
A11y Attacks: Exploiting Accessibility in
Operating Systems

Yeongjin Jang, Chengyu Song, Simon P. Chung, Tielei Wang, and Wenke Lee
School of Computer Science, College of Computing
Georgia Institute of Technology, Atlanta, GA, USA

{yeongjin.jang,csong84,pchung,tielei.wang,wenke}@cc.gatech.edu

ABSTRACT
Driven in part by federal law, accessibility (a11y) support for dis-
abled users is becoming ubiquitous in commodity OSs. Some assis-
tive technologies such as natural language user interfaces in mobile
devices are welcomed by the general user population. Unfortunately,
adding new features in modern, complex OSs usually introduces
new security vulnerabilities. Accessibility support is no exception.
Assistive technologies can be defined as computing subsystems
that either transform user input into interaction requests for other
applications and the underlying OS, or transform application and
OS output for display on alternative devices. Inadequate security
checks on these new I/O paths make it possible to launch attacks
from accessibility interfaces. In this paper, we present the first secu-
rity evaluation of accessibility support for four of the most popular
computing platforms: Microsoft Windows, Ubuntu Linux, iOS, and
Android. We identify twelve attacks that can bypass state-of-the-art
defense mechanisms deployed on these OSs, including UAC, the
Yama security module, the iOS sandbox, and the Android sandbox.
Further analysis of the identified vulnerabilities shows that their
root cause is that the design and implementation of accessibility
support involves inevitable trade-offs among compatibility, usability,
security, and (economic) cost. These trade-offs make it difficult to
secure a system against misuse of accessibility support. Based on
our findings, we propose a number of recommendations to either
make the implementation of all necessary security checks easier
and more intuitive, or to alleviate the impact of missing/incorrect
checks. We also point out open problems and challenges in auto-
matically analyzing accessibility support and identifying security
vulnerabilities.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2957-6/14/11 ...$15.00.
http://dx.doi.org/10.1145/2660267.2660295.

Keywords
Accessibility; Assistive Technology; Attacks

1 Introduction
On August 9, 1998, the United States Congress amended the Re-
habilitation Act of 1973 to eliminate barriers in electronic and in-
formation technology for people with disabilities [32]. Effective
June 21, 2001, the law is enforced on the development, procure-
ment, maintenance, or use of electronic and information technology
by the federal government [21]. Driven by this requirement, OS
vendors [2, 15, 24] have included accessibility features such as
on-screen keyboards, screen magnifiers, voice commands, screen
readers, etc. in their products to comply with federal law.

Assistive technologies, especially natural language voice proces-
sors, are gaining widespread market acceptance. Since the iPhone
4S, Apple has included in iOS a voice-based personal assistant, Siri,
which can help the user complete a variety of tasks, such as placing
a call, sending a text, and modifying personal calendars. Google
also added a similar feature, Voice Action, to its Android platform.
Furthermore, wearable devices such as Google Glass use voice as
the main interaction interface.

In general, adding new features into modern complex OSs usually
introduces new security vulnerabilities. Accessibility support is no
exception. For example, in 2007, it was reported that Windows Vista
could be compromised through its speech recognition software [28];
in 2013, a flaw was discovered in Siri that allowed the bypass
of an iPhone’s lock screen to access photos and email [11]. As
accessibility features are being used by more and more people,
security issues caused by such vulnerabilities can become more
serious.

In this paper, we present the first security evaluation of the accessi-
bility support of commodity OSs. Our hypothesis is that alternative
I/O subsystems such as assistive technologies bring a common chal-
lenge to many widely deployed security mechanisms in modern
OSs. Modern OSs support restricted execution environments (e.g.,
sandboxes) and ask for the user’s approval before applying a security
sensitive change to the system (e.g., User Access Control (UAC) on
Windows [25] and remote view on iOS [4]). However, accessibil-
ity support usually offers interfaces to programmatically generate
user inputs, such as keystrokes and mouse clicks, which essentially
enables the interface to act as a human being. Consequently, it
might be possible to bypass these defense mechanisms and abuse a
user’s permissions by generating synthesized user inputs. Similarly,
attackers may also be able to steal security sensitive information
displayed on screen through the accessibility interfaces.

To verify our hypothesis, we examined the security of accessibility
on four commodity OSs: Microsoft Windows 8.1, Ubuntu 13.10,

103

iOS 6, and Android 4.4. We were able to identify twelve1 attacks2

that can bypass many state-of-the-art defense mechanisms deployed
on these OSs, including UAC, the Yama security module, the iOS
App sandbox, and the Android sandbox.

