CS 153
Design of Operating Systems

Fall 20

Lecture 17: Virtual Address Space
Instructor: Chengyu Song

OS Abstractions

Applications

Process File system Virtual memory

Operating System

CPU Disk RAM

What 1s Memory?

e From programmers’ perspective

+ A “place” to store data

e How to access data in memory?
+ Variables?
+ Names?

+ Addresses?

e Memory can be viewed as a big array

+ content = memory[address]

1

Minimal addressable data size

Need for Virtual Address Space

e Rewind to the days of “second-generation” computers
+ Programs use physical addresses directly

+ OS loads job, runs it, unloads it

e Multiprogramming changes all of this

+« Want multiple processes in memory at once

» Qverlap I/0 and CPU of multiple jobs

+ How to share physical memory across multiple processes?

» Programmers cannot predict where the program will be loaded
(data access)

» Many programs do not need all of their code and data at once (or
ever) — no need to allocate memory for it (memory management)

4

Virtual Addresses

e [0 make it easier to program and manage the

memory, we’ re going to make them use virtual
addresses (logical addresses)

+ Virtual addresses are independent of the actual physical
location of the data referenced

+ OS determines location of data in physical memory

e Instructions executed by the CPU issue virtual
addresses

+ Virtual addresses are translated by hardware into physical
addresses (with help from OS)

+ The set of virtual addresses that can be used by a process
comprises its virtual address space

Virtual Addresses

What is the virtualization/illusion we created?

virtual physical
addresses addresses
~ ~ hysical
processor >~ vmap > phy
memory

e Many ways to do this translation...
+ Need hardware support and OS management algorithms
e Requirements
+ Need protection — restrict which addresses jobs can use
+ Fast translation — lookups need to be fast

+ Fast change - updating memory hardware on context switch

Fixed Partitions

e Physical memory is broken up into
fixed partitions

+ Size of each partition is the same and
fixed

+ Hardware requirements: base register

+ Physical address = virtual address +
base register

+ Base register loaded by OS when it
switches to a process

Physical address space

Physical Memory

P1

P2

P3

P4

P5

;

aoeds ssaippe [enMIA

Fixed Partitions

Physical Memory

Base Register P1
P4’ s Base
P2
P3
Virtual Address >w >
P4
P5

How do we provide protection?

Fixed Partitions

e Advantages
+ Easy to implement
» Need base register
» Verify that offset is less than fixed partition size

+ Fast context switch

e Problems?

+ Internal fragmentation: memory in a partition not used by a
process is not available to other processes

+ Partition size: one size does not fit all (very large processes?)

Variable Partitions

e Natural extension — physical memory
IS broken up into variable sized
partitions

+ Hardware requirements: base register
and limit register

+ Physical address = virtual address +
base register

e Why do we need the limit register?

+ Protection: if (virtual address > limit) then
fault

Physical address space

Physical Memory

P1

P2

10

aoeds ssaJppe [enlipn

Variable Partitions

Base Register

P3’ s Base

Limit Register

P3’ s Limit

Virtual Address

|

P1

Protection Fault

Y

P2

P3

11

Variable Partitions

e Advantages

+ No internal fragmentation: allocate just enough
for process

e Problems?

+ External fragmentation: job loading and

unloading produces empty holes scattered
throughout memory

P1

P2

P3

P4

12

Segmentation

e Segmentation: partition memory into logically related
units

+ Module, procedure, stack, data, file, etc.
+ Units of memory from programmer’ s perspective

e Natural extension of variable-sized partitions
+ Variable-sized partitions = 1 segment per process
+ Segmentation = many segments per process

e Hardware support
+ Multiple base/limit pairs, one per segment (segment table)
+ Segments named by #, used to index into table

+ Virtual addresses become <segment #, offset>
» content = memory[segment#, offset]

13

Segment Lookups

Segment Table Physical Memory
/_7 ~ limit base
Segment # Offset
Virtual Address
Yes?
No?

