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What is Memory?
! From programmers’ perspective

u A “place” to store data

! How to access data in memory?
u Variables?

u Names?

u Addresses?

! Memory can be viewed as a big array
u content = memory[address]
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Minimal addressable data size



Need for Virtual Address Space
! Rewind to the days of “second-generation” computers

u Programs use physical addresses directly

u OS loads job, runs it, unloads it

! Multiprogramming changes all of this
u Want multiple processes in memory at once

» Overlap I/O and CPU of multiple jobs

u How to share physical memory across multiple processes?
» Programmers cannot predict where the program will be loaded 

(data access)

» Many programs do not need all of their code and data at once (or 
ever) – no need to allocate memory for it (memory management)
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Virtual Addresses
! To make it easier to program and manage the 

memory, we’re going to make them use virtual 
addresses (logical addresses)
u Virtual addresses are independent of the actual physical 

location of the data referenced

u OS determines location of data in physical memory

! Instructions executed by the CPU issue virtual 
addresses
u Virtual addresses are translated by hardware into physical 

addresses (with help from OS)

u The set of virtual addresses that can be used by a process 
comprises its virtual address space
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Virtual Addresses

! Many ways to do this translation…
u Need hardware support and OS management algorithms 

! Requirements
u Need protection – restrict which addresses jobs can use

u Fast translation – lookups need to be fast

u Fast change – updating memory hardware on context switch

vmapprocessor physical
memory

virtual
addresses

physical
addresses
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What is the virtualization/illusion we created?



Fixed Partitions
! Physical memory is broken up into 

fixed partitions
u Size of each partition is the same and 

fixed

u Hardware requirements: base register

u Physical address = virtual address + 
base register

u Base register loaded by OS when it 
switches to a process

Physical Memory
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P3

P4

P5
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Fixed Partitions

P4’s Base

+Virtual Address

Physical Memory

Base Register P1

P2

P3

P4

P5
How do we provide protection?
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Fixed Partitions
! Advantages

u Easy to implement

» Need base register

» Verify that offset is less than fixed partition size

u Fast context switch

! Problems?
u Internal fragmentation: memory in a partition not used by a 

process is not available to other processes

u Partition size: one size does not fit all (very large processes?)
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Variable Partitions
! Natural extension – physical memory 

is broken up into variable sized 
partitions
u Hardware requirements: base register

and limit register

u Physical address = virtual address + 
base register

! Why do we need the limit register?
u Protection: if (virtual address > limit) then 

fault
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Variable Partitions

P3’s Base

+Virtual Address

Base Register

P2

P3<

Protection Fault

Yes?

No?

P3’s Limit
Limit Register

P1
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Variable Partitions
! Advantages

u No internal fragmentation: allocate just enough 
for process

! Problems?
u External fragmentation: job loading and 

unloading produces empty holes scattered 
throughout memory

P2

P3

P1

P4
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Segmentation
! Segmentation: partition memory into logically related 

units
u Module, procedure, stack, data, file, etc.
u Units of memory from programmer’s perspective

! Natural extension of variable-sized partitions
u Variable-sized partitions = 1 segment per process
u Segmentation = many segments per process

! Hardware support
u Multiple base/limit pairs, one per segment (segment table)
u Segments named by #, used to index into table
u Virtual addresses become <segment #, offset>

» content = memory[segment#, offset]
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Segment Lookups

limit base

+<

Protection Fault

Segment # Offset

Virtual Address

Segment Table

Yes?

No?

Physical Memory
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Paging
! New Idea: split virtual address space into multiple 

fixed size partitions
u Each can go anywhere!

Virtual Memory

Page 1

Page 2

Page 3

Page N

Physical Memory

Paging solves the external fragmentation problem by 
using fixed sized units in both physical and virtual memory But need to keep track 

of where things are!
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Process Perspective
! Processes view memory as one contiguous address 

space from 0 through N
u Virtual address space (VAS)

! In reality, pages are scattered throughout physical 
storage

! The mapping is invisible to the program
! Protection is provided because a program cannot 

reference memory outside of its VAS
u The address “0x1000” maps to different physical addresses 

in different processes
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Paging
! Translating addresses

u Virtual address has two parts: virtual page number and offset

u Virtual page number (VPN) is an index into a page table

u Page table determines page frame number (PFN)

u Physical address is PFN::offset

! Page tables
u Map virtual page number (VPN) to page frame number (PFN)

» VPN is the index into the table that determines PFN

u One page table entry (PTE) per page in virtual address space
» Or, one PTE per VPN
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Page Lookups

Page frame

Page number Offset
Virtual Address

Page Table
Page frame Offset

Physical Address

Physical Memory
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Paging Example
! Pages are 4KB

u Offset is 12 bits (because 4KB = 212 bytes)

u VPN is 20 bits (32 bits is the length of every virtual address)

! Virtual address is 0x7468
u Virtual page is 0x7, offset is 0x468

! Page table entry 0x7 contains 0x2000
u Page frame number is 0x2000

u Seventh virtual page is at address 0x2000 (2nd physical page)

! Physical address = 0x2000 + 0x468 = 0x2468
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Page Table Entries (PTEs)

! Page table entries control mapping
u The Modify bit says whether or not the page has been written

» It is set when a write to the page occurs
u The Reference bit says whether the page has been accessed

» It is set when a read or write to the page occurs
u The Valid bit says whether or not the PTE can be used

» It is checked each time the virtual address is used (Why?)
u The Protection bits say what operations are allowed on page

» Read, write, execute (Why do we need these?)
u The page frame number (PFN) determines physical page

R VM Prot Page Frame Number
1 1 1 2 20
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Paging Advantages
! Easy to allocate memory

u Memory comes from a free list of fixed size chunks

u Allocating a page is just removing it from the list

u External fragmentation not a problem
» All pages of the same size

! Simplifies protection
u All chunks are the same size

u Like fixed partitions, don’t need a limit register

! Simplifies virtual memory – later
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Paging Limitations
! Can still have internal fragmentation

u Process may not use memory in multiples of a page

! Memory reference overhead
u 2 references per address lookup (page table, then memory)

u What can we do?

! Memory required to hold page table can be significant
u Need one PTE per page

u 32 bit address space w/ 4KB pages = 220 PTEs

u 4 bytes/PTE = 4MB/page table

u 25 processes = 100MB just for page tables!

u What can we do? 22



Segmentation and Paging*
! Can combine segmentation and paging

u The x86 supports both segments and paging
! Use segments to manage logically related units

u Code, data, stack, thread-local storage, etc.
u Segments vary in size, but usually large (multiple pages)

! Use pages to partition segments into fixed size chunks
u Makes segments easier to manage within physical memory

» Segments become “pageable” – rather than moving segments 
into and out of memory, just move page portions of segment

u Need to allocate page table entries only for those pieces of 
the segments that have themselves been allocated

! Tends to be complex…
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Summary
! Virtual address space

u Developers use virtual address

u Processes use virtual address

u OS + hardware translate VA into PA

! Various techniques
u Fixed partitions

u Variable partitions

u Segmentation

u Paging
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