
CS 153
Design of Operating Systems

Fall 20

Final Review

Objectives of this class
! In this course, we will study typical problems that an OS to

address and the corresponding solutions
u Focus on concepts rather than particular OS
u Specific OS for examples

! Practice your engineering skills
u Abstraction and implementation
u The projects are very close to real projects in industry

! Develop an understanding of how OS and hardware
impacts application performance and reliability

Projects are HARD?
! Probably the hardest class you will take at UCR in

terms of development effort
� You must learn gdb if you want to preserve your sanity! J

! Working on the projects will take most of your time in
this class

! Biggest reason the projects are hard: legacy code
� You have to understand existing code before you can add more

code

� Preparation for main challenge you will face at any real job

Roles an OS
! Abstraction: defines a set of logical resources (objects)

and well-defined operations on them (interfaces)
u Why? Easier app programming

u Humans are good at abstraction instead of details

! Virtualization: Isolates and multiplexes physical
resources via spatial and temporal sharing
u Why? Better hardware utilization

! Schedule/Control:
u Why? Fairness, performance, security, privacy, etc.

OS Abstractions

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

What have we learned?
! First half: schedule and synchronization

u Queueing theory*

u Consensus*
» blockchain

! Second half: translation and cache
u There are only two hard things in Computer Science: cache

invalidation and naming things. -- Phil Karlton

Overview
! Translation

u Virtual address space
» Virtual address à physical address

u Disk and File Systems
» Name à file object (e.g., inode)

» Offset à disk blocks

! Cache
u Program Locality

u Memory Hierarchy

Virtual Addresses

! Many ways to do this translation…
u Need hardware support and OS management algorithms

! Requirements
u Need protection – restrict which addresses jobs can use

u Fast translation – lookups need to be fast

u Fast change – updating memory hardware on context switch

vmapprocessor physical
memory

virtual
addresses

physical
addresses

What is the virtualization/illusion we created?

Translation methods
! Linear/contiguous mapping: y = x + b

u Physical address = base register + virtual address

u Disk block = starting block + offset / block size

u Fast, easy to implement
u Inflexible, causes fragmentation (either internal or external)

! Indexed mapping: y = map[x]
u Physical page number = page table[virtual page number]
u File = directory[file name]
u Disk block = inode[virtual block number]
u Could go through multiple levels
u Flexible, easy to manage free space, no external fragmentation
u Translation is slower

Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

Intel IA32-e Paging

Source: Intel Architecture Software Developer Manuals

Path Name Translation
! Let’s say you want to open “/one/two/three”

! What does the file system do?
u Open directory “/” (well known, can always find)

u Search for the entry “one”, get location of “one” (in dir entry)

u Open directory “one”, search for “two”, get location of “two”

u Open directory “two”, search for “three”, get location of
“three”

u Open file “three”

Unix Inodes
! Unix inodes implement an indexed structure for files

u Also store metadata info (protection, timestamps, length, ref count…)
! Each inode contains 15 block pointers

u First 12 are direct blocks (e.g., 4 KB blocks)
u Then single, double, and triple indirect

…

0

12
13
14

1

…

… …

(Metadata)

(1)
(2)
(3)

11

Locality

! Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

! Temporal locality:
u Recently referenced items are likely

to be referenced again in the near future

! Spatial locality:
u Items with nearby addresses tend

to be referenced close together in time

Locality Example

! Data references
u Reference array elements in

succession (stride-1 reference pattern).

u Reference variable sum each iteration.

! Instruction references
u Reference instructions in sequence.

u Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Cache

! Cache: a smaller, faster storage that acts as a staging
area for a subset of the data in a larger, slower storage.
u The storage could be a software data structure (like index tables)

or a hardware device (like spinning disk)

! Why does cache work?
u Because of locality!

