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Cooperation between Threads
! What is the advantage of threads over process?

u Faster creation

u Easier share of resources, access shared data structures
» Threads accessing a memory cache in a Web server

! Threads cooperate in multithreaded programs

! Why?
u To coordinate their execution

» One thread executes relative to another
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Threads: Sharing Data
int count = 0; //shared variable since its global

void twiddledee() {
int i=0; //for part b this will be global and shared
for (i=0; i<2; i++) {

count = count * count; //assume count read from memory once 
}}

void twiddledum() {
int i=0; // for part b, this will be global and shared
for(i=0; i<2; i++) { count = count - 1;}

}

void main() {
thread_fork(twiddledee);
thread_fork(twiddledum);
print count;

} What are all the values that could be printed in main?
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Threads: Cooperation
! Threads voluntarily give up the CPU with thread_yield

while (1) {

printf(“ping\n”);

thread_yield();

}

while (1) {

printf(“pong\n”);

thread_yield();

}

Ping Thread Pong Thread
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Synchronization
! For correctness, we need to control this cooperation

u Threads interleave executions arbitrarily and at different rates

u Scheduling is not under program control

! We control cooperation using synchronization
u Synchronization enables us to restrict the possible inter-

leavings of thread executions



What about processes?
! Does this apply to processes too?

u Yes!

! What synchronization system call you have seen?
u wait()

! Do I need to learn this if I don’t write multi-thread 
programs?
u But share the OS structures and machine resources so we 

need to synchronize them too

u Basically, the OS is a multi-threaded program
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Shared Resources
We initially focus on coordinating access to shared resources
! Basic problem

u If two concurrent threads are accessing a shared variable, and at 
least one thread modified/written the variable, then access to the 
variable must be controlled to avoid erroneous behavior

! Over the next couple of lectures, we will look at
u Exactly what problems occur
u How to build mechanisms to control access to shared resources

» Locks, mutexes, semaphores, monitors, condition variables, etc.
u Patterns for coordinating accesses to shared resources

» Reader-writer, bounded buffer, producer-consumer, etc.
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A First Example
! Suppose we have to implement a function to handle 

withdrawals from a bank account:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

! Now suppose that you and your father share a bank 
account with a balance of $1000

! Then you each go to separate ATM machines and 
simultaneously withdraw $100 from the account
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Example Continued
! We’ll represent the situation by creating a separate 

thread for each person to do the withdrawals
! These threads run on the same bank machine:

! What’s the problem with this implementation?
u Think about potential schedules of these two threads

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}
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Interleaved Schedules
! The problem is that the execution of the two threads 

can be interleaved:

! What is the balance of the account now?

balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Execution 
sequence 

seen by CPU Context switch
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Shared Resources
! Problem: two threads accessed a shared resource

u Known as a race condition (remember this buzzword!)

! Need mechanisms to control this access
u So we can reason about how the program will operate

! Our example was updating a shared bank account
! Also necessary for synchronizing access to any 

shared data structure
u Buffers, queues, lists, hash tables, etc.
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What Resources Are
Shared?

! Local variables?
u Not shared: refer to data on the stack

u Each thread has its own stack

u Don’t pass/share/store a pointer to a local variable on the 
stack for thread T1 to another thread T2

! Global variables and static objects?
u Shared: in static data segment, accessible by all threads

! Dynamic objects and other heap objects?
u Shared: Allocated from heap with malloc/free or new/delete

Stack (T1)

Code

Static Data

Heap

Stack (T2)

Stack (T3)
Thread 3

Thread 2

PC (T1)

PC (T3)
PC (T2)

Thread 1
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How Interleaved Can It Get?

............... get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

balance = get_balance(account);

balance = ...................................

How contorted can the interleaving be?

! We'll assume that the only atomic operations are reads 
and writes of individual memory locations
u Some architectures don't even give you that!

! We'll assume that a context
switch can occur at any time

! We'll assume that you can
delay a thread as long as you
like as long as it's not delayed
forever



What do we do about it?
! Does this problem matter in practice?

! Are there other concurrency problems?

