
CS 153
Design of Operating Systems

Fall 21

Lecture 14: Dynamic Memory
Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Dynamic Memory Allocation
! Where is it used?

u Userspace heap (malloc)
u Kernel heap (kmalloc)
u Physical memory allocator
u Problems are similar, but specific sometimes force different

solutions

2

Dynamic Memory Allocation
! Programmers use dynamic

memory allocators (such as
malloc) to acquire VM at run
time.
u For data structures whose size

is only known at runtime.
! Dynamic memory allocators

manage an area of process
virtual memory known as the
heap.

0

Top of heap
(brk ptr)

Heap (via malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

User stack

Application

Dynamic Memory Allocator

Heap

3

Dynamic Memory Allocation
! Allocator maintains heap as collection of variable

sized blocks, which are either allocated or free
! Types of allocators

u Explicit allocator: application allocates and frees space
» E.g., malloc and free in C

u Implicit allocator: application allocates, but does not free
space

» E.g. garbage collection in Java, ML, and Lisp

! Will discuss explicit memory allocation

4

The malloc Package
#include <stdlib.h>

void *malloc(size_t size)

u Successful:
» Returns a pointer to a memory block of at least size bytes

(typically) aligned to 8-byte boundary
» If size == 0, returns NULL

u Unsuccessful: returns NULL (0) and sets errno

void free(void *p)

u Returns the block pointed at by p to pool of available memory
u p must come from a previous call to malloc or realloc

! Other functions
u calloc: version of malloc that initializes allocated block to 0.
u realloc: Changes the size of a previously allocated block.
u sbrk: used internally by allocators to grow or shrink the heap.

5

Allocation Example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

6

Constraints
! Applications

u Can issue arbitrary sequence of malloc and free requests
u free request must be to a malloc’d block

! Allocators
u Can’t control number or size of allocated blocks
u Must respond immediately to malloc requests

» i.e., can’t reorder or buffer requests
u Must allocate blocks from free memory

» i.e., can only place allocated blocks in free memory
u Must align blocks so they satisfy all alignment requirements

» 8 byte alignment for GNU malloc (libc malloc) on Linux boxes
u Can manipulate and modify only free memory
u Can’t move the allocated blocks once they are malloc’d

» i.e., compaction is not allowed
7

Goals
! Given some sequence of malloc and free requests:

u R0, R1, ..., Rk, ... , Rn-1

! Goals: maximize throughput and peak memory
utilization
u These goals are often conflicting

! Throughput:
u Number of completed requests per unit time

! Utilization:
u Percentage of the heap that is utilized
u Poor memory utilization caused by fragmentation, or poor

allocation policies

8

Implementation Issues
! How do we know how much memory to free given just

a pointer?
! How do we keep track of the free blocks?
! What do we do with the extra space when allocating a

structure that is smaller than the free block it is placed
in?

! How do we pick a block to use for allocation -- many
might fit?

! How do we reinsert freed block?

9

Knowing How Much to Free
! Standard method

u Keep the length of a block in the word preceding the block.
» This word is often called the header field or header

u Requires an extra word for every allocated block

p0 = malloc(4)

p0

free(p0)

block size data

5

10

Keeping Track of Free Blocks
! Method 1: Implicit list using length—links all blocks

! Method 2: Explicit list among the free blocks using
pointers

! Method 3: Segregated free list
u Different free lists for different size classes

! Method 4: Blocks sorted by size
u Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

11

Method 1: Implicit List
! For each block we need both size and allocation status

u Could store this information in two words: wasteful!
! Standard trick

u If blocks are aligned, some low-order address bits are always 0
u Instead of storing an always-0 bit, use it as a allocated/free flag
u When reading size word, must mask out this bit

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding 12

Implicit Free List Example

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

13

Implicit List: Finding a Free Block
! First fit:

u Search list from beginning, choose first free block that fits:

u Can take linear time in total number of blocks (allocated and free)
u In practice it can cause “splinters” at beginning of list

p = start;
while ((p < end) && \\ not passed end

((*p & 1) || \\ already allocated
(*p <= len))) \\ too small

p = p + (*p & -2); \\ goto next block (word addressed)

14

Implicit List: Finding a Free Block
! Next fit:

u Like first fit, but search list starting where previous search finished
u Should often be faster than first fit: avoids re-scanning unhelpful

blocks
u Some research suggests that fragmentation is worse

! Best fit:
u Search the list, choose the best free block: fits, with fewest bytes left

over
u Keeps fragments small—usually helps fragmentation
u Will typically run slower than first fit

