CS 153
Design of Operating Systems

Fall 19

Lecture 11: Locality, Cache, and TLB

Instructor: Chengyu Song

Some slides modified from originals by Dave O’hallaron

Efficient Translations

e Recall that our original page table scheme doubled the
latency of doing memory lookups

+ One lookup into the page table, another to fetch the data

e Now two-level page tables triple the latency!
+ Two lookups into the page tables, a third to fetch the data

+ And this assumes the page table is in memory

e How can we use paging but also have lookups cost
about the same as fetching from memory?

+ Cache (remember) translations in hardware
+ Translation Lookaside Buffer (TLB)
+ TLB managed by Memory Management Unit (MMU)

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

100,000,000.0 Disk
10,000,000.0 N & & ¢
1)
,000,000.0 SSD
100,000.0 A
10.000.0 —e—Disk seek time
’ . —a—Flash SSD access time
—a—DRAM access time
g 1,000.0 1 —e—SRAM access time
DRAM ——CPU cycle time
100.0 \ - » - —O—Effective CPU cycle time
- \tL::::Et?—__._"““‘————o
1.0
0.1 CPU
0.0

1980 1985 1990 1995 2000 2003 2005 2010
Year

The Price-Speed Gap

e Question: why don’t we just use fast memory to do
everything?

e SRAM

+ Latency: 0.5-2.5 ns, cost: ~$5000 per GB
e DRAM

+ Latency: 50-70 ns, cost: ~$20 - $50 per GB
e SSD/NVM

+ Latency: 70-150 ns, cost: ~$4 - $12 per GB

e Magnetic disk
+ Latency: 5-20 ms, cost: ~$0.02 - $2 per GB

Locality to the Rescue!

e The key to bridging this CPU-Memory gap is a
fundamental property of computer programs known as
locality

Locality

e Principle of Locality: Programs tend to use data and
iInstructions with addresses near or equal to those they
have used recently O

e Temporal locality:

+ Recently referenced items are likely
to be referenced again in the near future Q ,2

o Spatial locality:

+ Items with nearby addresses tend
to be referenced close together in time

Locality Example

sum = 0;

sum += a[i];
return sum;

for (i = 0; i < n; i++)

e Data references

+ Reference array elements in
succession (stride-1 reference
pattern).

+ Reference variable sum each iteration.

e Instruction references
+ Reference instructions in sequence.

+ Cycle through loop repeatedly.

Spatial locality

Temporal locality

Spatial locality

Temporal locality

Qualitative Estimates of Locality

e Claim: Being able to look at code and get a qualitative
sense of its locality is a key skill for a professional
programmer.

e Question: Does this function have good locality with
respect to array a?

int sum _array rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)
sum += a[i][j];
return sum;

Locality Example

e Question: Does this function have good locality with
respect to array a?

int sum _array cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)
sum += a[i][]];
return sum;

Locality Example

e Question: Can you permute the loops so that the
function scans the 3-d array a with a stride-1 reference
pattern (and thus has good spatial locality)?

int sum_array 3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)
for (k = 0; k < M; k++)
sum += a[k][1][]];
return sum;

Memory Hierarchies

e Some fundamental and enduring properties of
hardware and software:

+ Fast storage technologies cost more per byte, have less
capacity, and require more power (heat!).

+ The gap between CPU and main memory speed is widening.

+ Well-written programs tend to exhibit good locality.

e These fundamental properties complement each other
beautifully.

e They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Cache

e Cache: A smaller, faster storage that acts as a staging
area for a subset of the data in a larger, slower storage.

+ The storage could be a software data structure or a hardware
device > memory hierarchy

e Why does cache work?
+ Because of locality!

» Hit fast storage much more frequently even though its smaller

An Example of Memory Hierarchy

LO:
. CPU registers hold words retrieved from L1
Registers cache
L1: L1 cache
I (SRAM) L1 cache holds cache lines retrieved from
Smaller, L2 cache
faster,
costlier L2:
per byte L2 cache
(SRAM) L2 cache holds cache lines retrieved
from main memory
L3:
L Main memory
arger, (DRAM) Main memory holds disk blocks
I
slower, retrieved from local disks
cheaper
per byte
L4: Local secondary storage Local disks hold files
(local disks) retrieved from disks on
remote network servers
5 Remote secondary storage

(tapes, distributed file systems, Web servers)

Another Example

GOAL: EFFICIENT DATA CENTRIC ARCHITECTURE

jg/gf}fz 2, o i
_
7

Optimize performance given
cost and power budget

Access Distribution

o $§

f/f//jf//?'

o ¥ o
PRI,
& more often

less often >

Data Access Frequency

INTEL" 30 NAND S5D

HDD / TAPE

COLD TIER

EMBARGO: APRIL 2, 2019 (10:00AM PACIFIC TIME)

Move Data Closer to
Compute 1sTB
Maintain Persistency/ °™°®

pico-secs
nano-secs

10s GB
<100nanosecs

100s GB
<1microsec

10s TB

S——
- <100microsecs

Network 10s TB
Storage <100millisecs

i@\s

Memory hierarchy

e Fundamental idea of a memory hierarchy:

For each layer, faster, smaller device caches larger, slower
device

e Why do memory hierarchies work?