When designing new interfaces that provide access to comput-
ing systems, one must ensure that these new features do not break
existing security mechanisms. However, current designs and imple-
mentations of accessibility support have failed to meet this require-
ment. Our analysis shows that current architectures for providing
accessibility features make it extremely difficult to balance compat-
ibility, usability, security, and (economic) cost. In particular, we
found that security has received less consideration compared to the
other factors. Under current architectures, there is not a single OS
component that has all the information necessary to enforce mean-
ingful security policy; instead, the security of accessibility features
depends on security checks implemented in the assistive technology,
the OS, and the applications. Unfortunately, in our evaluation, we
found that security checks are either entirely missed or implemented
incorrectly (or incompletely) at all levels. Based on our findings, we
believe a fundamental solution to the problem will involve a new
architecture that is designed with security in mind. Proposing this
new architecture is beyond the scope of our work. Instead, we pro-
pose several recommendations that work under current architectures
to either make the implementation of all necessary security checks
easier and more intuitive, or to alleviate the impact of missing/incor-
rect checks. We also point out some open problems and challenges
in automatically analyzing a11y support and identifying security
vulnerabilities.

In summary, this paper makes the following contributions:

• We performed a security evaluation of accessibility support
for four major OSs: Windows, Ubuntu Linux, iOS, and An-
droid;

• We found several new vulnerabilities that can be exploited to
bypass many state-of-the-art defense mechanisms deployed
on these systems, including UAC and application sandboxes;

• We analyzed the root cause of these vulnerabilities and pro-
posed a number of recommendations to improve the security
of a11y support;

• We showed that the current architectures for providing acces-
sibility features are inherently flawed, because no single OS
component is able to implement a security policy: security
checks at the assistive technology, the OS, and the application
must be implemented correctly; failure in any of these checks
introduces vulnerabilities.

The rest of this paper is organized as follows. Section §2 gives a
brief background of accessibility support. Section §3 discusses secu-
rity implications of accessibility. Section §4 presents the evaluation
results, i.e., new vulnerabilities and attacks. Section §5 discusses
the limitations of our attacks, the root cause of the vulnerabilities,
and complexity of the problem. Section §6 compares this work with
related works. Section §7 concludes the paper.

2 Overview of Accessibility
In this section, we give a brief overview of accessibility in operating
systems, and present definitions of terminologies used in this paper.
1We discovered eleven new attacks, and we cover an attack for Siri
that was released in public as exploitation of accessibility in OS.
2Disclosure: we reported all vulnerabilities that we found to the
OS vendors.

Process	
Output	

Assistive Technology

OS

App

Process	
Input	

App	
Ouptut	

Input	
Handler	

A11y	
Library	

Alt. input through a11y

Alt. output through a11y

Regular
Input Devices Screen

Output

Original I/O path

A11y Input
(Voice)

A11y Output
(Speaker)

Figure 1: General architecture for implementing accessibility features.
Supporting an accessibility feature creates new paths for I/O on the
system (two dotted lines), while original I/O from/to hardware devices
(e.g., keyboard/mouse and screen) is indicated on the right side.

2.1 Accessibility Features
In compliance with the amended Rehabilitation Act, software ven-
dors have incorporated various accessibility features into their sys-
tems. In this paper, we define computer accessibility (a11y) features
as new I/O subsystems that provide alternative ways for users with
disabilities to interact with the system. For example, for visually
impaired users, text-to-speech based Narrator (on MS Windows),
VoiceOver (on OS X), and TalkBack (on Android) provide an output
subsystem that communicates with the user through speech. For
hearing impaired users, accessibility features like captioning ser-
vices turn the system’s audio output into visual output. Similarly,
some systems can alert the user about the presence of audio output
by flashing the screen. For users with motor disabilities, traditional
mouse/keyboard based input systems are replaced by systems based
on voice input. In general, we can see these accessibility features as
implemented within an OS architecture in Figure 1.

There are also accessibility features that use traditional I/O de-
vices (e.g., the screen, mouse and keyboard), but make them easier
for users with disabilities to interact with the system. Examples of
such features include: 1) Magnifier in Windows, which enlarges
certain portions of the screen; 2) High Contrast in Windows, which
provides higher contrast for easy distinction of user interfaces; and
3) on-screen keyboard, sticky keys, filter keys, assisted pointing,
and mouse double-click speed adjust to allow input requiring less
movement.

