
CS 153
Design of Operating Systems

Fall 20

Lecture 2: Historical Perspective
Instructor: Chengyu Song
Slide contributions from 

Nael Abu-Ghazaleh, Harsha Madhyvasta and Zhiyun Qian



Questions for today
! Why do we need operating systems course?

! Why do we need operating systems?

! What does an operating system need to do?

! Looking back, looking forward

2



3

Why an OS class?
! Why are we making you sit here today, having to 

suffer through a course in operating systems?
u After all, most of you will not become OS developers

! The concepts/problems are very general
u We also encounter these problems in our daily life
u Many abstractions like threads and synchronization are used 

pervasively in computer science
! Learn about complex software systems

u Many of you will go on to work on large software projects
u OS serve as examples of an evolution of complex systems

! Understand what you use (and build!)
u Understanding how an OS works helps you develop apps
u System functionality, debugging, performance, security, etc.



Questions for today
! Why do we need operating systems course?

! Why do we need operating systems?

! What does an operating system need to do?

! Looking back, looking forward

4



! What if applications ran directly on hardware?

! Problems:
u Portability à OS Task 1: abstraction
u Resource sharing à OS Task 2: multiplexing

Why have an OS?

5

Applications

Hardware



! The operating system is the software layer between 
user applications and the hardware

! The OS is “all the code that you didn’t have to 
write” to implement your application

6

What is an OS?

Operating System

Hardware

Applications



Questions for today
! Why do we need operating systems course?

! Why do we need operating systems?

! What does an operating system need to do?

! Looking back, looking forward.

7



8

Fundamental Issues
! The fundamental issues/questions in this course are:

u Management: how to allocate and schedule resources?

u Performance: how to do better?

u Protections: how to make sure things won’t go wrong?

u Security: how to create a safe environment?

u Communication: how to enable collaboration?

u Reliability and fault tolerance: how to mask failures?

u Usability: how to enable the users/programs to do more?



Basic Roles of an OS
! Abstraction: defines a set of logical resources (objects) 

and well-defined operations on them (interfaces)

! Virtualization: isolates and multiplexes physical 
resources via spatial and temporal sharing

! Control: who, when, how
u Scheduling (when): efficiency and fairness
u Permissions (how): security and privacy

! Persistence: how to keep and share data
9



Questions for today
! Why do we need operating systems course?

! Why do we need operating systems?

! What does an operating system need to do?

! Looking back, looking forward.

10



Phase 0
! In the beginning, OS is just runtime libraries (routines)

u A piece of code used/sharable by many programs
u Abstraction: reuse magic to talk to physical devices
u Avoid bugs

! User scheduled an exclusive time where they would 
use the machine

! User interface was switches and lights, eventually 
punched tape and cards
u An interesting side effect: less bugs

11



Phase 1: batch systems (1955-1970)

! Computers expensive; people cheap
u Use computers efficiently – move people away from machine

! OS in this period became a program loader
u Loads a job, runs it, outputs result, then moves on to next
u More efficient use of hardware but increasingly difficult to debug

» Still less bugs J

12



Advances in OS in this period

! SPOOLING/Multiprogramming
u Simultaneous Peripheral Operations On-Line (SPOOL)

» Non-blocking tasks

» Copy document to printer buffer so printer can work while CPU 
moves on to something else

u Hardware provided memory support (protection and relocation)

u Scheduling

u OS must manage interactions between concurrent things

! OS/360 from IBM first OS designed to run on a 
family of machines from small to large

13



Phase 1, problems
! Utilization is low (one job at a time)

! No protection between jobs
u But one job at a time, so what can go wrong?

! Scheduling
! Coordinating concurrent activities

! People time is still being wasted
! Operating Systems didn’t really work

u The mythical man month

u Birth of software engineering

14



Phase 2: 1970s
! Computers and people are expensive

u Help people be more productive

! Interactive time-sharing: let many people use the 
same machine at the same time

! Emergence of minicomputers
u Terminals are cheap

! Persistence: keep data online on fancy file systems

15



Unix appears
! Ken Thompson, who worked on MULTICS, wanted to 

use an old PDP-7 laying around in Bell labs

! He and Dennis Richie built a system designed by 
programmers for programmers

! Originally in assembly.  Rewritten in C
u In their paper describing UNIX, they defend this decision!

u However, this is a new and important advance: portable 
operating systems!

! Shared code with everyone (particularly universities)

16



Unix (cont’d)
! Berkeley added support for virtual memory for the VAX

u Unix BSD

! DARPA selected Unix as its networking platform in 
ARPAnet

! Unix became commercial
u …which eventually lead Linus Torvald to develop Linux

17



Phase 3: 1980s 
! Computers are cheap, people expensive

u Put a computer in each terminal

u CP/M from DEC first personal computer OS (for 8080/85) processors

u IBM needed software for their PCs, but CP/M was behind schedule

u Approached Bill Gates to see if he can build one

u Gates approached Seattle computer products, bought 86-DOS and 
created MS-DOS

u Goal: finish quickly and run existing CP/M software

u OS becomes subroutine library and command executive

18



Phase 4: Networked/distributed 
systems--1990s to now?

! Its all about connectivity

! Enables parallelism but performance is not goal

! Goal is communication/sharing/power consumption/...
u Requires high speed communication

u We want to share data not hardware

! Networked applications drive everything
u Web, email, messaging, social networks, …

u Chromebook

19



New problems
! Large scale

u Google file system, map-reduce, …

! Parallelism on the desktop (multicores)

! Heterogeneous systems, IoT
u GPU, FPGA, …

u Real-time; energy efficiency

! Security and Privacy

20



Phase 5
! New generation?

! Computing evolving beyond networked systems
u Cloud computing, edge computing, IoT, wearable devices, 

drones, cyber-physical systems, autonomous cars, computing 
everywhere

u But what is it?

u … and what problems will it bring?

21



Where are we headed next?
! How is the OS structured? Is it a special program? Or 

something else?
u How do other programs interact with it?

! How does it protect the system?
u What does the architecture/hardware need to do to support it?

22



23

Why start with architecture?
! Recall: Key roles of an OS are 

1) Wizard: isolation and resource virtualization
2) Referee: efficiency, fairness, and security

! Architectural support can greatly simplify – or 
complicate – OS tasks
u Easier for OS to implement a feature if supported by hardware
u OS needs to implement everything hardware doesn‘t

! OS evolution accompanies architecture evolution
u New software requirements motivate new hardware
u New hardware features enable new software



For next class…
! Continue to get familiar with xv6

u Chapter 0
u Appendix A and B

26