! And, if so, how do we solve it?
u Really difficult because behavior can be different every time

! How do we handle concurrency in real life?
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Mutual Exclusion
! Mutual exclusion to synchronize access to shared 

resources
u This allows us to have larger “atomic” blocks

! Code that uses mutual called a critical section
u Only one thread at a time can execute in the critical section

u All other threads are forced to wait on entry

u When a thread leaves a critical section, another can enter

u Example: sharing an ATM with others

! What requirements would you place on a critical 
section?
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Critical Section Requirements
Critical sections have the following requirements:
1) Mutual exclusion (mutex)

u If one thread is in the critical section, then no other is
2) Progress

u A thread in the critical section will eventually leave the critical section
u If some thread T is not in the critical section, then T cannot prevent 

some other thread S from entering the critical section
3) Bounded waiting (no starvation)

u If some thread T is waiting on the critical section, then T will 
eventually enter the critical section

4) Performance
u The overhead of entering and exiting the critical section is small with 

respect to the work being done within it
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About Requirements
There are three kinds of requirements that we'll use
! Safety property: nothing bad happens

u Mutex
! Liveness property: something good happens

u Progress, Bounded Waiting
! Performance requirement

u Performance
! Properties hold for each run, while performance 

depends on all the runs
u Rule of thumb: When designing a concurrent algorithm, worry 

about safety first, but don't forget liveness!
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Mechanisms For Building Critical 
Sections

! Locks
u Primitive, minimal semantics, used to build others

! Architecture help
u Atomic test-and-set

! Semaphores
u Basic, easy to get the hang of, but hard to program with

! Monitors
u High-level, requires language support, operations implicit
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Locks
! A lock is an object in memory providing two operations

u acquire(): before entering the critical section

u release(): after leaving a critical section

! Threads pair calls to acquire() and release()
u Between acquire()/release(), the thread holds the lock

u acquire() does not return until any previous holder releases

u What can happen if the calls are not paired?
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Using Locks

u Why is the “return” outside the critical section? Is this ok?

u What happens when a third thread calls acquire?

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical 
Section



How do we implement a lock?
First try

! Does this work?  Assume 
reads/writes are atomic

! The lock itself is a critical 
region!
u Chicken and egg

! Computer scientist 
struggled with how to 
create software locks

21

pthread_trylock(mutex) {
if (mutex==0) {
mutex= 1;
return 1;
} else return 0;

}

Thread 0, 1, …

…//time to access critical region
while(!pthread_trylock(mutex); // wait 
<critical region>
pthread_unlock(mutex)
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Second try

while (true) {
while (turn != 1) ;
critical section
turn = 2;
outside of critical section

}

while (true) {
while (turn != 2) ;
critical section
turn = 1;
outside of critical section

}

int turn = 1;

This is called alternation
It satisfies mutex:

• If blue is in the critical section, then turn == 1 and if yellow is in the critical section then
turn == 2

• (turn == 1) ≡ (turn != 2)

Is there anything wrong with this solution?
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Third try – two variables

while (flag[1] != 0); 
flag[0] = 1;
critical section
flag[0]=0;
outside of critical section

while (flag[0] != 0); 
flag[1] = 1;
critical section
flag[1]=0;
outside of critical section

bool flag[2] = {0, 0};

We added two variables to try to break the race for the same variable

Is there anything wrong with this solution?
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Fourth try – set before you check

Is there anything wrong with this solution?

flag[0] = 1;
while (flag[1] != 0); 
critical section
flag[0]=0;
outside of critical section

flag[1] = 1;
while (flag[0] != 0); 
critical section
flag[1]=0;
outside of critical section

bool flag[2] = {0, 0};



Fifth try – double check and back off
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flag[0] = 1;
while (flag[1] != 0) {

flag[0] = 0;
wait a short time;
flag[0] = 1;

}
critical section
flag[0]=0;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

flag[1] = 0;
wait a short time;
flag[1] = 1;

} 
critical section
flag[1]=0;
outside of critical section

bool flag[2] = {0, 0};



Six try – Dekker’s Algorithm
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flag[0] = 1;
while (flag[1] != 0) {

if (turn == 2) {
flag[0] = 0;
while (turn == 2);
flag[0] = 1;

} //if
} //while
critical section
flag[0]=0;
turn=2;
outside of critical section

flag[1] = 1;
while (flag[0] != 0) {

if (turn == 1) {
flag[1] = 0;
while (turn == 1);
flag[1] = 1;

} //if
} //while
critical section
flag[1]=0;
turn=1;
outside of critical section

bool flag[2] = {0, 0};
int turn = 1;
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Peterson's Algorithm

while (true) {
try1 = true;
turn = 2;
while (try2 && turn != 1) ;
critical section
try1 = false;
outside of critical section

