
CS 153
Design of Operating Systems

Fall 20

Lecture 18: Paging
Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Recap: Address Spaces

! Address space: ordered set of non-negative integer
addresses: {0, 1, 2, 3 … }
u Addresses could be contiguous or segmented

! Virtual address space: set of virtual addresses
! Physical address space: set of physical addresses

Paging
! New Idea: split virtual address space into multiple

fixed size partitions
u Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by
using fixed sized units in both physical and virtual memory But need to keep track

of where things are!

Physical address spaceVi
rt

ua
l a

dd
re

ss
 s

pa
ce

Process Perspective
! Processes view memory as one contiguous address

space from 0 through N
u Virtual address space (VAS)

! In reality, pages are scattered throughout physical
storage

! The mapping is invisible to the program
! Protection is provided because a program cannot

reference memory outside of its VAS
u The address “0x1000” maps to different physical addresses

in different processes

Paging
! Translating addresses

u Virtual address has two parts: virtual page number and offset

u Virtual page number (VPN) is an index into a page table

u Page table determines page frame number (PFN)

u Physical address is PFN::offset

! Page tables
u Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

u One page table entry (PTE) per page in virtual address space
» Or, one PTE per VPN

Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

Paging Example
! Pages are 4KB

u Offset is 12 bits (because 4KB = 212 bytes)

u VPN is 20 bits (32 bits is the length of every virtual address)

! Virtual address is 0x7468
u Virtual page is 0x7, offset is 0x468

! Page table entry 0x7 contains 0x2000
u Page frame number is 0x2000

u Seventh virtual page is at address 0x2000 (2nd physical page)

! Physical address = 0x2000 + 0x468 = 0x2468

Page Table Entries (PTEs)

! Page table entries control mapping
u The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs (for caching)
u The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs (for eviction)
u The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used (Why?)
u The Protection bits say what operations are allowed on page

» Read, write, execute (Why do we need these?)
u The page frame number (PFN) determines physical page

R VM Prot Page Frame Number
1 1 1 2 20

Address Translation With a Page
Table

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address

Physical address

Valid Physical page number (PPN)

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

0p-1pn-1

0p-1pm-1

Paging Advantages
! Easy to allocate memory

u Memory comes from a free list of fixed size chunks

u Allocating a page is just removing it from the list

u External fragmentation not a problem
» All pages of the same size

! Simplifies protection
u All chunks are the same size

u Like fixed partitions, don’t need a limit register

! Simplifies virtual memory – later

Paging Limitations
! Can still have internal fragmentation

u Process may not use memory in multiples of a page
! Memory reference overhead

u 2 references per address lookup (page table, then memory)
u What can we do?

! Memory required to hold page table can be significant
u Need one PTE per page
u 32-bit address space w/ 4KB pages = 220 PTEs
u 4 bytes/PTE = 4MB/page table
u 25 processes = 100MB just for page tables!
u What can we do?

Managing Page Tables
! Last lecture we computed the size of the page table

for a 32-bit address space w/ 4K pages to be 4MB
u This is far too much overhead for each process

! How can we reduce this overhead?
u Observation: process don’t use all the addresses, so we only

need to map the portion of the address space this is actually
being used (tiny fraction of entire address space)

! How do we only map what is being used?
u Can dynamically extend page table

! Use another level of indirection: two-level page tables

Two-Level Page Tables
! Two-level page tables

u Each virtual address (VA) has three parts:
» Master page number, secondary page number, and offset

u Master page table maps VA to secondary page table
u Secondary page table maps virtual page number to physical

page
u Offset indicates where in physical page address is located

Master page number Secondary Offset

One-Level Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

Two-Level Page Lookups

Page table

Virtual Address

Master Page Table

Page frame Offset
Physical Address

Physical Memory

Master page number Secondary Offset

Page frame

Secondary Page Table

Example
! How many bits in offset? 4K = 12 bits
! 4KB pages, 4 bytes/PTE
! Want master page table in one page: 4K/4 bytes = 1K

entries
! Hence, 1K secondary page tables
! How many bits?

u Master page number = 10 bits (because 1K entries)
u Offset = 12 bits
u Secondary page number = 32 – 10 – 12 = 10 bits

A Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages

VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

32 bit addresses, 4KB pages, 4-byte PTEs

Intel IA32-e Paging

Source: Intel Architecture Software Developer Manuals

Multi-level Paging
! Multi-level paging reduces memory overhead of

paging
u Only need one master page table and one secondary page

table when a process begins

u As address space grows, allocate more secondary page
tables and add PTEs to master page table

! What problem remains?
u Hint: what about memory lookups?

Efficient Translations
! Recall that our original page table scheme doubled the

latency of doing memory lookups
u One lookup into the page table, another to fetch the data

! Now two-level page tables triple the latency!
u Two lookups into the page tables, a third to fetch the data

u And this assumes the page table is in memory

! How can we use paging but also have lookups cost
about the same as fetching from memory?
u Cache (remember) translations in hardware

u Translation Lookaside Buffer (TLB)

u TLB managed by Memory Management Unit (MMU)

