
Example Threads

#include <pthread.h>
#include <stdio.h>

int num = 0;

void *add_one(int *thread_num) {
num++;
printf("thread %d num = %d\n",

*thread_num, num);
}

void main() {
pthread_t thread;
int my_id = 0;
int your_id = 1;
pthread_create(&thread, NULL, add_one, &your_id);
add_one(&my_id);
pthread_join(thread, NULL);
}

• compile: gcc mythread.cc -o mythread -lpthread

• What is the output of this program?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 1



A Closer Look

sethi %hi(num),%o1
ld [%o1+%lo(num)],%o2
add %o2,1,%o1
st %o1,[%o0+%lo(num)]

sethi %hi(num),%o2
ld [%o1],%o1
ld [%o2+%lo(num)],%o2
call printf,0

• portion of the add_one assembly (obtained
using gcc -S mythread.cc and looking at
mythread.s)

• Timer interrupt can happen after any instruction
(switching to another thread)

• What are the possible outputs?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 2



The Critical Section Problem

while(1) {
...
entry section //getting the lock

critical section
exit section // releasing the lock

... }

• Problem Description:

– n processes competing to use shared data
– Portions of the code that use the shared data

are called critical sections
– Problem: ensure only one process in the

critical section

• An acceptable solution should:

1. Ensure Mutual Exclusion (at most one process
in the critical region)

2. Ensure Progress is made (if region is empty,
and there are processes that need it, they
should be able to enter)

3. Ensure no Starvation (after a process arrives,
there is a bound on the number of processes
that go in before it)

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 3



How to Implement Locks – Software
Approaches

pthread_trylock(mutex) {
if (mutex == 0) {

mutex = 1;
return 1;

} else {
return 0;

}
}

Process 0, 1
.
.
while(!pthread_trylock(mutex));
<critical region>
pthread_unlock(mutex);

• Fictious implementation of trylock – does it work?

• What is the fundamental problem?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 4



First Attempt: Better Solution

bool turn;

Process 0 Process 1
. .
. .
while (turn != 0); while (turn != 1);
[Critical Section] [Critical Section]
turn = 1; turn = 0;

• Does this work?

• Which of the requirements are not satisfied?

• Drawbacks?

– Strictly alternating order; may not map well to
application needs

– What if there is more than two?
– What if a process fails?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 5



Second Attempt: Separate Variables

bool flag[2];

Process 0 Process 1
. .
. .
while (flag[1] != 0); while (flag[0] != 0);
flag[0] = 1; flag[1] = 1;
[Critical Section] [Critical Section]
flag[0] = 0; flag[1] = 0;

• Problem Solved?

– Strict turns do not have to be followed
– Process failure still a problem?

• Is starvation a problem?

• Wrong Solution – why?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 6



Third Attempt: Announce Interest Early

bool flag[2];

Process 0 Process 1
. .
. .
flag[0] = 1; flag[1] = 1;
while (flag[1] != 0); while (flag[0] != 0);
[Critical Section] [Critical Section]
flag[0] = 0; flag[1] = 0;

• Problem Solved?

– Only one process can enter critical region at a
time

• Is starvation a problem?

• Still a wrong Solution! why?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 7



Fourth Attempt: Double check and
Back-off

bool flag[2];

Process 0 Process 1
. .
. .
flag[0] = 1; flag[1] = 1;
while(flag[1] != 0) { while(flag[0] != 0)
flag[0] = 0; flag[1] = 0;
wait a short time wait a short time
flag[0] = 1; flag[1] = 1;

} }
[Critical Section] [Critical Section]
flag[0] = 0; flag[1] = 0;

• Finally a correct implementation?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 8



Correct Alg.: Dekker’s Algorithm

bool flag[2];
int turn = 0;

Process 0 Process 1
... ...
flag[0] = 1; flag[1] = 1;
while (flag[1] != 0) { while (flag[0] != 0) {
if (turn == 1) { if(turn == 0) {
flag[0] = 0; flag[1] = 0;
while (turn == 1); while (turn == 0);
flag[0] = 1; flag[1] = 1;
} /*if*/ } /*if*/