}

while (true) {
try2 = true;
turn = 1;
while (try1 && turn != 2) ;
critical section
try2 = false;
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

• This satisfies all the requirements

• Here's why...
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Peterson's Algorithm: analysis

while (true) {
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1 try1 = true;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

2  turn = 2;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

3  while (try2 && turn != 1) ;
{  try1 ∧ (turn == 1 ∨ ¬ try2 ∨

(try2 ∧ (yellow at 6 or at 7)) }
critical section

4 try1 = false;
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }
outside of critical section

}

while (true) {
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

6  turn = 1;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2) ;
{  try2 ∧ (turn == 2 ∨ ¬ try1 ∨

(try1 ∧ (blue at 2 or at 3)) }
critical section

8 try2 = false;
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }
outside of critical section

}

int turn = 1;
bool try1 = false, try2 = false;

(blue at 4) ∧ try1 ∧ (turn == 1 ∨ ¬ try2 ∨ (try2 ∧ (yellow at 6 or at 7))
∧ (yellow at 8) ∧ try2 ∧ (turn == 2 ∨ ¬ try1 ∨ (try1 ∧ (blue at 2 or at 3))

... ⇒ (turn == 1  ∧ turn == 2)



Some observations
! This stuff (software locks) is hard

u Hard to get right
u Hard to prove right

! It also is inefficient
u A spin lock – waiting by checking the condition repeatedly

! Even better, software locks don’t really work
u Compiler and hardware reorder memory references from 

different threads
! Something called memory consistency model
! Well beyond the scope of this class J

! So, we need to find a different way
u Hardware help; more in a second
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Hardware to the rescue
! Crux of the problem:

u We get interrupted between checking the lock and setting it to 1

u Software locks reordered by compiler/hardware

! Possible solutions?
u Atomic instructions: create a new assembly language instruction 

that checks and sets a variable atomically
» Cannot be interrupted!

» How do we use them?

u Disable interrupts altogether (no one else can interrupt us)
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Atomic Instruction: Test-and-Set
! The semantics of test-and-set are:

u Record the old value
u Set the value to indicate available
u Return the old value 

! Hardware executes it atomically!

! When executing test-and-set on “flag”
u What is value of flag afterwards if it was initially False?  True?
u What is the return result if flag was initially False?  True?

bool test_and_set (bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

while (lock->held);
lock->held = 1;

One read   
One write
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Using Test-and-Set
! Here is our lock implementation with test-and-set:

! When will the while return?  What is the value of held?
! Does it satisfy critical region requirements? (mutex, 

progress, bounded wait, performance?)

struct lock {
int held = 0;

}
void acquire (lock) {

while (test-and-set(&lock->held));
}
void release (lock) {

lock->held = 0;
}
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Still a Spinlocks
! The problem with spinlocks is that they are wasteful

u Although still useful in some cases; lets discuss advantages 
and disadvantages

! If a thread is spinning on a lock, then the scheduler 
thinks that this thread needs CPU and puts it on the 
ready queue

! If N threads are contending for the lock, the thread 
which holds the lock gets only 1/N’th of the CPU
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Disabling Interrupts
! Another implementation of acquire/release is to 

disable interrupts:

! Note that there is no state associated with the lock
! Can two threads disable interrupts simultaneously?

struct lock {
}
void acquire (lock) {

disable interrupts;
}
void release (lock) {

enable interrupts;
}
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On Disabling Interrupts
! Disabling interrupts blocks notification of external 

events that could trigger a context switch (e.g., timer)

! In a “real” system, this is only available to the kernel
u Why?

! Disabling interrupts is insufficient on a multiprocessor
u Back to atomic instructions

! Like spinlocks, only want to disable interrupts to 
implement higher-level synchronization primitives 
u Don’t want interrupts disabled between acquire and release
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Summarize Where We Are
! Goal: Use mutual exclusion to protect critical sections

of code that access shared resources
! Method: Use locks (spinlocks or disable interrupts)
! Problem: Critical sections can be long

acquire(lock)
…
Critical section
…
release(lock)

Disabling Interrupts:
! Should not disable interrupts 
for long periods of time
! Can miss or delay important 
events (e.g., timer, I/O)

