
CS 153
Design of Operating Systems

Fall 20

Lecture 17: Virtual Address Space 
Instructor: Chengyu Song



OS Abstractions

Operating System

Hardware

Applications

CPU Disk RAM

Process File system Virtual memory

2



What is Memory?
! From programmers’ perspective

u A “place” to store data

! How to access data in memory?
u Variables?

u Names?

u Addresses?

! Memory can be viewed as a big array
u content = memory[address]

3

Minimal addressable data size



Need for Virtual Address Space
! Rewind to the days of “second-generation” computers

u Programs use physical addresses directly

u OS loads job, runs it, unloads it

! Multiprogramming changes all of this
u Want multiple processes in memory at once

» Overlap I/O and CPU of multiple jobs

u How to share physical memory across multiple processes?
» Programmers cannot predict where the program will be loaded 

(data access)

» Many programs do not need all of their code and data at once (or 
ever) – no need to allocate memory for it (memory management)

4



Virtual Addresses
! To make it easier to program and manage the 

memory, we’re going to make them use virtual 
addresses (logical addresses)
u Virtual addresses are independent of the actual physical 

location of the data referenced

u OS determines location of data in physical memory

! Instructions executed by the CPU issue virtual 
addresses
u Virtual addresses are translated by hardware into physical 

addresses (with help from OS)

u The set of virtual addresses that can be used by a process 
comprises its virtual address space

5



Virtual Addresses

! Many ways to do this translation…
u Need hardware support and OS management algorithms 

! Requirements
u Need protection – restrict which addresses jobs can use

u Fast translation – lookups need to be fast

u Fast change – updating memory hardware on context switch

vmapprocessor physical
memory

virtual
addresses

physical
addresses

6

What is the virtualization/illusion we created?



Fixed Partitions
! Physical memory is broken up into 

fixed partitions
u Size of each partition is the same and 

fixed

u Hardware requirements: base register

u Physical address = virtual address + 
base register

u Base register loaded by OS when it 
switches to a process

Physical Memory

P1

P2

P3

P4

P5

7
Ph

ys
ic

al
 a

dd
re

ss
 s

pa
ce

Virtual address space



Fixed Partitions

P4’s Base

+Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5
How do we provide protection?

8



Fixed Partitions
! Advantages

u Easy to implement

» Need base register

» Verify that offset is less than fixed partition size

u Fast context switch

! Problems?
u Internal fragmentation: memory in a partition not used by a 

process is not available to other processes

u Partition size: one size does not fit all (very large processes?)

9



Variable Partitions
! Natural extension – physical memory 

is broken up into variable sized 
partitions
u Hardware requirements: base register

and limit register

u Physical address = virtual address + 
base register

! Why do we need the limit register?
u Protection: if (virtual address > limit) then 

fault

10

P2

P3

P1

Physical Memory

Ph
ys

ic
al

 a
dd

re
ss

 s
pa

ce

Virtual address space



Variable Partitions

P3’s Base

+Virtual Address

Base Register

P2

P3<

Protection Fault

Yes?

No?

P3’s Limit
Limit Register

P1

11



Variable Partitions
! Advantages

u No internal fragmentation: allocate just enough 
for process

! Problems?
u External fragmentation: job loading and 

unloading produces empty holes scattered 
throughout memory

P2

P3

P1

P4

12



Segmentation
! Segmentation: partition memory into logically related 

units
u Module, procedure, stack, data, file, etc.
u Units of memory from programmer’s perspective

! Natural extension of variable-sized partitions
u Variable-sized partitions = 1 segment per process
u Segmentation = many segments per process

! Hardware support
u Multiple base/limit pairs, one per segment (segment table)
u Segments named by #, used to index into table
u Virtual addresses become <segment #, offset>

» content = memory[segment#, offset]
13



Segment Lookups

limit base

+<

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory

14



Paging
! New Idea: split virtual address space into multiple 

fixed size partitions
u Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by 
using fixed sized units in both physical and virtual memory But need to keep track 

of where things are!
15

Physical address spaceVi
rt

ua
l a

dd
re

ss
 s

pa
ce



Process Perspective
! Processes view memory as one contiguous address 

space from 0 through N
u Virtual address space (VAS)

! In reality, pages are scattered throughout physical 
storage

! The mapping is invisible to the program
! Protection is provided because a program cannot 

reference memory outside of its VAS
u The address “0x1000” maps to different physical addresses 

in different processes

16



Paging
! Translating addresses

u Virtual address has two parts: virtual page number and offset

u Virtual page number (VPN) is an index into a page table

u Page table determines page frame number (PFN)

u Physical address is PFN::offset

! Page tables
u Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

u One page table entry (PTE) per page in virtual address space
» Or, one PTE per VPN

17



Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory

18



Paging Example
! Pages are 4KB

u Offset is 12 bits (because 4KB = 212 bytes)

u VPN is 20 bits (32 bits is the length of every virtual address)

! Virtual address is 0x7468
u Virtual page is 0x7, offset is 0x468

! Page table entry 0x7 contains 0x2000
u Page frame number is 0x2000

u Seventh virtual page is at address 0x2000 (2nd physical page)

! Physical address = 0x2000 + 0x468 = 0x2468

19



Page Table Entries (PTEs)

! Page table entries control mapping
u The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs
u The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs
u The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used (Why?)
u The Protection bits say what operations are allowed on page

» Read, write, execute (Why do we need these?)
u The page frame number (PFN) determines physical page

R VM Prot Page Frame Number
1 1 1 2 20

20



Paging Advantages
! Easy to allocate memory

u Memory comes from a free list of fixed size chunks

u Allocating a page is just removing it from the list

u External fragmentation not a problem
» All pages of the same size

! Simplifies protection
u All chunks are the same size

u Like fixed partitions, don’t need a limit register

! Simplifies virtual memory – later

21



Paging Limitations
! Can still have internal fragmentation

u Process may not use memory in multiples of a page

! Memory reference overhead
u 2 references per address lookup (page table, then memory)

u What can we do?

! Memory required to hold page table can be significant
u Need one PTE per page

u 32 bit address space w/ 4KB pages = 220 PTEs

u 4 bytes/PTE = 4MB/page table

u 25 processes = 100MB just for page tables!

u What can we do? 22



Segmentation and Paging*
! Can combine segmentation and paging

u The x86 supports both segments and paging
! Use segments to manage logically related units

u Code, data, stack, thread-local storage, etc.
u Segments vary in size, but usually large (multiple pages)

! Use pages to partition segments into fixed size chunks
u Makes segments easier to manage within physical memory

» Segments become “pageable” – rather than moving segments 
into and out of memory, just move page portions of segment

u Need to allocate page table entries only for those pieces of 
the segments that have themselves been allocated

! Tends to be complex…
24



Summary
! Virtual address space

u Developers use virtual address

u Processes use virtual address

u OS + hardware translate VA into PA

! Various techniques
u Fixed partitions

u Variable partitions

u Segmentation

u Paging

25


