CS 153
Design of Operating Systems

Fall 20

Lecture 21: Advanced Paging

Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Advanced Paging

e S0 far we have discussed how to make memory
access faster under paging

e Next, we will discuss interesting tricks on using
paging (how those bits in the PTE are used)

+ Sharing

+ Copy-on-Write

+ Memory mapped file
+ On-demand mapping

+ Virtual memory

Core 17 Level 1-3 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD | Unused Page table physical base address Unused G | PS A | CD | WT|U/S|R/W|P=1
Available for OS (page table location on disk) P=0

P: Child page table present in physical memory A: Reference bit (set by MMU on reads and

(1) or not (0). writes, cleared by software).

R/W: Read-only or read-write access access PS: Page size either 4 KB or 2 MB (defined for
permission for all reachable pages. Level 1 PTEs only).

U/S: user or supervisor (kernel) mode access G: Global page (don’t evict from TLB on task
permission for all reachable pages. switch)

WT: Write-through or write-back cache policy Page table physical base address: 40 most
for the child page table. significant bits of physical page table
address (forces page tables to be 4KB

CD: Caching disabled or enabled for the child aligned)

page table.
XD: Non-executable pages

Sharing

e Private virtual address spaces protect applications
from each other

+ Usually exactly what we want

e But this makes it difficult to share data (have to copy)

+ Parents and children in a forking Web server or proxy will
want to share an in-memory cache without copying

e We can use shared memory to allow processes to
share data using direct memory references

+ Both processes see updates to the shared memory segment

» Process B can immediately read an update by process A

Sharing (2)

e Sharing code and data among processes
+ Map virtual pages to the same physical page (here: PP 6)

Address)
Virtual 0 lati 0 Physical
Address translation Address
Space for Space
Process A: (DRAM)
N-1
(e.g., read-only
library code)
Virtual 0
Address
Space for
Process B:

N-1 M-1

Sharing (3)

e Can map shared memory at same or different virtual
addresses in each process’ address space

+ Different:

» 10 virtual page in P1 and 7t virtual page in P2 correspond to
the 2nd physical page

» Flexible (no address space conflicts), but pointers inside the
shared memory segment are invalid

s Same:

» 2nd physical page corresponds to the 10t virtual page in both P1
and P2

» Less flexible, but shared pointers are valid

Sharing (4)

e Linux API

+ Map to different address
» shm open/(): create and open a new object, or open an
existing object.
» mmap (): map the shared memory object into the virtual address
space of the calling process.

+ Map to the same address
» mmap (): with MAP_SHARED

Copy on Write

e Recall what happens during fork()

+ Entire address spaces needs to be copied

e Use Copy on Write (CoW) to defer large copies as
long as possible, hoping to avoid them altogether

+ Instead of copying pages, create shared mappings of parent
pages in child virtual address space

+ Shared pages are protected as read-only in parent and child
» Reads happen as usual

» Writes generate a protection fault, trap to OS, copy page,
change page mapping in client page table, restart write
instruction

Execution of fork()

Parent process’ s
page table

Page 1 Physical Memory

Child process’s
page table

- 1
Page 1

1
Page 2

1

1

fork() with Copy on Write

When either process modifies Page 1,
page fault handler allocates new page
Parent process’ s and updates PTE in child process

page table
Page 1
Page 2 \

Page 2)
Protection bits set to prevent either -

Physical Memory

Page 1

process from writing to any page

Child process’s
page table

Simplifying Linking and Loading

e Linking

+ Each program has similar virtual
address space

+ Code, stack, and shared libraries
always start at the same address

e Loading

0xc0000000

0x40000000

+ execve () allocates virtual pages

for .text and .data sections
= creates PTEs marked as invalid

o The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

0x08048000

0

Kernel virtual memory

User stack
(created at runtime)

v
T

Memory-mapped region for
shared libraries

T

Run-time heap
(created bymalloc)

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Unused

Memory
invisible to
user code
<«—%esp
(stack
pointer)

<«— brk

Loaded
from

the
executable
file

Mapped Files

e Mapped files enable processes to do file /0 using
loads and stores

+ Instead of “open, read into buffer, operate on buffer, ...”

e Bind a file to a virtual memory region (mmap() in Unix)

+« PTEs map virtual addresses to physical frames holding file
data

+ Virtual address base + N refers to offset N in file
e Initially, all pages mapped to file are invalid

+ OS reads a page from file when invalid page is accessed

» How?

Memory-Mapped Files

Pages are all invalid initially Physical Memory

P1

A read occurs—> Page 1 >-

File Content 1

A read occurs—> Page 2

- File Content 2

How do we know whether we need to write changes back to file?

What happens if we unmap the memory?

Writing Back to File

e OS writes a page to file when evicted, or region
unmapped

e Dirty bit trick (not protection bits)

+ If page is not dirty (has not been written to), no write needed

Page Hit

e Page hit: reference to VM word that is in physical
memory (DRAM cache hit)

Physical memory

Virtual address Physical page (DRAM)

number or
Valid disk address

PTEO]| O

PPO

null

> PP 4

1
1
0
1
0
0

Memory resident
page table
(DRAM)

Page Fault

e Page fault: reference to VM word that is not in physical
memory (DRAM cache miss)

Physical memory

Virtual address Physical page (DRAM)

number or
Valid disk address

PTEO]| O

PPO

null

PP 4

1
1
0
1
0
0

Memory resident
page table
(DRAM)

On-demand Mapping

e Allocate physical page
e Fix the page table

e Resume execution

Physical memory

Virtual address Physical page (DRAM)
number or
Valid disk address PPO
PTEO| O null
PP 4

null

Memory resident
page table
(DRAM)

1
1
[]
1
0
0

How do we know whether the fault is fixable?

On-demand Mapping

e When the process calls mmap (), the kernel
remembers

+ The region [addr, addr+length]

» What virtual addresses are valid/mapped
+ The backing: just memory (ANONYMOUS) or file
e During page fault handling, the kernel checks

+ If the faulty virtual address is valid

+ If so, fix based on the backing

Memory Protection

e R/W (read-only or writable)
+ We've seen how it is used in CoW

+ ltis also important in preventing attacks (e.g., mark code as
read-only so attackers cannot modify them)

e U/S (user or kernel)

+ How do we protect the kernel? Give it a different address
space?

» Too expensive for context switch during system calls

» May not be a bad idea if security is a concern (recent Meltdown
attack)

Memory Protection (2)*

o U/S

+ Besides protecting the kernel from directly accessed from
user space, this bit is also used to prevent kernel from
executing wrong code or access wrong data, why?

» Attackers can attack the kernel and try to execute user space
code under kernel context (privilege)

e XD (executable or not)

+ Inthe old days there’s an attack technique called “code
injection” where attacker force the CPU to interpret data as

code

+ XD is a response to such attacks by marking data pages as
not executable

