
CS 153
Design of Operating Systems

Fall 20

Lecture 10: Threads
Instructor: Chengyu Song



2

Processes

! Recall that …
u A process includes:

» An address space (defining all the code and data pages)

» OS resources (e.g., open files) and accounting info

» Execution state (PC, SP, regs, etc.)

» PCB to keep track of everything

u Processes are completely isolated from each other 

P1 P2

OS



3

Process: check your understanding
! What are the units of execution?

u Processes
! How are those units of execution represented?

u Process Control Blocks (PCBs)
! How is work scheduled in the CPU?

u Process states, process queues, context switches
! What are the possible execution states of a process?

u Running, ready, waiting, …
! How does a process move from one state to another?

u Scheduling, I/O, creation, termination
! How are processes created?

u CreateProcess (NT), fork/exec (Unix)



Some issues with processes
! Creating a new process is costly because of new 

address space and data structures that must be 
allocated and initialized
u Recall struct proc in xv6 or Solaris

! Communicating between processes is costly because 
most communication goes through the OS
u Inter Process Communication (IPC) – we will discuss later

u Overhead of system calls and copying data

4

P1 P2

OS



5

Parallel Programs
! Also recall our web server example that forks off copies 

of itself to handle multiple simultaneous requests

! To execute these programs we need to
u Create several processes that execute in parallel

u Cause each to map to the same address space to share data
» They are all part of the same computation

u Have the OS schedule these processes in parallel

! This situation is very inefficient (CoW helps)
u Space: PCB, page tables, etc.

u Time: create data structures, fork and copy addr space, etc.



6

Rethinking Processes
! What is similar in these cooperating processes?

u They all share the same code and data (address space)

u They all share the same privileges

u They all share the same resources (files, sockets, etc.)

! What don’t they share?
u Each has its own execution state: PC, SP, and registers

! Key idea: Separate resources from execution state

! Exec state also called thread of control, or thread



7

Recap: Process Components
! A process is named using its process ID (PID)
! A process contains all of the state for a program in 

execution
u An address space
u The code for the executing program
u The data for the executing program
u A set of operating system resources

» Open files, network connections, etc.

u An execution stack encapsulating the state of procedure calls
u The program counter (PC) indicating the next instruction
u A set of general-purpose registers with current values
u Current execution state (Ready/Running/Waiting)

Per-
Process 

State

Per-
Thread 
State



8

Threads
! Separate execution and resource container roles

� The thread defines a sequential execution stream within a 
process (PC, SP, registers)

� The process defines the address space, resources, and 
general process attributes (everything but threads)

! Threads become the unit of scheduling
� Processes are now the containers in which threads execute

� Processes become static, threads are the dynamic entities



9

Recap: Process Address Space

Stack

0x00000000

0xFFFFFFFF

Code
(Text Segment)

Static Data
(Data Segment)

Heap
(Dynamic Memory Alloc)

Address
Space

SP

PC



10

Threads in a Process

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)

Thread 1

Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)



11

Thread Design Space

One Thread/Process
Many Address Spaces

(Early Unix)

One Thread/Process
One Address Space

(MSDOS)

Many Threads/Process
Many Address Spaces

(Mac OS, Unix, Windows)

Many Threads/Process
One Address Space

(Pilot, Java)

Address Space

Thread



12

Process/Thread Separation
! Separating threads and processes makes it easier to 

support multithreaded applications
u Concurrency does not require creating new processes

! Concurrency (multithreading) can be very useful
u Improving program structure

u Handling concurrent events (e.g., web requests)

u Writing parallel programs

! So multithreading is even useful on a uniprocessor



13

Threads: Concurrent Servers
! Using fork() to create new processes to handle 

requests in parallel is overkill for such a simple task

! Recall our forking Web server:

while (1) {
int sock = accept();
if ((child_pid = fork()) == 0) {
Handle client request
Close socket and exit

} else {
Close socket

}
}



14

Threads: Concurrent Servers
! Instead, we can create a new thread for each request

web_server() {
while (1) {
int sock = accept();
thread_fork(handle_request, sock);

