, even binaries

• Bypassable

• Spatial safety demands infinite "gap" (redzone) between memory objects

• Temporal safety demands freed regions should never be reused

Use-Before-Initialization

• Uninitialized pointer

• Simple: no associated capability, dereference is invalid

• Uninitialized data

• Hard: similar to dangling pointers

• How to exploit UBI vulnerabilities?

• How to mitigate UBI vulnerabilities?

• Forced initialization

https://dl.acm.org/doi/pdf/10.1145/2976749.2978366

Why Memory Safety

Why NOT Memory Safety?

• Compatibility: C/C++ is too flexible so retrofitting memory safety into legacy
code is likely to create compatibility problem

• SoftBound can only compile a small subset of SPEC CPU benchmarks

• Intel MPX is being abandoned by GCC and Linux

• Performance overhead

• Metadata lookup

• Capability checks

Best Option so far

• Use a memory safe program language

• Rust

• Go

• Java