2.2 Accessibility Libraries
In addition to pre-installed accessibility features, most OS vendors
provide libraries for third parties to implement their own accessi-
bility features. This makes it possible to create new alternative I/O
subsystems based on other I/O devices (e.g. a braille terminal). In
this case, the assistive technology part in Figure 1 is a program
developed by third party. Examples of these libraries include 1)
UI Automation in Microsoft Windows, 2) the accessibility toolkit
(ATK) and Assistive Technology Service Provider Interface (AT-
SPI) in Ubuntu Linux, 3) AccessibilityService and related classes in
Android, and 4) the (public) NSAccessibility and (private) UIAu-
tomation frameworks in iOS.

104

Request	 from	
an	 App	

Seek	
User	 Consent	

Perform	
Ac6on	

Reject	
Opera6on	

NO

NO

Security
Sensitive?

User
Agreed?

YES
YES

OS

User Input Prompt Dialog

Figure 2: Traditional mechanism to seek user consent before perform-
ing privileged operations.

For all the discussions that follow, we will refer to these libraries
as accessibility libraries. In general, the accessibility libraries pro-
vide the following capabilities as APIs:

1. Notifications on changes to the system’s display (e.g. new win-
dow popped up, content of a window changed/scrolled, change
of focus, etc.);

2. Ways to probe what is displayed on various UI elements (e.g.
name of a button, content of a textbox, or static text displayed);

3. Ways to synthesize inputs to various UI elements (e.g. click a
button to place text into a textbox).

2.3 Assistive Technologies
For the rest of this paper, we will use the term assistive technology
(AT) to refer to the logic that runs in user space to provide any of
the following functionality:

• (F1) processing user input from alternative input devices, “under-
standing” what the user wants and turning it into commands to
the OS for control of other applications (or the OS itself);

• (F2) receiving information about the system’s output and present-
ing it to users using alternative output devices.

Usually an assistive technology makes use of an accessibility
library to obtain required capabilities for implementing a new acces-
sibility feature.

3 Security Implications of A11y
In this section, we discuss new attack paths due to accessibility
features in computing systems and correspondingly the required
security checks for securing accessibility support. For the rest of
this paper, we adopt the threat model where the attacker controls one
user space process with access to the accessibility library, and we
do not assume any other special privilege for this malicious process.

3.1 New Attack Paths
The first functionality (F1) of AT allows users to control the system
through alternative input devices, which is inherently dangerous
from a security perspective. While modern OSs provide increas-
ingly restricted isolation between applications, accessibility support
provides a way to bypass this isolation and control other applications
on the system.

To prevent malware from abusing security sensitive privileges
of the user, OSs also deploy defense mechanisms such as User

Process	
Input	

Auth	
User?	

I/O	
Dispatcher	

YES

NO

NO

YES

Perform	

YES

NO

Assistive Technology

OS
A11y Library

App

AT
Allowed?

A11y
Allowed?

Alt. Input

Figure 3: Required security checks for an AT as a new input subsystem.
User input is passed to the AT first, moved to OS through accessibility
libraries, then synthetic input is delivered to the application. Grayed
boxes indicate security checks required by each entity that receives the
input.

Account Control (UAC) [25] in Windows, remote view [4] in iOS,
and ACG [30], with the policy of “ask for user consent explicitly
before performing dangerous operations” (see Figure 2). However,
since user consent is usually represented by a certain input event
(e.g., click on a button), the capability to programmatically generate
input events also breaks the underlying assumption of these security
mechanisms that input is always the result of user action.

The ability of AT to monitor and probe the information currently
being displayed on screen (F2) is also problematic because it pro-
vides a way to access certain security sensitive information, e.g.,
plaintext passwords usually not displayed on screen (e.g., most OSs
show only scrambled symbols in the password box).

Based on the above observations, we argue that accessibility
interfaces provide malware authors with these new paths of attacks:

• (A1) Malware implemented as AT penetrates the OS security
boundary by obtaining new capabilities of controlling applica-
tions;

• (A2) Malware exploits the capability of generating interaction
requests to bypass defense mechanisms or escalate its privilege;

• (A3) Malware exploits the capability of monitoring and probing
the UI output to access otherwise unavailable information.

3.2 Required Security Checks
To evaluate how a platform could be secure against these new attack
paths, we propose two reference models of required checks: one
for handling alternative input (Figure 3) and the other for handling
output (Figure 4).