Because of locality!
» Hit fast memory much more frequently even though its smaller

Thus, the storage at level k+1 can be slower (but larger and
cheaper!)

e Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top.

Examples of Caching in the
Hierarchy

Cache Type What is Cached? | Where is it Cached? | Latency (cycles) | Managed By
Registers 4-8 bytes words CPU core 0 | Compiler

TLB Address translations | On-Chip TLB 0 | Hardware

L1 cache 64-bytes block On-Chip L1 1 | Hardware

L2 cache 64-bytes block On/Off-Chip L2 10 | Hardware
Virtual Memory 4-KB page Main memory 100 | Hardware + OS
Buffer cache Parts of files Main memory 100 | OS

Disk cache Disk sectors Disk controller 100,000 | Disk firmware
Network buffer Parts of files Local disk 10,000,000 | AFS/NFS client
cache

Browser cache Web pages Local disk 10,000,000 | Web browser
Web cache Web pages Remote server disks 1,000,000,000 | Web proxy

server

General Cache Concepts

Cache

Memory

Smaller, faster, more

expensive storage caches a
subset of the blocks

Larger, slower, cheaper
storage viewed as
partitioned into “blocks”

4 9 10 3
Data is copied in block-
10 sized transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

General Cache Concepts: Hit

Request: 14 Data in block b is needed
Block b is in cache:
Cache

8 9 14 3 Hit!
Memory 0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

O 000000000 0O0OCGOOOOOO

General Cache Concepts: Miss

Cache

Memory

Request: 12
8 12 14 3
12 Request: 12
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Types of Cache Misses

e Cold (compulsory) miss
+ Cold misses occur because the cache is empty.

e Conflict miss

+ Most caches limit blocks at level k+1 to a small subset (sometimes
a singleton) of the block positions at level k.

» E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

+ Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

» E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
e Capacity miss

+ Occurs when the set of active cache blocks (working set) is larger
than the cache.

Cache Replacement Policy

e Cache replacement policy: determine which data to
remove when we need a victim

e Does it matter?
+ Yes! Cache filling is expensive

+ Getting the number down, can improve the performance of the
system significantly

Considerations

e Cache replacement support has to be simple

+ They happen all the time, we cannot make that part slow

e But it can be complicated/expensive when a miss
occurs — why?

+ Reason 1: if we are successful, this will be rare

+ Reason 2: when it happens we are paying the cost of loading

» Loading from lower layer is relatively slower: can afford to do
some extra computation

» Worth it if we can save some future miss

e \What makes a good cache replacement policy?

Evicting the Best Data

e Goal is to reduce the cache miss rate

e The best data to evict is the one never touched again

+ Will never have a cache miss on it

e Never is a long time, so picking the data closest to
“never” is the next best thing

+ Evicting the data that won’t be used for the longest period of
time minimizes the number of cache misses

+ Proved by Belady

e We'll survey various replacement algorithms: Belady’s,
FIFO, LRU (least recently used)

TLBs

e Iranslation Lookaside Buffers
+ Actually a cache!
+ Translate virtual page #s into PTEs (not physical addrs)

+ Can be done in a single machine cycle

e [TLBs implemented in hardware
+ Fully associative cache (all entries looked up in parallel)
» Keys are virtual page numbers
» Values are PTEs (entries from page tables)

+ With PTE + offset, can directly calculate physical address

TLB Hit

CPU Chip -
9 PTE
VPN e
(1
VA PA
CPU MMU
] 4
Data
®

Memory

A TLB hit eliminates one or more memory accesses

TLB Miss

CPU Chip
TLB
O
e PTE
VPN
1 3
CPU B 5 mmu PTEA >
PA . Memory
o
Data
6

A TLB miss incurs an additional memory access (the PTE)

Why does TLB help?

e [TLB reduces the translation type by

remembering/caching the previous translation (page
table walk) results

e However, in case of TLB (cache) miss, we still need to
do the expensive page table walk

e Fortunately, TLB misses are rare. \Why?

+ Because of an interesting property called program locality

Managing TLBs

o Hit rate: address translations for most instructions are
handled using the TLB

o > 99% of translations, but there are misses (TLB miss)...

e Who places translations into the TLB (loads the TLB)?

