
CS 153
Design of Operating Systems

Fall 20

Lecture 19: Locality, Cache, and TLB
Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Efficient Translations
! Recall that our original page table scheme doubled the

latency of doing memory lookups
u One lookup into the page table, another to fetch the data

! Now two-level page tables triple the latency!
u Two lookups into the page tables, a third to fetch the data

u And this assumes the page table is in memory

! How can we use paging but also have lookups cost
about the same as fetching from memory?
u Cache (remember) translations in hardware

u Translation Lookaside Buffer (TLB)

u TLB managed by Memory Management Unit (MMU)

The CPU-Memory Gap
The gap between DRAM, disk, and CPU speeds.

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1980 1985 1990 1995 2000 2003 2005 2010

ns

Year

Disk seek time
Flash SSD access time
DRAM access time
SRAM access time
CPU cycle time
Effective CPU cycle time

Disk

DRAM

CPU

SSD

The Price-Speed Gap
! Question: why don’t we just use fast memory to do

everything?

! SRAM
u Latency: 0.5-2.5 ns, cost: ~$5000 per GB

! DRAM
u Latency: 50-70 ns, cost: ~$20 - $50 per GB

! SSD/NVM
u Latency: 70-150 ns, cost: ~$4 - $12 per GB

! Magnetic disk
u Latency: 5-20 ms, cost: ~$0.02 - $2 per GB

Locality to the Rescue!
! The key to bridging this CPU-Memory gap is a

fundamental property of computer programs known as
locality

Locality

! Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

! Temporal locality:
u Recently referenced items are likely

to be referenced again in the near future

! Spatial locality:
u Items with nearby addresses tend

to be referenced close together in time

Locality Example

! Data references
u Reference array elements in

succession (stride-1 reference
pattern).

u Reference variable sum each iteration.

! Instruction references
u Reference instructions in sequence.

u Cycle through loop repeatedly.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Qualitative Estimates of Locality
! Claim: Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional
programmer.

! Question: Does this function have good locality with
respect to array a?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Locality Example
! Question: Does this function have good locality with

respect to array a?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

Locality Example
! Question: Can you permute the loops so that the

function scans the 3-d array a with a stride-1 reference
pattern (and thus has good spatial locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

Memory Hierarchies
! Some fundamental and enduring properties of

hardware and software:
u Fast storage technologies cost more per byte, have less

capacity, and require more power (heat!).

u The gap between CPU and main memory speed is widening.

u Well-written programs tend to exhibit good locality.

! These fundamental properties complement each other
beautifully.

! They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Cache

! Cache: A smaller, faster storage that acts as a staging
area for a subset of the data in a larger, slower storage.
u The storage could be a software data structure or a hardware

device à memory hierarchy

! Why does cache work?
u Because of locality!

» Hit fast storage much more frequently even though its smaller

An Example of Memory Hierarchy

Registers

L1 cache
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

Another Example

Memory hierarchy
! Fundamental idea of a memory hierarchy:

� For each layer, faster, smaller device caches larger, slower
device

! Why do memory hierarchies work?
� Because of locality!

» Hit fast memory much more frequently even though its smaller

� Thus, the storage at level k+1 can be slower (but larger and
cheaper!)

! Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top.

Examples of Caching in the
Hierarchy

Hardware0On-Chip TLBAddress translationsTLB

Web browser10,000,000Local diskWeb pagesBrowser cache

Web cache

Network buffer
cache

Buffer cache

Virtual Memory

L2 cache

L1 cache

Registers

Cache Type

Web pages

Parts of files

Parts of files

4-KB page

64-bytes block

64-bytes block

4-8 bytes words

What is Cached?

Web proxy
server

1,000,000,000Remote server disks

OS100Main memory

Hardware1On-Chip L1

Hardware10On/Off-Chip L2

AFS/NFS client10,000,000Local disk

Hardware + OS100Main memory

Compiler0CPU core

Managed ByLatency (cycles)Where is it Cached?

Disk cache Disk sectors Disk controller 100,000 Disk firmware

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory Larger, slower, cheaper
storage viewed as
partitioned into “blocks”

Data is copied in block-
sized transfer units

Smaller, faster, more
expensive storage caches a
subset of the blocks

4

4

4

10

10

10

General Cache Concepts: Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Types of Cache Misses

! Cold (compulsory) miss
u Cold misses occur because the cache is empty.