Protection Fault

14

Paging

e New ldea: split virtual address space into multiple
fixed size partitions

+ Each can go anywhere! Physical Memory
Virtual Memory m

Page 1

Page 2

Page 3

Virtual address space
A

|
aoeds ssaJppe |esisAyd

Page N \

Paging solves the external fragmentation problem by
using fixed sized units in both physical and virtual memory But need to keep track
of where things are!

15

Process Perspective

e Processes view memory as one contiguous address
space from 0 through N

+ Virtual address space (VAS)

e Inreality, pages are scattered throughout physical
storage

e [he mapping is invisible to the program

e Protection is provided because a program cannot
reference memory outside of its VAS

+ The address “0x1000” maps to different physical addresses
in different processes

16

Paging

e Iranslating addresses
+ Virtual address has two parts: virtual page number and offset
+ Virtual page number (VPN) is an index into a page table
+ Page table determines page frame number (PFN)

+ Physical address is PFN::offset
e Page tables

+ Map virtual page number (VPN) to page frame number (PFN)
» VPN is the index into the table that determines PFN
+ One page table entry (PTE) per page in virtual address space

» Or, one PTE per VPN

17

Page Lookups

Physical Memory

Virtual Address

Page number Offset

Physical Address

Page Table

Y

Page frame Offset

-

Page frame

18

Paging Example

e Pages are 4KB
+ Offset is 12 bits (because 4KB = 212 bytes)
+ VPN is 20 bits (32 bits is the length of every virtual address)

e Virtual address is 0x7468
+ Virtual page is 0x7, offset is 0x468

e Page table entry 0x7 contains 0x2000
+ Page frame number is 0x2000

+ Seventh virtual page is at address 0x2000 (2nd physical page)
e Physical address = 0x2000 + 0x468 = 0x2468

19

Page Table Entries (PTES)

1 1 1 2 20
M R|{V| Prot Page Frame Number

e Page table entries control mapping

+ The Modify bit says whether or not the page has been written
» It is set when a write to the page occurs

+ The Reference bit says whether the page has been accessed
» It is set when a read or write to the page occurs

+ The Valid bit says whether or not the PTE can be used
» |t is checked each time the virtual address is used (Why?)

+ The Protection bits say what operations are allowed on page
» Read, write, execute (Why do we need these?)

+ The page frame number (PFN) determines physical page

20

Paging Advantages

e Easy to allocate memory
+ Memory comes from a free list of fixed size chunks
+ Allocating a page is just removing it from the list
+ External fragmentation not a problem
» All pages of the same size
e Simplifies protection
+ All chunks are the same size

+ Like fixed partitions, don’t need a limit register

e Simplifies virtual memory - later

21

Paging Limitations

e Can still have internal fragmentation

+ Process may not use memory in multiples of a page

e Memory reference overhead
+ 2 references per address lookup (page table, then memory)

+ What can we do?

e Memory required to hold page table can be significant
+ Need one PTE per page
+ 32 bit address space w/ 4KB pages = 22° PTEs
+ 4 bytes/PTE = 4MB/page table
o 25 processes = 100MB just for page tables!

+ What can we do? 2

Segmentation and Paging*

e Can combine segmentation and paging
+ The x86 supports both segments and paging
e Use segments to manage logically related units
+ Code, data, stack, thread-local storage, etc.
+ Segments vary in size, but usually large (multiple pages)
e Use pages to partition segments into fixed size chunks

+ Makes segments easier to manage within physical memory

» Segments become “pageable” — rather than moving segments
into and out of memory, just move page portions of segment

+ Need to allocate page table entries only for those pieces of
the segments that have themselves been allocated

e ITends to be complex...

24

Summary

e Virtual address space
+ Developers use virtual address
+ Processes use virtual address

o OS + hardware translate VA into PA

e Various techniques
+ Fixed partitions
+ Variable partitions
+ Segmentation

+ Paging

25

