
CS 153
Design of Operating Systems

Fall 20

Lecture 11: Synchronization
Instructor: Chengyu Song

Cooperation between Threads
! What is the advantage of threads over process?

u Faster creation

u Easier share of resources, access shared data structures
» Threads accessing a memory cache in a Web server

! Threads cooperate in multithreaded programs

! Why?
u To coordinate their execution

» One thread executes relative to another

2

3

Threads: Sharing Data
int count = 0; //shared variable since its global

void twiddledee() {
int i=0; //for part b this will be global and shared
for (i=0; i<2; i++) {

count = count * count; //assume count read from memory once
}}

void twiddledum() {
int i=0; // for part b, this will be global and shared
for(i=0; i<2; i++) { count = count - 1;}

}

void main() {
thread_fork(twiddledee);
thread_fork(twiddledum);
print count;

} What are all the values that could be printed in main?

4

Threads: Cooperation
! Threads voluntarily give up the CPU with thread_yield

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread

5

Synchronization
! For correctness, we need to control this cooperation

u Threads interleave executions arbitrarily and at different rates

u Scheduling is not under program control

! We control cooperation using synchronization
u Synchronization enables us to restrict the possible inter-

leavings of thread executions

What about processes?
! Does this apply to processes too?

u Yes!

! What synchronization system call you have seen?
u wait()

! Do I need to learn this if I don’t write multi-thread
programs?
u But share the OS structures and machine resources so we

need to synchronize them too

u Basically, the OS is a multi-threaded program

6

7

Shared Resources
We initially focus on coordinating access to shared resources
! Basic problem

u If two concurrent threads are accessing a shared variable, and at
least one thread modified/written the variable, then access to the
variable must be controlled to avoid erroneous behavior

! Over the next couple of lectures, we will look at
u Exactly what problems occur
u How to build mechanisms to control access to shared resources

» Locks, mutexes, semaphores, monitors, condition variables, etc.
u Patterns for coordinating accesses to shared resources

» Reader-writer, bounded buffer, producer-consumer, etc.

8

A First Example
! Suppose we have to implement a function to handle

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

! Now suppose that you and your father share a bank
account with a balance of $1000

! Then you each go to separate ATM machines and
simultaneously withdraw $100 from the account

9

Example Continued
! We’ll represent the situation by creating a separate

thread for each person to do the withdrawals
! These threads run on the same bank machine:

! What’s the problem with this implementation?
u Think about potential schedules of these two threads

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

10

Interleaved Schedules
! The problem is that the execution of the two threads

can be interleaved:

! What is the balance of the account now?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution
sequence

seen by CPU Context switch

11

Shared Resources
! Problem: two threads accessed a shared resource

u Known as a race condition (remember this buzzword!)

! Need mechanisms to control this access
u So we can reason about how the program will operate

! Our example was updating a shared bank account
! Also necessary for synchronizing access to any

shared data structure
u Buffers, queues, lists, hash tables, etc.

12

What Resources Are
Shared?

! Local variables?
u Not shared: refer to data on the stack

u Each thread has its own stack

u Don’t pass/share/store a pointer to a local variable on the
stack for thread T1 to another thread T2

! Global variables and static objects?
u Shared: in static data segment, accessible by all threads

! Dynamic objects and other heap objects?
u Shared: Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1

13

How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance =

How contorted can the interleaving be?

! We'll assume that the only atomic operations are reads
and writes of individual memory locations
u Some architectures don't even give you that!

! We'll assume that a context
switch can occur at any time

! We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever

What do we do about it?
! Does this problem matter in practice?

! Are there other concurrency problems?

! And, if so, how do we solve it?
u Really difficult because behavior can be different every time

! How do we handle concurrency in real life?

14

15

Mutual Exclusion
! Mutual exclusion to synchronize access to shared

resources
u This allows us to have larger “atomic” blocks

! Code that uses mutual called a critical section
u Only one thread at a time can execute in the critical section

u All other threads are forced to wait on entry

u When a thread leaves a critical section, another can enter

u Example: sharing an ATM with others

! What requirements would you place on a critical
section?