Spinlocks:
! Threads waiting to acquire 
lock spin in test-and-set loop
! Wastes CPU cycles
! Longer the CS, the longer 
the spin
! Greater the chance for lock 
holder to be interrupted
!Memory consistency model 
causes problems (out of 
scope of this class)
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Higher-Level Synchronization
! Spinlocks and disabling interrupts are useful for short 

and simple critical sections
u Can be wasteful otherwise
u These primitives are “primitive” – don’t do anything besides 

mutual exclusion
! Need higher-level synchronization primitives that:

u Block waiters
u Leave interrupts enabled within the critical section

! All synchronization requires atomicity
! So we’ll use our atomic locks as primitives to 

implement them



! Block waiters, interrupts enabled in critical sections
void release (lock) {

Disable interrupts;
if (Q)

remove and unblock a waiting thread;
else

lock->held = 0;     
Enable interrupts;

}
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Implementing a Blocking Lock

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

Disable interrupts;
if (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
Enable interrupts;

}

acquire(lock)
…
Critical section
…
release(lock)

Interrupts Enabled

Interrupts Disabled

Interrupts Disabled



! Can use a spinlock instead of disabling interrupts
void release (lock) {

spinlock->acquire();
if (Q)

remove and unblock a waiting thread;
else

lock->held = 0;     
spinlock->release();

}
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Implementing a Blocking Lock

struct lock {
int held = 0;
queue Q;

}
void acquire (lock) {

spinlock->acquire();
if (lock->held) {

put current thread on lock Q;
block current thread;

}
lock->held = 1;
spinlock->release();

}

acquire(lock)
…
Critical section
…
release(lock)

Running or Blocked

Spinning

Spinning
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Using Locks

u Remember to release the lock!

withdraw (account, amount) {
acquire(lock);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);
return balance;

}

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

acquire(lock);

put_balance(account, balance);
release(lock);

Critical 
Section
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Mechanisms For Building Critical 
Sections

! Locks
u Primitive, minimal semantics, used to build others

! Architecture help
u Atomic test-and-set

! Semaphores
u Basic, easy to get the hang of, but hard to program with

! Monitors
u High-level, requires language support, operations implicit
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Semaphores
! Semaphores are an abstract data type that provide 

mutual exclusion to critical sections
u Block waiters, interrupts enabled within critical section
u Described by Dijkstra in THE system in 1968

! Semaphores are integers that support two operations:
u wait(semaphore): decrement, block until semaphore is open

» Also P(), after the Dutch word for test, or down()
u signal(semaphore): increment, allow another thread to enter

» Also V() after the Dutch word for increment, or up()
u That's it! No other operations – not even just reading its value
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Blocking in Semaphores
! Associated with each semaphore is a queue of waiting 

threads/processes

! When wait() is called by a thread:
u If semaphore is open (>= 0), and thread continues

u If semaphore is closed (< 0), thread blocks on queue

! Then signal() opens the semaphore:
u If semaphore is closed before increase, a thread is waiting on 

the queue, the thread is unblocked

u If no threads are waiting on the queue, the signal is 
remembered for the next thread, but not exceeding the max 
value
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Semaphore Types
! Semaphores come in two types

! Mutex semaphore (or binary semaphore)
u Represents single access to a resource

u Guarantees mutual exclusion to a critical section

! Counting semaphore (or general semaphore)
u Multiple threads pass the semaphore determined by count

» mutex has count = 1, counting has count = N

u Represents a resource with many units available

u or a resource allowing some unsynchronized concurrent 
access (e.g., reading)
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Using Semaphores
! Use is similar to our locks, but semantics are different

struct Semaphore {
int value;
Queue q;

} S;
withdraw (account, amount) {

wait(S);
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
signal(S);
return balance;

}

wait(S);
balance = get_balance(account);
balance = balance – amount;

wait(S);

put_balance(account, balance);
signal(S);

wait(S);

…
signal(S);

…
signal(S);

Threads 
block

It is undefined which thread 
runs after a signal

critical 
section
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Beyond Mutual Exclusion
! We’ve looked at a simple example for using 

synchronization
u Mutual exclusion while accessing a bank account

! We’re going to use semaphores to look at more 
interesting examples
u Counting critical region

u Ordering threads

u Readers/Writers

u Producer consumer with bounded buffers

u More general examples
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Readers/Writers Problem
! Readers/Writers Problem:

u An object is shared among several threads

u Some threads only read the object, others only write it

u We can allow multiple readers but only one writer
» Let #r be the number of readers, #w be the number of writers