} /*while*/ } /*while*/
[Critical Section] [Critical Section]
flag[0] = 0; flag[1] = 0;
turn = 1; turn = 0;

• The two flags solve the mutual exclusion
problem; use the turn (as per the first
implementation) to solve simultaneous interest
problem

• Do we have the alternating execution problem?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 9



More Elegant Solution: Peterson’s
Algorithm

bool flag[2];
int turn = 0;

Process 0 Process 1
. .
. .
flag[0] = 1; flag[1] = 1;
turn = 1; turn = 0;
while (flag[1] == 1 while (flag[0] == 1

&& turn == 1); && turn == 0);
[Critical Section] [Critical Section]
flag[0] = 0; flag[1] = 0;

• Does this work? How?

• Is it fair (starvation/alternating execution?)

• How can we prove its correctness?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 10



Bakery Algorithm

• Both Dekker’s algorithm and Peterson’s algorithm have generalizations
for n processes (difficult; one will be a bonus homework question)

• Dijkstra’s Bakery Algorithm also implements a critical section for n

processes

• Idea: simulate operation in a bakery

– Before entering the critical section (Bakery) receive a ticket number
– The holder of the lowest ticket number gets in first
– How do we ensure mutual exclusion on the ticket number? Cant

two processes get the same ticket number?
∗ Use the process id as a tie-breaker. If Pi and Pj have the same

ticket number, and i < j, Pi gets in first

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 11



Bakery Algorithm

//choosing, ticket are shared
...
choosing[i] = TRUE;
ticket[i] = max (ticket[0], ticket [1] ...

ticket [n]) + 1;
choosing[i] = FALSE;
for(j = 0; j < n; j++) {

while (choosing[j] == TRUE);
while (ticket[j] != 0 &&

(ticket[j],j) < (ticket [i],i));
}
[Critical Section]
ticket[i] = 0;
...

• (ticket[j],j) < (ticket[i],i) refers to
the comparison including using the process
number as tie-breaker if tickets equal

• Take your time, think about it

• Does it satisfy the three requirements?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 12



Hardware Mechanisms

• Software algorithms are difficult to understand
and program

• Difficult to generalize (more than two processes,
more than one lock)

• Inefficient

• Hardware mechanisms offer special atomic
instructions that make building locks much easier

• Most of these instructions read a variable/change
its value in one atomic operation

• Special Case: interrupt disabling for uniprocessors

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 13



Test and Set

• A single instruction that tests a boolean variable and sets it to 1 in
one fell swoop (returns value before setting the variable)

• Atomicity guaranteed by the hardware

• Can something as simple as this help?

• Can we design a simpler (and preferrably correct :-) version of a lock
using this instruction?

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 14



Test and Set Algorithm

bool lock = 0;

Process 0 Process 1
. .
. .
while (testAndSet(lock)); while (testAndSet(lock));
[Critical Section] [Critical Section]
lock = 0; lock = 0;

• Simpler

• Still busy waits

• Generalizes to any number of processes/locks

• What are the implications if used on a Shared
Memory Multiprocessor?

• Is waiting bounded?

• Example of test-and-op class of primitives

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 15



Test and Set for n Processes with
Bounded Wait

waiting[i] = 1;
key[i]=1;
while(waiting[i] && key[i])

key[i] = testAndSet(lock);
waiting[i] = 0;

[Critical Section]

j = i+1 % n
while ((j != i) && !waiting[j])

j = j + 1 % n;
if (j == i)

lock = 0;
else

waiting[j] = 0;

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 16



Busy waiting vs. Blocking

• All the methods discussed so far employ busy
waiting

– Such locks are called spin locks
∗ A process waiting on a lock keeps spinning

its wheels wasting CPU time

• Idea: use a blocking lock and signalling for
a more efficient implementation – what is the
tradeoff?

• Are there situations where spin locks are more
efficient than blocking locks?

• Use locks as low-level primitives, but do not busy
wait

• Semaphores (Dijkstra) is a widely used locking
mechanism that uses this idea

UCR – CS153, LECTURE 6 (SUPPLEMENTARY) 17