16

Critical Section Requirements
Critical sections have the following requirements:
1) Mutual exclusion (mutex)

u If one thread is in the critical section, then no other is
2) Progress

u A thread in the critical section will eventually leave the critical section
u If some thread T is not in the critical section, then T cannot prevent

some other thread S from entering the critical section
3) Bounded waiting (no starvation)

u If some thread T is waiting on the critical section, then T will
eventually enter the critical section

4) Performance
u The overhead of entering and exiting the critical section is small with

respect to the work being done within it

17

About Requirements
There are three kinds of requirements that we'll use
! Safety property: nothing bad happens

u Mutex
! Liveness property: something good happens

u Progress, Bounded Waiting
! Performance requirement

u Performance
! Properties hold for each run, while performance

depends on all the runs
u Rule of thumb: When designing a concurrent algorithm, worry

about safety first, but don't forget liveness!

18

Mechanisms For Building Critical
Sections

! Locks
u Primitive, minimal semantics, used to build others

! Architecture help
u Atomic test-and-set

! Semaphores
u Basic, easy to get the hang of, but hard to program with

! Monitors
u High-level, requires language support, operations implicit

19

Locks
! A lock is an object in memory providing two operations

u acquire(): before entering the critical section

u release(): after leaving a critical section

! Threads pair calls to acquire() and release()
u Between acquire()/release(), the thread holds the lock

u acquire() does not return until any previous holder releases

u What can happen if the calls are not paired?

20

Using Locks

u Why is the “return” outside the critical section? Is this ok?

u What happens when a third thread calls acquire?

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical
Section

How do we implement a lock?
First try

! Does this work? Assume
reads/writes are atomic

! The lock itself is a critical
region!
u Chicken and egg

! Computer scientist
struggled with how to
create software locks

21

pthread_trylock(mutex) {
if (mutex==0) {
mutex= 1;
return 1;
} else return 0;

}

Thread 0, 1, …

…//time to access critical region
while(!pthread_trylock(mutex); // wait
<critical region>
pthread_unlock(mutex)

22

Second try

while (true) {
while (turn != 1) ;
critical section
turn = 2;
outside of critical section

}

while (true) {
while (turn != 2) ;
critical section
turn = 1;
outside of critical section

}

int turn = 1;

This is called alternation
It satisfies mutex:

• If blue is in the critical section, then turn == 1 and if yellow is in the critical section then
turn == 2

• (turn == 1) ≡ (turn != 2)

Is there anything wrong with this solution?

23

Third try – two variables

while (flag[1] != 0);
flag[0] = 1;
critical section
flag[0]=0;
outside of critical section

while (flag[0] != 0);
flag[1] = 1;
critical section
flag[1]=0;
outside of critical section

bool flag[2] = {0, 0};

We added two variables to try to break the race for the same variable

Is there anything wrong with this solution?

24

Fourth try – set before you check

Is there anything wrong with this solution?

flag[0] = 1;
while (flag[1] != 0);
critical section
flag[0]=0;
outside of critical section

flag[1] = 1;
while (flag[0] != 0);
critical section
flag[1]=0;
outside of critical section

bool flag[2] = {0, 0};

Fifth try – double check and back off

25

flag[0] = 1;
while (flag[1] != 0) {

flag[0] = 0;
wait a short time;
flag[0] = 1;

}
critical section
flag[0]=0;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

flag[1] = 0;
wait a short time;
flag[1] = 1;

}
critical section
flag[1]=0;
outside of critical section

bool flag[2] = {0, 0};

Six try – Dekker’s Algorithm

26

flag[0] = 1;
while (flag[1] != 0) {

if (turn == 2) {
flag[0] = 0;
while (turn == 2);
flag[0] = 1;

} //if
} //while
critical section
flag[0]=0;
turn=2;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

if (turn == 1) {
flag[1] = 0;
while (turn == 1);
flag[1] = 1;

} //if
} //while
critical section
flag[1]=0;
turn=1;
outside of critical section

bool flag[2] = {0, 0};
int turn = 1;

27

Peterson's Algorithm

while (true) {
try1 = true;
turn = 2;
while (try2 && turn != 1) ;
critical section
try1 = false;
outside of critical section

}

while (true) {
try2 = true;
turn = 1;
while (try1 && turn != 2) ;
critical section
try2 = false;
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

• This satisfies all the requirements

• Here's why...