+ Hardware (Memory Management Unit) [x86]
» Knows where page tables are in main memory
» OS maintains tables, HW accesses them directly
» Tables have to be in HW-defined format (inflexible)
+ Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]
» TLB faults to the OS, OS finds appropriate PTE, loads itin TLB
» Must be fast (but still 20-200 cycles)
» CPU ISA has instructions for manipulating TLB
» Tables can be in any format convenient for OS (flexible)

Managing TLBs (2)

e OS ensures that TLB and page tables are consistent

+ When it changes the protection bits of a PTE, it needs to
invalidate the PTE if it is in the TLB (special hardware
instruction)

e Reload TLB on a process context switch
+ Invalidate all entries

o Why? Who does it?

e \When the TLB misses and a new PTE has to be
loaded, an existing PTE must be evicted

+ How? Replacement policy

Simple Memory System Example

e Addressing
+ 14-Dbit virtual addresses
+ 12-bit physical address
+ Page size = 64 bytes

13 12 11 10 9 8 7 6 5 4 3 2 1 0
« VPN > VPO >
Virtual Page Number Virtual Page Offset
11 10 9 8 7 6 5 4 3 2 1 0
< PPN < PPO >

Physical Page Number Physical Page Offset

Simple Memory System Page Table

Only show first 16 entries (out of 256)

VPN | PPN | Valid VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B - 0
04 - 0 0C - 0
05 16 1 oD 2D 1
06 - 0 OE 11 1
07 - 0 OF oD 1

Simple Memory System TLB

16 entries
4-way associative* (what is this?!)

< TLBT ><— TLBI —
13 12 11 10 9 8 6 5 4 3 1 0
4 VPN o VPO 2
Set Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid Tag PPN | Valid

0 03 - 0 09 oD 1 00 - 0 07 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0

Simple Memory System Cache

e 106 lines, 4-byte block size
e Physically addressed
e Direct mapped

< CcT > < cl >< cO —»
11 10 9 8 7 6 5 2 1 0

< PPN pt PPO P
ldx Tag Valid BO B1 B2 B3 ldx Tag Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 - - - - E 13 1 83 77 1B D3
7 16 1 11 c2 DF 03 F 14 0 - - - -

Address Translation Example #1
Virtual Address: 0x03D4

« TLBT ><— TLBI —
13 12 11 10 9 8 7 6 5 4 3 2 1 0

o, 0,001 (1,11(0;1]|0,|1 0

: VPN = VPO -

VPN OxOF TLBIOx3 TLBTO0x03 TLB Hit? Y_ Page Fault? N PPN:0x0D

Physical Address

< cT > cl »«— CO —
11 10 9 8 7 6 5 4 3 2 1 0
0 0 1 1 0 1 0 1 0 1 0

: PPN 2 PPO

v

CO0_ Cloxs CTOx0D Hit?Y__ Byte: 0x36

Address Translation Example #2
Virtual Address: 0x0B8F

< TLBT >«— TLBI —
13 12 11 10 9 8 7 6 5 4 3

1 0
0 0 1 0 1 1 1 0 0 0 1 1 1 1
« VPN > VPO :
VPN Ox2E TLBI_2 TLBTOx0B TLB Hit? N_ Page Fault? Y PPN: TBD
Physical Address
« CT > cl »<— CO —

Address Translation Example #3
Virtual Address: 0x0020

< TLBT ——————<+ TLBI —>

13 12 1 10 9 8 7 6 5 4 3 2 1 0
o,o0|0,0/0, 0|0, 0|1 0|0 |0 O

« VPN = VPO -

VPN 0x00 TLBI_0 TLBTO0x00 TLB Hit? N_ Page Fault? N PPN:0x28

Physical Address

« cT > cl »«— CcO —
11 10 9 8 7 6 5 4 3 2 1 0
1 0 1 0 0 0 1 0 0 0 0 0

< PPN > PPO >

CO.0 Clox8 CT0x28 Hit?N_ Byte: Mem

Intel Core 17 Memory System

Processor package

Core x4

Registers

v

Instruction
fetch

A

MMU

(addr translation)

\4

L1 d-cache
32 KB, 8-way

L1 i-cache
32 KB, 8-way

L1 d-TLB
64 entries, 4-way

L1i-TLB

128 entries, 4-way

A

A

A 4

L2 unifi

ed cache

A

\ 4

A

A 4

L2 unified TLB

512 entries, 4-way

QuickPath interconnect
4 links @ 25.6 GB/s each

\A A/

A

A

y

8 MB,

L3 unified cache

(shared by all cores)

4

Y A

A

16-way

: 256 KB, 8-way

\ 4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

A A

Main memory

»
»

To other
cores

Tol/O
bridge

End-to-end Core 17 Address

Translation

CPU

CR3

P
<

Virtual address (VA)
12

TLB
hit

> PTE|| by PTE J PTE

PTE

36 v
_' VPN VPoL
32 I 4
TLBT | TLBI
|
\4
TLB g
miss :
—>| | | |
L1 TLB (16 sets, 4 entries/set)
L9 9 9 9
VPN1 | VPN2 | VPN3 | VPN4

40 |

PPN

age tables

32/64
Result |« L2, L3, and
A main memory
A
L1 L1
hit miss
L1 d-cache
(64 sets, 8 lines/set)
L T [[1 le—
4 A A A A A A
v 12 40 6 6
®
Physical _
address
(PA)