}
}

handle_request(int sock) {
// Process request
close(sock);

}



15

Implementing threads
! Kernel Level Threads

� All thread operations are implemented in the kernel

� The OS schedules all of the threads in the system

� Don’t have to separate from processes

! OS-managed threads are called kernel-level threads
or lightweight processes
� Windows: threads

� Solaris: lightweight processes (LWP)

� POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM 



16

Alternative: User-Level Threads

! Implement threads using user-level library

! ULTs are small and fast
u A thread is simply represented by a PC, registers, stack, and 

small thread control block (TCB)

u Creating a new thread, switching between threads, and 
synchronizing threads are done via procedure call

» No kernel involvement

u User-level thread operations 100x faster than kernel threads

u pthreads: PTHREAD_SCOPE_PROCESS 



17

User and Kernel Threads

Multiplexing user-level threads 
on a single kernel thread for 

each process

OS OS

Multiplexing user-level threads 
on multiple kernel threads for 

each process

P1 P2 P1 P2



18

KLT vs. ULT
! Kernel-level threads

u Integrated with OS (informed scheduling)

u Slow to create, manipulate, synchronize

! User-level threads
u Fast to create, manipulate, synchronize

u Not integrated with OS (uninformed scheduling)

! Understanding the differences between kernel and 
user-level threads is important
u For programming (correctness, performance)

u For test-taking J



19

Sample Thread Interface
! thread_fork(procedure_t)

u Create a new thread of control
u Also thread_create(), thread_setstate()

! thread_stop()
u Stop the calling thread; also thread_block

! thread_start(thread_t)
u Start the given thread

! thread_yield()
u Voluntarily give up the processor

! thread_exit()
u Terminate the calling thread; also thread_destroy



Process vs Thread

20



21

Thread Scheduling
! The thread scheduler determines when a thread runs

! It uses queues to keep track of what threads are doing
u Just like the OS and processes

u But it is implemented at user-level in a library

! Run queue: Threads currently running (usually one)
! Ready queue: Threads ready to run

! Are there wait queues?
u How would you implement thread_sleep(time)?



22

Non-Preemptive Scheduling
! Threads voluntarily give up the CPU with thread_yield

! What is the output of running these two threads?

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread



23

thread_yield()
! The semantics of thread_yield() are that it gives up the 

CPU to another thread
u In other words, it context switches to another thread

! So what does it mean for thread_yield() to return?
! Execution trace of ping/pong

u printf(“ping\n”);

u thread_yield();

u printf(“pong\n”);

u thread_yield();

u …



24

Implementing thread_yield()

thread_yield() {
thread_t old_thread = current_thread;
current_thread = get_next_thread();
append_to_queue(ready_queue, old_thread);
context_switch(old_thread, current_thread);
return;

}

! The magic step is invoking context_switch()
! Why do we need to call append_to_queue()?

As old thread

As new thread



25

Thread Context Switch
! The context switch routine does all of the magic

u Saves context of the currently running thread (old_thread)
» Push all machine state onto its stack (not its TCB)

u Restores context of the next thread
» Pop all machine state from the next thread’s stack

u The next thread becomes the current thread

u Return to caller as new thread

! This is all done in assembly language
u It works at the level of the procedure calling convention, so it 

cannot be implemented using procedure calls



Process vs Thread

26



28

Threads Summary
! Processes are too heavyweight for multiprocessing

u Time and space overhead

! Solution is to separate threads from processes
u Kernel-level threads much better, but still significant overhead

u User-level threads even better, but not well integrated with OS

! What about security?



29

Test: Preemptive Scheduling

! Now, how do we get our threads to correctly cooperate 
with each other?
u Synchronization…

int count = 0; //shared variable since its global
void twiddledee() {

int i=0; //for part b this will be global and shared
for (i=0; i<2; i++) {

count = count * count; //assume count read from memory once 
} } 
void twiddledum() {

int i=0; // for part b, this will be global and shared
for(i=0; i<2; i++) { count = count - 1;} }

void main() {
thread_fork(twiddledee);
thread_fork(twiddledum);
print count; } 

What are all the values that could be printed in main?


