CS 153
Design of Operating Systems

Fall 20

Lecture 18: Paging

Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Recap: Address Spaces

e Address space: ordered set of non-negative integer
addresses: {0, 1,2, 3 ... }

+ Addresses could be contiguous or segmented
e Virtual address space: set of virtual addresses

e Physical address space: set of physical addresses

Paging

e New ldea: split virtual address space into multiple
fixed size partitions

+ Each can go anywhere!
Virtual Memory

Virtual address space
A

Physical Memory

Page 1

Page 2

Page 3

Page N

\

|
aoeds ssaJppe |esisAyd

Paging solves the external fragmentation problem by

using fixed sized units in both physical and virtual memory

But need to keep track
of where things are!

Process Perspective

e Processes view memory as one contiguous address
space from 0 through N

+ Virtual address space (VAS)

e In reality, pages are scattered throughout physical
storage

e The mapping is invisible to the program

e Protection is provided because a program cannot
reference memory outside of its VAS

+ The address “0x1000” maps to different physical addresses
in different processes

Paging

e Iranslating addresses

+ Virtual address has two parts: virtual page number and offset
+ Virtual page number (VPN) is an index into a page table
+ Page table determines page frame number (PFN)

+ Physical address is PFN::offset
e Page tables

+ Map virtual page number (VPN) to page frame number (PFN)
» VPN is the index into the table that determines PFN

+ One page table entry (PTE) per page in virtual address space
» Or, one PTE per VPN

Page Lookups

Virtual Address

Page number

Offset

Page Table

Physical Address

Page frame

Offset

Physical Memory

Page frame

-

Y

Paging Example

e Pages are 4KB
+ Offsetis 12 bits (because 4KB = 212 bytes)
+ VPN is 20 bits (32 bits is the length of every virtual address)

e Virtual address is 0x7468
+ Virtual page is 0x7, offset is 0x468
e Page table entry Ox7 contains 0x2000

+ Page frame number is 0x2000

+ Seventh virtual page is at address 0x2000 (2nd physical page)
e Physical address = 0x2000 + 0x468 = 0x2468

Page Table Entries (PTES)

1 1 1 2 20
M R|{V| Prot Page Frame Number

e Page table entries control mapping

+ The Modify bit says whether or not the page has been written
» It is set when a write to the page occurs (for caching)

+ The Reference bit says whether the page has been accessed
» It is set when a read or write to the page occurs (for eviction)

+ The Valid bit says whether or not the PTE can be used
» It is checked each time the virtual address is used (\Why?)

+ The Protection bits say what operations are allowed on page
» Read, write, execute (Why do we need these?)

+ The page frame number (PFN) determines physical page

Address Translation With a Page

Table

Virtual address
n-1 p p-1 0
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process)Valid Physical page number (PPN)
Valid bit = 0:
page not in memory

(page fault)

m-1 0

A 4

-1
p P v

Physical page number (PPN)

Physical page offset (PPO)

Physical address

Paging Advantages

e Easy to allocate memory
+ Memory comes from a free list of fixed size chunks
+ Allocating a page is just removing it from the list
+ External fragmentation not a problem
» All pages of the same size
e Simplifies protection
+ All chunks are the same size

+ Like fixed partitions, don’t need a limit register

e Simplifies virtual memory — later

Paging Limitations

e Can still have internal fragmentation
+ Process may not use memory in multiples of a page

e Memory reference overhead
+ 2 references per address lookup (page table, then memory)
+ What can we do?

e Memory required to hold page table can be significant
+ Need one PTE per page
+ 32-bit address space w/ 4KB pages = 22° PTEs
+ 4 bytes/PTE = 4MB/page table
+ 25 processes = 100MB just for page tables!
+ What can we do?

Managing Page Tables

e Last lecture we computed the size of the page table
for a 32-bit address space w/ 4K pages to be 4MB

+ This is far too much overhead for each process
e How can we reduce this overhead?

+ Observation: process don’t use all the addresses, so we only
need to map the portion of the address space this is actually
being used (tiny fraction of entire address space)

e How do we only map what is being used?

+ Can dynamically extend page table

e Use another level of indirection: two-level page tables

Two-Level Page Tables

e Two-level page tables
+ Each virtual address (VA) has three parts:

» Master page number, secondary page number, and offset

Master page number | Secondary Offset

+ Master page table maps VA to secondary page table

+ Secondary page table maps virtual page number to physical
page
+ Offset indicates where in physical page address is located

One-Level Page Lookups

Virtual Address

Page number

Offset

Page Table

Physical Address

Page frame

Offset

Physical Memory

-

Page frame

Y

Two-Level Page Lookups

Physical Memory

Virtual Address

Master page number | Secondary Offset

Physical Address

Page table

Y

Page frame Offset

Master Page Table
Page frame

Secondary Page Table

Example

e How many bits in offset? 4K = 12 bits
e 4KB pages, 4 bytes/PTE

e \Want master page table in one page: 4K/4 bytes = 1K
entries

e Hence, 1K secondary page tables
e How many bits?

+ Master page number = 10 bits (because 1K entries)
+ Offset = 12 bits
+ Secondary page number =32 - 10 - 12 = 10 bits

A Two-Level Page Table Hierarchy

Level 1 Level 2
page table page tables
— / PTE 0
PTE 1
PTE 2 (null) PTE 1023
PTE 3 (null)
PTE 4 (null) PTE O
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null)
PTE 8 >
1023 null
(1K -9) PTEs
null PTEs PTE 1023

Virtual

memory

VPO

VP 1023

VP 1024

VP 2047

Gap

32 bit addresses, 4KB pages, 4-byte PTEs

1023
unallocated

pages

VP 9215

0~

AN

> 2K allocated VM pages
for code and data

> 6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

Intel IA32-e Paging

Linear Address
47 39 38 30 29 2120 12 11 0
| PML4 | Directory Ptr Directory Table I Offset |
9 12_4-KByte Page
Physical Addr
PTE >
Page-Directory- PDE with PS=0 > 40
Pointer Table 40 Page Table
4)‘(Page-Directory
L»{ PDPTE 40
9
40

PML4E

Y

—
-~

40
- CR3 |

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Source: Intel Architecture Software Developer Manuals

Multi-level Paging

e Multi-level paging reduces memory overhead of
paging

+ Only need one master page table and one secondary page
table when a process begins

+ As address space grows, allocate more secondary page
tables and add PTEs to master page table

e What problem remains?

+ Hint: what about memory lookups?

Efficient Translations

e Recall that our original page table scheme doubled the
latency of doing memory lookups

+ One lookup into the page table, another to fetch the data

e Now two-level page tables triple the latency!
+ Two lookups into the page tables, a third to fetch the data

+ And this assumes the page table is in memory

e How can we use paging but also have lookups cost
about the same as fetching from memory?

+ Cache (remember) translations in hardware
+ Translation Lookaside Buffer (TLB)
+ TLB managed by Memory Management Unit (MMU)