» Hit fast storage much more frequently even though its smaller

General Cache Concepts
! Hit

u Data needed is in the cache

! Miss
u Data is not in the cache

u Types of misses
» Cold (compulsory) miss: cache is empty
» Conflict miss: cache is not full but due to placement policy, the

slot the data will be mapped to is occupied
» Capacity miss: the set of active cache blocks (working set) is

larger than the cache size

Cache replacement policy
! Cache replacement policy: determine which data to

remove when there is a miss

! Belady’s algorithm
u Idea: Replace the page that will not be used for the longest

time in the future

u Optimal but not practical: have to predict the future

u Serves as the baseline to measure other algorithms

! Common replacement algorithms
u FIFO, Least Recently Used (LRU), access bit, LRU clock

Example: Belady’s Anomaly

An Example Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

Examples of Caching in the
Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

Locality and Performance

Security and Reliability
! Access control

u DAC: access control list and capabilities

u CS 165

! Reliability
u Crash consistency: journaling file systems (JFS)

u Disk failures: Redundant Array of Inexpensive Disks (RAID)

Let’s do some problems

24

! Check iLearn for keys to homework and previous
exams

Virtual Address Translation
! Consider the segment table

u Is the information in the segment
table consistent?

u If there are possible errors that you
identify, what will their implication be?

u What will be the result of translating
the following virtual addresses?

» #4, 80

» #1, 200

Segment Base Limit
0 800 600
1 1200 140
2 70 100
3 1350 880
4 2200 96

Paging
! An OS is using two-level paging to implement a 28-bit

virtual address space per process. The page size is
256-bytes, and the machine does not have a TLB.
Assume an even split of address bits between first-
and second-level page tables.
u Explain the steps involved in looking up the virtual address

0x03bf04d, when all pages are present in memory.

u For the system above, what is the maximum number of page
faults that could be generated in response to a memory
access?

Cache Replacement Policy
! Consider a process that has been allocated 5 pages

of memory: P1, P2, P3, P4, and P5. The process
accesses these pages in the following order: P1 P2 P3
P4 P1 P2 P5 P1 P2 P3 P4 P5

u What is the Belady’s anomaly for cache replacement
policies?

u Illustrate Belady’s anomaly by precisely describing the
execution of the FIFO page eviction algorithm in two cases
and by comparing the number of page faults incurred in
these two cases: 3 physical pages & 4 physical pages.

u Show how the LRU page eviction algorithm would work in the
same scenarios.

Locality and cache
! Caching is the core technique to bridge the gap of

access performance between different layers in the
memory hierarchy. Caching works because of the
program locality. Explain what spatial and temporal
locality is.

File System
! On the original UNIX file system, we are reading the

file “/one/two/three.txt” All the directories fit in a
single block each.
u Describe and count the number of disk reads involved in

reading the file. Assume no disk cache/buffer is used.

u Similar to TLB, the OS uses a path cache to reduce the
number of disk reads when traversing a path.

u How does FFS improve performance over the basic UNIX file
system?

File System
u How does using the `open()` system call help the performance

of the file system? In other words, what's the difference when
`read()` and `write()` system calls use file name as argument
instead of file descriptors?

u Let’s create a symbolic link called `/one/three` pointing to
three.txt – Assume that `three` has a single block of data. List
all i-nodes that are modified or created.

u Explain two specific scenarios of problems that can happen
if the system crashes in the middle of creating symbolic link
in Q1.5. What consequences can these inconsistencies
cause?

File System Implementation
! Consider a file system that uses a structure similar to

an `i-node` but with the following differences. If the file
size is less than 100 bytes, the data is stored directly
in the i-node. If it is larger, there are 6 direct links
(point to a data block), 1 single-indirect links, 2-
double indirect links and 1 triple indirect link.
Assuming the pointer size is 4 bytes and the disk
block size is 512 bytes.
u Describe how many disk blocks can a single file index in this

system?

u How many blocks (including `i-node` and index blocks) are
needed to address a file of size 50 bytes, 500 bytes,
50Kbytes, and 5Mbytes?

Access Control
! The slides of file system on the class website has the

following permission: -rw-r--r-- csong csprofs fs.pdf

u Who is the owner of the file? What operations can the owner
perform? What special operations can owner perform?

u What is the group of the file? What operations can the group
perform?

u What operations can other users perform?