28

Peterson's Algorithm: analysis

while (true) {
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1 try1 = true;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

2 turn = 2;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

3 while (try2 && turn != 1) ;
{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨

(try2 ∧ (yellow at 6 or at 7)) }
critical section

4 try1 = false;
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }
outside of critical section

}

while (true) {
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

6 turn = 1;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2) ;
{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨

(try1 ∧ (blue at 2 or at 3)) }
critical section

8 try2 = false;
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

(blue at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2 ∧ (yellow at 6 or at 7))
∧ (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1 ∧ (blue at 2 or at 3))

... ⇒ (turn == 1 ∧ turn == 2)

Some observations
! This stuff (software locks) is hard

u Hard to get right
u Hard to prove right

! It also is inefficient
u A spin lock – waiting by checking the condition repeatedly

! Even better, software locks don’t really work
u Compiler and hardware reorder memory references from

different threads
! Something called memory consistency model
! Well beyond the scope of this class J

! So, we need to find a different way
u Hardware help; more in a second

29

30

Hardware to the rescue
! Crux of the problem:

u We get interrupted between checking the lock and setting it to 1

u Software locks reordered by compiler/hardware

! Possible solutions?
u Atomic instructions: create a new assembly language instruction

that checks and sets a variable atomically
» Cannot be interrupted!

» How do we use them?

u Disable interrupts altogether (no one else can interrupt us)

31

Atomic Instruction: Test-and-Set
! The semantics of test-and-set are:

u Record the old value
u Set the value to indicate available
u Return the old value

! Hardware executes it atomically!

! When executing test-and-set on “flag”
u What is value of flag afterwards if it was initially False? True?
u What is the return result if flag was initially False? True?

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

while (lock->held);
lock->held = 1;

One read
One write

32

Using Test-and-Set
! Here is our lock implementation with test-and-set:

! When will the while return? What is the value of held?
! Does it satisfy critical region requirements? (mutex,

progress, bounded wait, performance?)

struct lock {
int held = 0;

}
void acquire (lock) {

while (test-and-set(&lock->held));
}
void release (lock) {

lock->held = 0;
}

33

Still a Spinlocks
! The problem with spinlocks is that they are wasteful

u Although still useful in some cases; lets discuss advantages
and disadvantages

! If a thread is spinning on a lock, then the scheduler
thinks that this thread needs CPU and puts it on the
ready queue

! If N threads are contending for the lock, the thread
which holds the lock gets only 1/N’th of the CPU

34

Disabling Interrupts
! Another implementation of acquire/release is to

disable interrupts:

! Note that there is no state associated with the lock
! Can two threads disable interrupts simultaneously?

struct lock {
}
void acquire (lock) {

disable interrupts;
}
void release (lock) {

enable interrupts;
}

35

On Disabling Interrupts
! Disabling interrupts blocks notification of external

events that could trigger a context switch (e.g., timer)

! In a “real” system, this is only available to the kernel
u Why?

