
CS 153
Design of Operating Systems

Fall 21

Lecture 8: Deadlock
Instructor: Chengyu Song

2

Deadlock — the deadly embrace!

! Synchronization – we can easily shoot ourselves in
the foot
u Incorrect use of synchronization can block all processes
u You have likely been intuitively avoiding this situation already

! Consider: threads that use multiple critical
sections/need different resources
u If one thread tries to access a resource that a second thread

holds, and vice-versa, they can never make progress
! We call this situation deadlock, and we’ll look at:

u Definition and conditions necessary for deadlock
u Representation of deadlock conditions
u Approaches to dealing with deadlock

3

Deadlock Definition
! Deadlock is a problem that can arise:

u When threads/processes compete for access to limited resources

u When threads/processes are incorrectly synchronized

! Definition:
u Deadlock exists among a set of threads if every thread is waiting

for an event that can be caused only by another thread in the set

lockA->Acquire();
…
lockB->Acquire();

lockB->Acquire();
…
lockA->Acquire();

Thread 1 Thread 2

Real example!

4

Real example!

5

6

Conditions for Deadlock
! Deadlock can exist if and only if the following four

conditions hold simultaneously:
1. Mutual exclusion – At least one resource must be held in a

non-sharable mode

2. Hold and wait – There must be one process holding one
resource and waiting for another resource

3. No preemption – Resources cannot be preempted (critical
sections cannot be aborted externally)

4. Circular wait – There must exist a set of threads [T1, T2,
T3,…,Tn] such that T1 is waiting for T2, T2 for T3, etc.

Dining Lawyers

Each lawyer needs two chopsticks to eat.
Each grabs chopstick on the right first.

7

8

Let's get formal for a minute
! Deadlock can be described using a resource

allocation graph (RAG)
! The RAG consists of a set of vertices E={E1, E2, …, En}

of entities and R={R1, R2, …, Rm} of resources
u A directed edge from a entity to a resource, EiàRi, means

that Ei has requested Rj

u A directed edge from a resource to a entity, RiàEi, means
that Rj has been allocated to Ei

u Each resource has a fixed number of units

! If the graph has no cycles, deadlock cannot exist
! If the graph has a cycle, deadlock may exist

9

RAG Example

A cycle…and
deadlock!

Same cycle…but no
deadlock. Why?

R1

E1

E2

E3

R3

R2

R1

E1

E2

E3

R3

R2
E4

10

A Simpler Way
! If all resources are single unit and all processes make

single requests, then we can represent the resource
state with a simpler waits-for graph (WFG)

! The WFG consists of a set of vertices E={E1, E2, …,
En} of entities
u A directed edge EiàEj means that Ei has requested a

resource that Ej currently holds

! If the graph has no cycles, deadlock cannot exist
! If the graph has a cycle, deadlock exists

In Practice
! Resources are usually synchronization primitives

u Locks, semaphores, …

! Entities are usually threads, but could also be
processes

11

12

Dealing with Deadlock
! There are four approaches for dealing with deadlock:

u Ignore it – how lucky do you feel?

u Prevention – make it impossible for deadlock to happen

u Avoidance – control allocation of resources

u Detection and Recovery – look for a cycle in dependencies

13

Deadlock Prevention
! Prevention – Ensure that at least one of the necessary

conditions cannot happen
u Mutual exclusion

» Make resources sharable (not generally practical)

u Hold and wait
» Process/thread cannot hold one resource when requesting another

u Preemption
» OS can preempt resource (costly)

u Circular wait
» Impose an ordering (numbering) on the resources and request them

in order (popular implementation technique)

Deadlock Prevention
! One shot allocation: ask for all your resources in one

shot; no more resources can be requested
u What ingredient does this prevent?

u Comments?

! Preemption
u Nice: Give up a resource if what you want is not available

u Aggressive: steal a resource if what you want is not available

! Hierarchical allocation:
u Assign resources to classes

u Can only ask for resources from a higher number class than
what you hold now

14

15

Deadlock Avoidance
! Prevention can be too conservative – can we do

better?
! Avoidance

u Provide information in advance about what resources will be
needed by processes

u System only grants resource requests if it knows that
deadlock cannot happen

u Avoids circular dependencies

! Tough
u Hard to determine all resources needed in advance

u Good theoretical problem, not as practical to use

16

Banker’s Algorithm
! The Banker’s Algorithm is the classic approach to

deadlock avoidance for resources with multiple units
1. Assign a credit limit to each customer (process)

» Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state
» A dangerous state is one where a sudden request by any

customer for the full credit limit could lead to deadlock

» A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well below
capacity to maintain a resource surplus

» Rarely used in practice due to low resource utilization

Possible System States

Safe

Unsafe
Deadlock

17

18

Banker’s Algorithm Simplified

3 3 3 3

OKOK

3 3

OK

3 3

UNSAFE

P1 P2 P1 P2 P1 P2 P1 P2

19

Detection and Recovery
! Detection and recovery

u If we don’t have deadlock prevention or avoidance, then
deadlock may occur

u In this case, we need to detect deadlock and recover from it

! To do this, we need two algorithms
u One to determine whether a deadlock has occurred

u Another to recover from the deadlock

! Possible, but expensive (time consuming)
u Implemented in VMS

u Run detection algorithm when resource request times out

20

Deadlock Detection
! Detection

u Traverse the resource graph looking for cycles

u If a cycle is found, preempt resource (force a process to
release)

! Expensive
u Many processes and resources to traverse

! Only invoke detection algorithm depending on
u How often or likely deadlock is

u How many processes are likely to be affected when it occurs

21

Deadlock Recovery
Once a deadlock is detected, we have two options…
1. Abort processes

u Abort all deadlocked processes
» Processes need to start over again

u Abort one process at a time until cycle is eliminated
» System needs to rerun detection after each abort

2. Preempt resources (force their release)
u Need to select process and resource to preempt

u Need to rollback process to previous state

u Need to prevent starvation

22

Deadlock Summary
! Deadlock occurs when threads/processes are waiting

on each other and cannot make progress
u Cycles in Wait For Graph (WFG)

! Deadlock requires four conditions
u Mutual exclusion, hold and wait, no resource preemption,

circular wait

! Four approaches to dealing with deadlock:
u Ignore it – Living life on the edge

u Prevention – Make one of the four conditions impossible

u Avoidance – Banker’s Algorithm (control allocation)

u Detection and Recovery – Look for a cycle, preempt or abort