15

Implicit List: Allocating in Free
Block

! Allocating in a free block: splitting
u Since allocated space might be smaller than free space, we might

want to split the block

void addblock(ptr p, int len) {
int newsize = ((len + 1) >> 1) << 1; // round up to even
int oldsize = *p & -2; // mask out low bit
*p = newsize | 1; // set new length
if (newsize < oldsize)
*(p+newsize) = oldsize - newsize; // set length in remaining

} // part of block

4 4 26

4 24

p

24

addblock(p, 4)

16

Implicit List: Freeing a Block
! Simplest implementation:

u Need only clear the “allocated” flag
void free_block(ptr p) { *p = *p & -2 }

u But can lead to “false fragmentation”

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it
17

Implicit List: Coalescing
! Join (coalesce) with next/previous blocks, if they are free

u Coalescing with next block

u But how do we coalesce with previous block?

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)
*p = *p + *next; // add to this block if

} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

18

Implicit List: Bidirectional
Coalescing

! Boundary tags [Knuth73]
u Replicate size/allocated word at “bottom” (end) of free blocks
u Allows us to traverse the “list” backwards, but requires extra space
u Important and general technique!

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

19

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

20

Constant Time Coalescing (Case 1)

m1 1

m1 1
n 1

n 1
m2 1

m2 1

m1 1

m1 1
n 0

n 0
m2 1

m2 1

21

Constant Time Coalescing (Case 2)

m1 1

m1 1
n+m2 0

n+m2 0

m1 1

m1 1
n 1

n 1
m2 0

m2 0

22

Constant Time Coalescing (Case 3)

m1 0

m1 0
n 1

n 1
m2 1

m2 1

n+m1 0

n+m1 0
m2 1

m2 1

23

Constant Time Coalescing (Case 4)

m1 0

m1 0
n 1

n 1
m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

24

Explicit Free Lists

! Maintain list(s) of free blocks, not all blocks
u The “next” free block could be anywhere

» So we need to store forward/back pointers, not just sizes
u Still need boundary tags for coalescing
u Luckily we track only free blocks, so we can use payload area

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free

25

Explicit Free Lists
! Logically:

! Physically: blocks can be in any order

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

26

Allocating From Explicit Free
Lists

Before

After

= malloc(…)

(with splitting)

conceptual graphic

27

Freeing With Explicit Free Lists
! Insertion policy: Where in the free list do you put a

newly freed block?
u LIFO (last-in-first-out) policy

» Insert freed block at the beginning of the free list
» Pro: simple and constant time
» Con: studies suggest fragmentation is worse than address

ordered
u Address-ordered policy

» Insert freed blocks so that free list blocks are always in address
order:

addr(prev) < addr(curr) < addr(next)
» Con: requires search
» Pro: studies suggest fragmentation is lower than LIFO

28

Constant Time Coalescing

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

29

Freeing With a LIFO Policy (Case 1)

! Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

30

Freeing With a LIFO Policy (Case 2)

! Splice out predecessor block, coalesce both memory blocks, and
insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

31

Freeing With a LIFO Policy (Case 3)

! Splice out successor block, coalesce both memory blocks and insert
the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

32

Freeing With a LIFO Policy (Case 4)

! Splice out predecessor and successor blocks, coalesce all 3 memory
blocks and insert the new block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

33

Explicit List Summary
! Comparison to implicit list:

u Allocate is linear time in number of free blocks instead of all
blocks

» Much faster when most of the memory is full
u Slightly more complicated allocate and free since needs to

splice blocks in and out of the list
u Some extra space for the links (2 extra words needed for each

block)
» Does this increase internal fragmentation?

