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Advanced Paging
! So far we have discussed how to make memory 

access faster under paging
! Next, we will discuss interesting tricks on using 

paging (how those bits in the PTE are used)
u Sharing

u Copy-on-Write

u Memory mapped file

u On-demand mapping

u Virtual memory



Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

P: Child page table present in physical memory 
(1) or not (0).

R/W: Read-only or read-write access access 
permission for all reachable pages.

U/S: user or supervisor (kernel) mode access 
permission for all reachable pages.

WT: Write-through or write-back cache policy 
for the child page table. 

CD: Caching disabled or enabled for the child 
page table. 

A: Reference bit (set by MMU on reads and 
writes, cleared by software).

PS: Page size either 4 KB or 2 MB (defined for 
Level 1 PTEs only).

G: Global page (don’t evict from TLB on task 
switch)

Page table physical base address: 40 most 
significant bits of physical page table 
address (forces page tables to be 4KB 
aligned)

XD: Non-executable pages

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page table location on disk) P=0

526263



Sharing
! Private virtual address spaces protect applications 

from each other
u Usually exactly what we want

! But this makes it difficult to share data (have to copy)
u Parents and children in a forking Web server or proxy will 

want to share an in-memory cache without copying

! We can use shared memory to allow processes to 
share data using direct memory references
u Both processes see updates to the shared memory segment

» Process B can immediately read an update by process A



Sharing (2)

! Sharing code and data among processes
u Map virtual pages to the same physical page (here: PP 6)
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Sharing (3)
! Can map shared memory at same or different virtual 

addresses in each process’ address space
u Different:

» 10th virtual page in P1 and 7th virtual page in P2 correspond to 
the 2nd physical page 

» Flexible (no address space conflicts), but pointers inside the 
shared memory segment are invalid

u Same:
» 2nd physical page corresponds to the 10th virtual page in both P1 

and P2 

» Less flexible, but shared pointers are valid



Sharing (4)
! Linux API

u Map to different address
» shm_open(): create and open a new object, or open an 

existing object.

» mmap(): map the shared memory object into the virtual address 
space of the calling process.

u Map to the same address
» mmap(): with MAP_SHARED



Copy on Write
! Recall what happens during fork()

u Entire address spaces needs to be copied

! Use Copy on Write (CoW) to defer large copies as 
long as possible, hoping to avoid them altogether
u Instead of copying pages, create shared mappings of parent 

pages in child virtual address space

u Shared pages are protected as read-only in parent and child
» Reads happen as usual

» Writes generate a protection fault, trap to OS, copy page, 
change page mapping in client page table, restart write 
instruction



Execution of fork()
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fork() with Copy on Write

Page 1

Physical Memory

Page 2

Parent process’s 
page table

Page 1

Child process’s 
page table

Page 2
Protection bits set to prevent either 
process from writing to any page

When either process modifies Page 1, 
page fault handler allocates new page 

and updates PTE in child process 



Simplifying Linking and Loading

! Linking 
u Each program has similar virtual 

address space

u Code, stack, and shared libraries 
always start at the same address

! Loading 
u execve() allocates virtual pages 

for .text and .data sections 
= creates PTEs marked as invalid

u The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system

Kernel virtual memory
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Read-only segment
(.init, .text, .rodata)
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from 
the 
executable 
file



Mapped Files
! Mapped files enable processes to do file I/O using 

loads and stores
u Instead of “open, read into buffer, operate on buffer, …”

! Bind a file to a virtual memory region (mmap() in Unix)
u PTEs map virtual addresses to physical frames holding file 

data

u Virtual address base + N refers to offset N in file

! Initially, all pages mapped to file are invalid
u OS reads a page from file when invalid page is accessed

» How?



Memory-Mapped Files
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File Content 1

Pages are all invalid initially

A read occurs
A read occurs

File Content 2

What happens if we unmap the memory?
How do we know whether we need to write changes back to file?



Writing Back to File
! OS writes a page to file when evicted, or region 

unmapped
! Dirty bit trick (not protection bits)

u If page is not dirty (has not been written to), no write needed



Page Hit

! Page hit: reference to VM word that is in physical 
memory (DRAM cache hit)
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Page Fault

! Page fault: reference to VM word that is not in physical 
memory (DRAM cache miss)
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On-demand Mapping

! Allocate physical page
! Fix the page table
! Resume execution
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How do we know whether the fault is fixable?



On-demand Mapping
! When the process calls mmap(), the kernel 

remembers
u The region [addr, addr+length]

» What virtual addresses are valid/mapped

u The backing: just memory (ANONYMOUS) or file

! During page fault handling, the kernel checks
u If the faulty virtual address is valid

u If so, fix based on the backing



Memory Protection
! R/W (read-only or writable)

u We’ve seen how it is used in CoW

u It is also important in preventing attacks (e.g., mark code as 
read-only so attackers cannot modify them)

! U/S (user or kernel)
u How do we protect the kernel? Give it a different address 

space?
» Too expensive for context switch during system calls

» May not be a bad idea if security is a concern (recent Meltdown 
attack)



Memory Protection (2)*
! U/S

u Besides protecting the kernel from directly accessed from 
user space, this bit is also used to prevent kernel from 
executing wrong code or access wrong data, why?

» Attackers can attack the kernel and try to execute user space 
code under kernel context (privilege)

! XD (executable or not)
u In the old days there’s an attack technique called “code 

injection” where attacker force the CPU to interpret data as 
code

u XD is a response to such attacks by marking data pages as 
not executable