! Disabling interrupts is insufficient on a multiprocessor
u Back to atomic instructions

! Like spinlocks, only want to disable interrupts to
implement higher-level synchronization primitives
u Don’t want interrupts disabled between acquire and release

36

Summarize Where We Are
! Goal: Use mutual exclusion to protect critical sections

of code that access shared resources
! Method: Use locks (spinlocks or disable interrupts)
! Problem: Critical sections can be long

acquire(lock)
…
Critical section
…
release(lock)

Disabling Interrupts:
! Should not disable interrupts
for long periods of time
! Can miss or delay important
events (e.g., timer, I/O)

Spinlocks:
! Threads waiting to acquire
lock spin in test-and-set loop
! Wastes CPU cycles
! Longer the CS, the longer
the spin
! Greater the chance for lock
holder to be interrupted
!Memory consistency model
causes problems (out of
scope of this class)

37

Higher-Level Synchronization
! Spinlocks and disabling interrupts are useful for short

and simple critical sections
u Can be wasteful otherwise
u These primitives are “primitive” – don’t do anything besides

mutual exclusion
! Need higher-level synchronization primitives that:

u Block waiters
u Leave interrupts enabled within the critical section

! All synchronization requires atomicity
! So we’ll use our atomic locks as primitives to

implement them

! Block waiters, interrupts enabled in critical sections
void release (lock) {

Disable interrupts;
if (Q)

remove and unblock a waiting thread;
else

lock->held = 0;
Enable interrupts;

}

38

Implementing a Blocking Lock

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

Disable interrupts;
if (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
Enable interrupts;

}

acquire(lock)
…
Critical section
…
release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled

! Can use a spinlock instead of disabling interrupts
void release (lock) {

spinlock->acquire();
if (Q)

remove and unblock a waiting thread;
else

lock->held = 0;
spinlock->release();

}

39

Implementing a Blocking Lock

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

spinlock->acquire();
if (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
spinlock->release();

}

acquire(lock)
…
Critical section
…
release(lock)

Running or Blocked

Spinning

Spinning

40

Using Locks

u Remember to release the lock!

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical
Section

41

Mechanisms For Building Critical
Sections

! Locks
u Primitive, minimal semantics, used to build others

! Architecture help
u Atomic test-and-set

! Semaphores
u Basic, easy to get the hang of, but hard to program with

! Monitors
u High-level, requires language support, operations implicit

42

Semaphores
! Semaphores are an abstract data type that provide

mutual exclusion to critical sections
u Block waiters, interrupts enabled within critical section
u Described by Dijkstra in THE system in 1968

! Semaphores are integers that support two operations:
u wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()
u signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()
u That's it! No other operations – not even just reading its value

43

Blocking in Semaphores
! Associated with each semaphore is a queue of waiting

threads/processes

! When wait() is called by a thread:
u If semaphore is open (>= 0), and thread continues

u If semaphore is closed (< 0), thread blocks on queue

! Then signal() opens the semaphore:
u If semaphore is closed before increase, a thread is waiting on

the queue, the thread is unblocked

u If no threads are waiting on the queue, the signal is
remembered for the next thread, but not exceeding the max
value

44

Semaphore Types
! Semaphores come in two types

! Mutex semaphore (or binary semaphore)
u Represents single access to a resource

u Guarantees mutual exclusion to a critical section

! Counting semaphore (or general semaphore)
u Multiple threads pass the semaphore determined by count

» mutex has count = 1, counting has count = N

u Represents a resource with many units available

u or a resource allowing some unsynchronized concurrent
access (e.g., reading)

45

Using Semaphores
! Use is similar to our locks, but semantics are different

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

wait(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
signal(S);
return balance;

}

wait(S);
balance = get_balance(account);
balance = balance – amount;

wait(S);

put_balance(account, balance);
signal(S);

wait(S);

…
signal(S);

…
signal(S);

Threads
block

It is undefined which thread
runs after a signal

critical
section

46

Beyond Mutual Exclusion
! We’ve looked at a simple example for using

synchronization
u Mutual exclusion while accessing a bank account

! We’re going to use semaphores to look at more
interesting examples
u Counting critical region

u Ordering threads

u Readers/Writers

u Producer consumer with bounded buffers

u More general examples

47

Readers/Writers Problem
! Readers/Writers Problem:

u An object is shared among several threads

u Some threads only read the object, others only write it

u We can allow multiple readers but only one writer
» Let #r be the number of readers, #w be the number of writers

» Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) ⇒ (#w = 0))

! Use three variables
u int readcount – number of threads reading object

u Semaphore mutex – control access to readcount

u Semaphore w_or_r – exclusive writing or reading

48

1: // number of readers
2: int readcount = 0;
3: // mutual exclusion to readcount
4: Semaphore mutex = 1;
5: // exclusive writer or reader
6: Semaphore w_or_r = 1;
7:
8: writer {
9: wait(w_or_r); // lock out readers
10: Write;
11: signal(w_or_r); // up for grabs
12:}

Readers/Writers

1: reader {
2: wait(mutex); // lock readcount
3: readcount += 1; // one more reader
4: if (readcount == 1)
5: wait(w_or_r); // synch w/ writers
6: signal(mutex); // unlock readcount
7: Read;
8: wait(mutex); // lock readcount
9: readcount -= 1; // one less reader
10: if (readcount == 0)
11: signal(w_or_r); // up for grabs
12: signal(mutex); // unlock readcount
13: }

! w_or_r provides mutex between readers and writers
u Readers wait/signal when readcount goes from 0 to 1 or 1 to 0

! If a writer is writing, where will readers be waiting?
! Once a writer exits, all readers can fall through

u Which reader gets to go first?
u Is it guaranteed that all readers will fall through?

! If readers and writers are waiting, and a writer exits, who goes
first?

! Why do readers use mutex?
! What if the signal is above “if (readcount == 1)”?
! If read in progress when writer arrives, when can writer get

access?

49

Readers/Writers Notes

Avoid Starvation

50

// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;
// turnstile for everyone
Semaphore turnstile = 1;

writer {
wait(turnstile); // get in the queue
wait(w_or_r); // lock out readers
Write;
signal(w_or_r); // up for grabs
signal(turnstile); // next

}

reader {
wait(turnstile); // get in the queue
signal(turnstile); // next
wait(mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r); // synch w/ writers
signal(mutex); // unlock readcount
Read;
wait(mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex); // unlock readcount

}

51

Bounded Buffer
! Problem: Set of buffers shared by producer and

consumer threads
u Producer inserts jobs into the buffer set
u Consumer removes jobs from the buffer set

! Producer and consumer execute at different rates
u No serialization of one behind the other
u Tasks are independent (easier to think about)
u The buffer set allows each to run without explicit handoff

! Data structure should not be corrupted
u Due to race conditions
u Or producer writing when full
u Or consumer deleting when empty

52

producer {
while (1) {

Produce new resource;
wait(empty); // wait for empty buffer
wait(mutex); // lock buffer list
Add resource to an empty buffer;
signal(mutex); // unlock buffer list
signal(full); // note a full buffer

}
}

Bounded Buffer (2)

consumer {
while (1) {

wait(full); // wait for a full buffer
wait(mutex); // lock buffer list
Remove resource from a full buffer;
signal(mutex); // unlock buffer list
signal(empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex = 1; // mutual exclusion to shared set of buffers
Semaphore empty = N; // count of empty buffers (all empty to start)
Semaphore full = 0; // count of full buffers (none full to start)

53

Bounded Buffer (3)
! Why need the mutex at all?

! The pattern of signal/wait on full/empty is a common
construct often called an interlock

! Producer-Consumer and Bounded Buffer are classic
examples of synchronization problems
u We will see and practice others

54

Semaphore Summary
! Semaphores can be used to solve any of the

traditional synchronization problems
! However, they have some drawbacks

u They are essentially shared global variables
» Can potentially be accessed anywhere in program

u No connection between the semaphore and the data being
controlled by the semaphore

u Used both for critical sections (mutual exclusion) and
coordination (scheduling)

» Note that I had to use comments in the code to distinguish
u No control or guarantee of proper usage

! Sometimes hard to use and prone to bugs
u Another approach: Use programming language support