! Most common use of linked lists is in conjunction with
segregated free lists
u Keep multiple linked lists of different size classes, or possibly

for different types of objects

34

Keeping Track of Free Blocks
! Method 1: Implicit list using length—links all blocks

! Method 2: Explicit list among the free blocks using
pointers

! Method 3: Segregated free list
u Different free lists for different size classes

! Method 4: Blocks sorted by size
u Can use a balanced tree (e.g. Red-Black tree) with pointers

within each free block, and the length used as a key

5 4 26

5 4 26

35

Segregated List (Seglist)
Allocators

! Each size class of blocks has its own free list

! Often have separate classes for each small size
! For larger sizes: one class for each two-power size

1-2

3

4

5-8

9-inf

36

Seglist Allocator
! Given an array of free lists, each one for some size

class

! To allocate a block of size n:
u Search appropriate free list for block of size m > n
u If an appropriate block is found:

» Split block and place fragment on appropriate list (optional)
u If no block is found, try next larger class
u Repeat until block is found

! If no block is found:
u Request additional heap memory from OS (using sbrk())
u Allocate block of n bytes from this new memory
u Place remainder as a single free block in largest size class.

37

Seglist Allocator (cont.)
! To free a block:

u Coalesce and place on appropriate list (optional)

! Advantages of seglist allocators
u Higher throughput

» log time for power-of-two size classes
u Better memory utilization

» First-fit search of segregated free list approximates a best-fit
search of entire heap.

» Extreme case: Giving each block its own size class is equivalent
to best-fit.

38

More Info on Allocators
! D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973
u The classic reference on dynamic storage allocation

! Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
u Comprehensive survey
u Available from CS:APP student site (csapp.cs.cmu.edu)

39

Implicit Memory Management:
Garbage Collection

! Garbage collection: automatic reclamation of heap-
allocated storage—application never has to free

! Common in functional languages, scripting languages,
and modern object oriented languages:
u Lisp, ML, Java, Perl, Python

! Variants (“conservative” garbage collectors) exist for C
and C++
u However, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

40

Garbage Collection
! How does the memory manager know when memory

can be freed?
u In general we cannot know what is going to be used in the

future since it depends on conditionals
u But we can tell that certain blocks cannot be used if there are

no pointers to them

! Must make certain assumptions about pointers
u Memory manager can distinguish pointers from non-pointers
u All pointers point to the start of a block
u Cannot hide pointers

(e.g., by coercing them to an int, and then back again)

41

Classical GC Algorithms
! Mark-and-sweep collection (McCarthy, 1960)

u Does not move blocks (unless you also “compact”)
! Reference counting (Collins, 1960)

u Does not move blocks (not discussed)
! Copying collection (Minsky, 1963)

u Moves blocks (not discussed)
! Generational Collectors (Lieberman and Hewitt, 1983)

u Collection based on lifetimes
» Most allocations become garbage very soon
» So focus reclamation work on zones of memory recently allocated

! For more information
u Jones and Lin, “Garbage Collection: Algorithms for Automatic

Dynamic Memory”, John Wiley & Sons, 1996.
42

Memory as a Graph
! We view memory as a directed graph

u Each block is a node in the graph
u Each pointer is an edge in the graph
u Locations not in the heap that contain pointers into the heap are

called root nodes (e.g. registers, locations on the stack, global
variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application) 43

Mark and Sweep Collecting
! Can build on top of malloc/free package

u Allocate using malloc until you “run out of space”
! When out of space:

u Use extra mark bit in the head of each block
u Mark: Start at roots and set mark bit on each reachable block
u Sweep: Scan all blocks and free blocks that are not marked

After mark Mark bit set

After sweep freefree

root

Before mark

Note: arrows
here denote

memory refs, not
free list ptrs.

44

Assumptions For a Simple
Implementation

! Application
u new(n): returns pointer to new block with all locations cleared
u read(b,i): read location i of block b into register
u write(b,i,v): write v into location i of block b

! Each block will have a header word
u addressed as b[-1], for a block b
u Used for different purposes in different collectors

! Instructions used by the Garbage Collector
u is_ptr(p): determines whether p is a pointer
u length(b): returns the length of block b, not including the

header
u get_roots(): returns all the roots

45

Mark and Sweep (cont.)
ptr mark(ptr p) {

if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // call mark on all words
mark(p[i]); // in the block

return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p);

}
46

Conservative Mark & Sweep in C
! A “conservative garbage collector” for C programs

u is_ptr() determines if a word is a pointer by checking if it points
to an allocated block of memory

u But, in C pointers can point to the middle of a block

! So how to find the beginning of the block?
u Can use a balanced binary tree to keep track of all allocated

blocks (key is start-of-block)
u Balanced-tree pointers can be stored in header (use two

additional words)

Header
ptr

Head Data

Left Right

Size Left: smaller addresses
Right: larger addresses

47

