
CS 153
Design of Operating Systems

Fall 19

Lecture 13: Virtual Memory
Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Core i7 Level 1-3 Page Table Entries

Page table physical base address Unused G PS A CD WT U/S R/W P=1

P: Child page table present in physical memory
(1) or not (0).

R/W: Read-only or read-write access access
permission for all reachable pages.

U/S: user or supervisor (kernel) mode access
permission for all reachable pages.

WT: Write-through or write-back cache policy
for the child page table.

CD: Caching disabled or enabled for the child
page table.

A: Reference bit (set by MMU on reads and
writes, cleared by software).

PS: Page size either 4 KB or 2 MB (defined for
Level 1 PTEs only).

G: Global page (don’t evict from TLB on task
switch)

Page table physical base address: 40 most
significant bits of physical page table
address (forces page tables to be 4KB
aligned)

XD: Non-executable pages

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page table location on disk) P=0

526263

VM as a Tool for Caching
! Virtual memory is an array of N contiguous bytes

stored on disk.
! The contents of the array on disk are cached in

physical memory (DRAM cache)
u These cache blocks are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
stored on disk

Physical pages (PPs)
cached in DRAM

Page Table Setup
! Valid PTEs map virtual pages to physical pages.
! Invalid PTEs map virtual pages to disk blocks

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Page/Cache Hit
! Page hit: reference to VM word that is in physical

memory (DRAM cache hit)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Page Fault (Cache miss)
! Page fault: reference to VM word that is not in

physical memory (DRAM cache miss)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault (1)
! Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

Handling Page Fault (2)
! Page fault handler selects a victim to be evicted (here

VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 4

VP 2

VP 6

VP 7

VP 3

Virtual address

VP 4

Handling Page Fault (3)
! Evict the content of VP4

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 4

VP 2

VP 6

VP 7

VP 3

Virtual address

VP 4

Handling Page Fault (4)
! Update page table

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

Virtual memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 4

VP 2

VP 6

VP 7

VP 3

Virtual address

Empty

0

Handling Page Fault (5)
! Load content of VP3 to DRAM

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

Virtual memory
(disk)

Valid
0
1

0
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 4

VP 2

VP 6

VP 7

VP 3

Virtual address

VP 3

Handling Page Fault (6)
! Update page table

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

Virtual memory
(disk)

Valid
0
1

0
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 4

VP 2

VP 6

VP 7

VP 3

Virtual address

VP 3

1

Handling Page Fault (7)
! Restart the instruction: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7

Virtual memory
(disk)

Valid
0
1

1
0
0

1
0

1

Physical page
number or

disk address
PTE 0

PTE 7

PP 0
VP 2
VP 1

PP 3

VP 1

VP 4

VP 2

VP 6

VP 7

VP 3

Virtual address

VP 3

Page Replacement
! When a page fault occurs, the OS loads the faulted page

from disk into a page frame of memory
! At some point, the process has used all of the page

frames it is allowed to use
u This is likely (much) less than all of available memory

! When this happens, the OS must replace a page for
each page faulted in
u It must evict a page to free up a page frame

u Written back only if it is has been modified (i.e., “dirty”)!

Page replacement policy
! Page replacement policy: determine which page to

remove when we need a victim
! Does it matter?

u Yes! Page faults are super expensive

u Getting the number down, can improve the performance of
the system significantly

! Silver lining
u Virtual memory is “fully associative”, we can pick any item

u Because the fault time is so long, we can afford more
complex algorithm

Evicting the Best Data
! Goal is to reduce the cache/page miss rate

! The best data to evict is the one never touched again
u Will never have a cache miss on it

! Never is a long time, so picking the data closest to
“never” is the next best thing
u Evicting the data that won’t be used for the longest period of

time minimizes the number of cache misses

u Proved by Belady

! We’ll survey various replacement algorithms, starting
from Belady’s

Belady’s Algorithm
! Belady’s algorithm

u Idea: Replace the page that will not be used for the longest
time in the future

u Optimal? How would you show?

u Problem: Have to predict the future

! Why is Belady’s useful then?
u Use it as a yardstick/upper bound

u Compare implementations of page replacement algorithms
with the optimal to gauge room for improvement

» If optimal is not much better, then algorithm is pretty good

u What’s a good lower bound?
» Random replacement is often the lower bound

First-In First-Out (FIFO)
! FIFO is an obvious algorithm and simple to implement

u Maintain a list of pages in order in which they were paged in

u On replacement, evict the one brought in longest time ago

! Why might this be good?
u Maybe the one brought in the longest ago is not being used

! Why might this be bad?
u Then again, maybe it’s not

u We don’t have any info to say one way or the other

! FIFO suffers from “Belady’s Anomaly”
u The miss rate might actually increase when the cache size

grows (very bad)

Least Recently Used (LRU)
! LRU uses reference information to make a more

informed replacement decision
u Idea: We can’t predict the future, but we can make a guess

based upon past experience

u On replacement, evict the page that has not been used for the
longest time in the past (Belady’s: future)

u When does LRU do well? When does LRU do poorly?