» Safety: (#r ≥ 0) ∧ (0 ≤ #w ≤ 1) ∧ ((#r > 0) ⇒ (#w = 0))

! Use three variables
u int readcount – number of threads reading object

u Semaphore mutex – control access to readcount

u Semaphore w_or_r – exclusive writing or reading
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1: // number of readers
2: int readcount = 0;
3: // mutual exclusion to readcount
4: Semaphore mutex = 1;
5: // exclusive writer or reader
6: Semaphore w_or_r = 1;
7:
8: writer {
9: wait(w_or_r); // lock out readers
10: Write;
11: signal(w_or_r); // up for grabs
12:}

Readers/Writers

1: reader {
2: wait(mutex);       // lock readcount
3: readcount += 1; // one more reader
4: if (readcount == 1)
5: wait(w_or_r); // synch w/ writers
6: signal(mutex);   // unlock readcount
7: Read;
8: wait(mutex);      // lock readcount
9: readcount -= 1; // one less reader
10: if (readcount == 0)
11: signal(w_or_r); // up for grabs
12: signal(mutex);   // unlock readcount
13: }



! w_or_r provides mutex between readers and writers
u Readers wait/signal when readcount goes from 0 to 1 or 1 to 0

! If a writer is writing, where will readers be waiting?
! Once a writer exits, all readers can fall through

u Which reader gets to go first?
u Is it guaranteed that all readers will fall through?

! If readers and writers are waiting, and a writer exits, who goes 
first?

! Why do readers use mutex?
! What if the signal is above “if (readcount == 1)”?
! If read in progress when writer arrives, when can writer get 

access?

49

Readers/Writers Notes



Avoid Starvation
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// number of readers
int readcount = 0;
// mutual exclusion to readcount
Semaphore mutex = 1;
// exclusive writer or reader
Semaphore w_or_r = 1;
// turnstile for everyone
Semaphore turnstile = 1;

writer {
wait(turnstile); // get in the queue
wait(w_or_r); // lock out readers
Write;
signal(w_or_r); // up for grabs
signal(turnstile); // next

}

reader {
wait(turnstile);  // get in the queue
signal(turnstile); // next
wait(mutex);       // lock readcount
readcount += 1; // one more reader
if (readcount == 1)

wait(w_or_r); // synch w/ writers
signal(mutex);   // unlock readcount
Read;
wait(mutex);      // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)

signal(w_or_r); // up for grabs
signal(mutex);   // unlock readcount

}
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Bounded Buffer
! Problem: Set of buffers shared by producer and 

consumer threads
u Producer inserts jobs into the buffer set
u Consumer removes jobs from the buffer set

! Producer and consumer execute at different rates
u No serialization of one behind the other
u Tasks are independent (easier to think about)
u The buffer set allows each to run without explicit handoff

! Data structure should not be corrupted
u Due to race conditions
u Or producer writing when full
u Or consumer deleting when empty
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producer {
while (1) {

Produce new resource;
wait(empty); // wait for empty buffer
wait(mutex); // lock buffer list
Add resource to an empty buffer;
signal(mutex); // unlock buffer list
signal(full);      // note a full buffer

}
}

Bounded Buffer (2)

consumer {
while (1) {

wait(full);         // wait for a full buffer
wait(mutex);    // lock buffer list
Remove resource from a full buffer;
signal(mutex); // unlock buffer list
signal(empty); // note an empty buffer
Consume resource;

}
}

Semaphore mutex = 1;   // mutual exclusion to shared set of buffers
Semaphore empty = N;  // count of empty buffers (all empty to start)
Semaphore full = 0;        // count of full buffers (none full to start)
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Bounded Buffer (3)
! Why need the mutex at all?

! The pattern of signal/wait on full/empty is a common 
construct often called an interlock

! Producer-Consumer and Bounded Buffer are classic 
examples of synchronization problems
u We will see and practice others
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Semaphore Summary
! Semaphores can be used to solve any of the 

traditional synchronization problems
! However, they have some drawbacks

u They are essentially shared global variables
» Can potentially be accessed anywhere in program

u No connection between the semaphore and the data being 
controlled by the semaphore

u Used both for critical sections (mutual exclusion) and 
coordination (scheduling)

» Note that I had to use comments in the code to distinguish
u No control or guarantee of proper usage

! Sometimes hard to use and prone to bugs
u Another approach: Use programming language support