! Conflict miss
u Most caches limit blocks at level k+1 to a small subset (sometimes

a singleton) of the block positions at level k.
» E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

u Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

! Capacity miss
u Occurs when the set of active cache blocks (working set) is larger

than the cache.

Cache Replacement Policy
! Cache replacement policy: determine which data to

remove when we need a victim

! Does it matter?
u Yes! Cache filling is expensive

u Getting the number down, can improve the performance of the
system significantly

Considerations
! Cache replacement support has to be simple

u They happen all the time, we cannot make that part slow

! But it can be complicated/expensive when a miss
occurs – why?
u Reason 1: if we are successful, this will be rare

u Reason 2: when it happens we are paying the cost of loading
» Loading from lower layer is relatively slower: can afford to do

some extra computation

» Worth it if we can save some future miss

! What makes a good cache replacement policy?

Evicting the Best Data
! Goal is to reduce the cache miss rate

! The best data to evict is the one never touched again
u Will never have a cache miss on it

! Never is a long time, so picking the data closest to
“never” is the next best thing
u Evicting the data that won’t be used for the longest period of

time minimizes the number of cache misses

u Proved by Belady

! We’ll survey various replacement algorithms: Belady’s,
FIFO, LRU (least recently used)

TLBs
! Translation Lookaside Buffers

u Actually a cache!

u Translate virtual page #s into PTEs (not physical addrs)

u Can be done in a single machine cycle

! TLBs implemented in hardware
u Fully associative cache (all entries looked up in parallel)

» Keys are virtual page numbers

» Values are PTEs (entries from page tables)

u With PTE + offset, can directly calculate physical address

TLB Hit

MMU
Memory

PA

Data

CPU VA

CPU Chip

PTE

1

2

4

5

A TLB hit eliminates one or more memory accesses

TLB

VPN 3

TLB Miss

MMU
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A TLB miss incurs an additional memory access (the PTE)

Why does TLB help?
! TLB reduces the translation type by

remembering/caching the previous translation (page
table walk) results

! However, in case of TLB (cache) miss, we still need to
do the expensive page table walk

! Fortunately, TLB misses are rare. Why?
u Because of an interesting property called program locality

Managing TLBs
! Hit rate: address translations for most instructions are

handled using the TLB
u > 99% of translations, but there are misses (TLB miss)…

! Who places translations into the TLB (loads the TLB)?
u Hardware (Memory Management Unit) [x86]

» Knows where page tables are in main memory
» OS maintains tables, HW accesses them directly
» Tables have to be in HW-defined format (inflexible)

u Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]
» TLB faults to the OS, OS finds appropriate PTE, loads it in TLB
» Must be fast (but still 20-200 cycles)
» CPU ISA has instructions for manipulating TLB
» Tables can be in any format convenient for OS (flexible)

Managing TLBs (2)
! OS ensures that TLB and page tables are consistent

u When it changes the protection bits of a PTE, it needs to
invalidate the PTE if it is in the TLB (special hardware
instruction)

! Reload TLB on a process context switch
u Invalidate all entries

u Why? Who does it?

! When the TLB misses and a new PTE has to be
loaded, an existing PTE must be evicted
u How? Replacement policy

Simple Memory System Example
! Addressing

u 14-bit virtual addresses
u 12-bit physical address
u Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset

Simple Memory System Page Table
Only show first 16 entries (out of 256)

10D0F
1110E
12D0D
0–0C
0–0B
1090A
11709
11308

ValidPPNVPN

0–07
0–06
11605
0–04
10203
13302
0–01
12800

ValidPPNVPN

Simple Memory System TLB
! 16 entries
! 4-way associative* (what is this?!)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Simple Memory System Cache
! 16 lines, 4-byte block size
! Physically addressed
! Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIdx

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIdx

Address Translation Example #1
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 0x3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

Address Translation Example #2
Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B N Y TBD

Address Translation Example #3
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem

Intel Core i7 Memory System

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores

To I/O
bridge

End-to-end Core i7 Address
Translation

CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1 TLB (16 sets, 4 entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO

40 12

Page tables

TLB
miss

TLB
hit

Physical
address

(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2, L3, and
main memory

L1 d-cache
(64 sets, 8 lines/set)

L1
hit

L1
miss

Virtual address (VA)

VPN3 VPN4
99

PTE PTE PTE