The key to securely handling alternative input is to validate
whether the input is truly from the user. To achieve this goal, we
argue that three checks (gray boxes in Figure 3) along the input path
are necessary: within the AT, in the OS, and at the application level.

First, an AT should validate whether the input is from the user.
Otherwise, attacks can be launched by synthesizing the input format
of this AT. For example, malware can transform malicious operations
into synthetic voice (e.g., via text-to-speech, TTS) and drive the
natural language user interface to control other applications (A1) or
escalate its privilege (A2).

Second, since not all ATs can be trusted (e.g., those provided by
a third-party), the OS should have control over what applications an

105

Process	
Output	

Output	

YES

Assistive Technology

OS

App

On
Screen?

On
A11y?

NO

YES

Screen Output Alt. Output

A11y Library

YES
NO AT

Allowed?

Figure 4: Required security checks for an AT as a new output subsys-
tem. Application is required to decide which input can transit through
the accessibility library, then the AT receives the output to deliver it
to the user. Grayed boxes indicate the checks required by OS and the
application.

AT can control. For example, interaction requests from untrusted AT
to security sensitive processes such as system services and system
settings should not be forwarded. Otherwise, privilege escalation
would be feasible (A2). In addition, the access control policy should
be consistent with other access control mechanisms to prevent a
malicious AT from obtaining new capabilities (A1).

Third, the OS should provide the flexibility to allow an appli-
cation to specify a fine-grained security policy on how to handle
interaction requests from an AT. More specifically, the OS should
1) allow the application to distinguish input from real hardware and
input from AT; and 2) allow the application to set its own callback
functions to handle input events from AT. More importantly, when
no customization is provided, the default setting should align with
the platform’s default security policy.

These three checks are complementary to each other for the fol-
lowing reasons. First, for AT-like natural language user interfaces
for motor disabled people, it has to be able to control all applications
and the underlying system; the only viable check is within the AT
itself. Second, as not all ATs are trustworthy, the OS-level check is
necessary to prevent malicious AT from compromising the system.
Third, OS-level access controls are not aware of the context of each
non-system application, so the application level check provides the
last line of defense for an application to protect itself from malicious
ATs (A1).

Similarly, to securely handle alternative output and prevent infor-
mation leakage (A3), two checks (gray boxes in Figure 4) should
be performed. The application level check allows the application to
specify what information is sensitive so it will not be available to AT.
Again, we must emphasize that when no customization is provided,
the default setting should align with the platform’s security policy.
The OS-level check prevents untrusted ATs from acquiring sensitive
information specific to the system.

4 Security Evaluation of A11y
In this section, we first describe our evaluation methodology, and
then present the results of the security evaluation on major platforms:
Microsoft Windows, Ubuntu Linux, iOS, and Android. The specific
versions of the evaluated systems are: Windows 8.1, Ubuntu 13.10,
iOS 6 and Android 4.4 on the Moto X 3.
3For Windows, Ubuntu, and Android, we tested the latest release
version as of November 2013. Attacks still work for the current

4.1 Evaluation Methodology
Given an OS platform, we evaluate the security of the accessibility
features it offers as follows:

1. We studied the availability of the built-in assistive technologies
and the accessibility library on the platform. For built-in assistive
technologies, we focused on the availability of a natural language
user interface because it provides the most powerful control over
the system. For the accessibility library, we focused on whether
an application needs special privileges to use the library; if so,
how such privileges are granted.

2. Using our input validation model (Figure 3), we examined the
input handling process of the analyzed platform. When a check
is missing or flawed, we try to launch attacks exploiting the
missing or flawed check. Specifically, if the built-in natural
language user interface lacks input validation or if the validation
can be bypassed, we try to escalate our malware’s privilege
through synthetic voice. If the OS-level check is missing and
there is a security mechanism that requires user consent, we try
to escalate our malware’s privilege by spoofing the mechanism
with synthetic input. If the OS-level check is not missing, we
assess whether its access control policy is consistent with other
security mechanisms; if not, we evaluate what new capabilities
become available. If the application level check is missing or
flawed, we examine whether accessibility support provides us
new capabilities.

3. Using our output validation model (Figure 4), we examined the
output handling process of the analyzed platform. If the OS-level
check is missing, we try to read the UI structure of other appli-
cations. If the application level check is missing, we examine
whether new capabilities become available. In particular, since
most of displayed information is available through screenshots,
we try to steal a password because it is usually not displayed
in plaintext. We assume obtaining any other (potentially sensi-
tive) information as plaintext via AT is no harder than reading a
password.