! Implementation
u To be perfect, need to time stamp every reference (or

maintain a stack) – much too costly

u So we need to approximate it

Approximating LRU
! LRU approximations by using a reference bit

u Keep a counter for each cache block

u At regular intervals, for every cache block do:
» If ref bit = 0, increment counter

» If ref bit = 1, zero the counter

» Zero the reference bit

u The counter will contain the number of intervals since the last
reference to the page

u The block with the largest counter is the least recently used

u Finding the largest counter is still expensive!

LRU Clock (Not Recently Used)
! Not Recently Used (NRU) – Used by Unix

u Replace page that is “old enough”

u Arrange all blocks in a big circle (clock)

u A clock hand is used to select a good LRU candidate
» Sweep through the blocks in circular order like a clock

» If the ref bit is off, it hasn’t been used recently

" What is the minimum “age” if ref bit is off?

» If the ref bit is on, turn it off and go to next page

u Arm moves quickly when blocks are needed

u If number blocks is large, “accuracy” of information degrades
» What does it degrade to?

LRU Clock

P1: 1

P2: 1

P3: 1

P8: 0

P7: 0

P6: 0

P5: 1

P4: 0

P1: 0

P2: 0

P3: 0

P8: 1

P7: 0

P6: 0

P5: 1

P4: 0

Example: Belady’s Anomaly

Example: gcc Page Replace

Fixed vs. Variable Space
! In a multiprogramming system, we need a way to

allocate memory to competing processes
! Problem: How to determine how much memory to

give to each process?
u Fixed space algorithms

» Each process is given a limit of pages it can use
» When it reaches the limit, it replaces from its own pages
» Local replacement

" Some processes may do well while others suffer

u Variable space algorithms
» Process’ set of pages grows and shrinks dynamically
» Global replacement

" One process can ruin it for the rest

Working Set Model
! A working set of a process is used to model the

dynamic locality of its memory usage
u Defined by Peter Denning in 60s

! Definition
u WS(t,w) = {set of pages P, such that every page in P was

referenced in the time interval (t, t-w)}

u t – time, w – working set window (measured in page refs)

! A page is in the working set (WS) only if it was
referenced in the last w references

Working Set Size
! The working set size is the number of pages in the

working set
u The number of pages referenced in the interval (t, t-w)

! The working set size changes with program locality
u During periods of poor locality, you reference more pages

u Within that period of time, the working set size is larger

! Intuitively, want the working set to be the set of pages
a process needs in memory to prevent heavy faulting
u Each process has a parameter w that determines a working

set with few faults

u Denning: Don’t run a process unless working set is in
memory

Example: gcc Working Set

Working Set Problems
! Problems

u How do we determine w?

u How do we know when the working set changes?

! Too hard to answer
u So, working set is not used in practice as a page replacement

algorithm

! However, it is still used as an abstraction
u The intuition is still valid

u When people ask, “How much memory does Firefox need?”,
they are in effect asking for the size of Firefox’s working set

Page Fault Frequency (PFF)
! Page Fault Frequency (PFF) is a variable space

algorithm that uses a more ad-hoc approach
u Monitor the fault rate for each process

u If the fault rate is above a high threshold, give it more
memory

» So that it faults less

» But not always (Belady’s Anomaly)

u If the fault rate is below a low threshold, take away memory
» Should fault more

! Hard to use PFF to distinguish between changes in
locality and changes in size of working set

Thrashing
! Page replacement algorithms avoid thrashing

u When most of the time is spent by the OS in paging data
back and forth from disk

u No time spent doing useful work (making progress)

u In this situation, the system is overcommitted
» No idea which pages should be in memory to reduce faults

» Could just be that there isn’t enough physical memory for all of
the processes in the system

» Ex: Running Windows95 with 4 MB of memory…

u Possible solutions
» Swapping – write out all pages of a process

» Buy more memory