4.2 Availability of Accessibility Features
Table 1 summarizes the availability of a natural language user inter-
face and accessibility libraries on the four platforms. Natural lan-
guage user interfaces are available on all platforms except Ubuntu;
accessibility libraries are available on all studied platforms 4.

Platform Natural Language
User Interface

Accessibility
Libraries

Windows
Speech

Recognition* UIAutomation

Ubuntu None ATK, AT-SPI
iOS Siri UIAutomation*

Android
Touchless
Control* AccessibilityService*

Table 1: Accessibility libraries and natural language user interface on
each platform. * indicates the feature requires special setup/privilege.

For natural language user interfaces, both Speech Recognition and
Touchless Control for the Moto X5 require initialization (training)
release versions. For iOS, we tested iOS 6.1.4, the latest iOS 6 at
the time the research was performed.
4 On iOS, there is no accessibility library, but the UIAutomation
framework provides most capabilities that we require.
5 For the natural language user interface on Android, we try to
analyze Touchless Control which is only available on the Moto X,
due to the lack of a privileged natural language user interface in
Android by default.

106

before first use. Siri can be enabled without any setup. Although
Speech Recognition on Windows requires initialization, this step
can be bypassed by modifying the values of a registry sub-key
at HKEY_CURRENT_USER\Software\Microsoft\Speech. Since
this key is under HKEY_CURRENT_USER, it is writable by any unpriv-
ileged process.

For accessibility libraries, both desktop environments (Windows
and Ubuntu Linux) have no privilege requirements for using the
libraries, thus they are available to any application.

On iOS, the UIAutomation framework, though not a full-fledged
accessibility library, provides the functionality to send synthesized
touch and button events. Since this framework is part of the private
API set, its usage is forbidden by apps in the Apple App Store.
However, as demonstrated in [33], the enforcement can be bypassed.

Unlike other platforms, Android’s accessibility library (Acces-
sibilityService) is available only after the following requirements
are met: first, the app must declare use of the permission BIND_
ACCESSIBILITY_SERVICE. Second, the user must explicitly enable
the app as an accessibility service. When changing accessibility
settings, a user is prompted with a dialog that displays what kind
of capabilities will be granted to the AccessibilityService, which
is very similar to the app permission system. Nonetheless, users
are prone to enable permissions when apps provide step-by-step
instructions. In particular, we find that there are more than 50 apps
on the Google Play store that declare use of permissions for Acces-
sibilityService, and two of them [14, 29] have been downloaded by
more than ten million users combined. Both are rated 4.3 out of 5
stars.

4.3 Vulnerabilities in Input Validation

Platform Assistive Tech.
Check

OS Level
Check

Application
Level Check

Windows None UIPI* None
Ubuntu N/A None None
iOS 6 None None None

Android Authentication Permission* None

Table 2: Status of input validation on each platform. * indicates the
check enforces a security policy that is different from other security
mechanisms.

Table 2 summarizes the examination results of each platform
when checked against our input reference model (Figure 3). There
are two common problems across all analyzed platforms.

Missing or flawed input validation within AT. Natural language
user interfaces usually have more privileges than normal applica-
tions; most of them lack authentication for voice input. More-
over, some accept self-played input (sending audio from the built-in
speaker to microphone), making it possible to inject audio input
through text-to-speech (TTS). Although Touchless Control on the
Moto X tries to authenticate its input, the authentication can be
easily bypassed with a replay attack. As a result, an attacker can
obtain the privileges of the natural language user interface (attack
#1, #5, #9).

Control of other applications. At the application level, no plat-
form provides a precise way to check whether the input event is
from the hardware or from the accessibility library. Moreover, at the
OS level, although Windows and Android have access controls for
AT, their protections are not complete. This allows a malicious AT
to control most applications the same way as a human user would.
Specifically, a malicious AT can send input events to make other ap-
plications perform security sensitive actions (attack #4, #6, #7, #10)

and spoof security mechanisms that require user consent (attack #2,
#3, #8).

Implementation of attacks. We tested all Windows-based attacks
by implementing proof-of-concept malware. For controlling apps
on Ubuntu Linux, iOS 6, and Android, we checked the capability
of sending synthetic input to other applications by writing sample
code for sending basic user interactions such as clicking a button,
and writing content into a textbox. For iOS, we also wrote code to
test for special UI windows such as passcode lock, password dialog,
and remote view. For Touchless Control, we implemented sample
malware that records sound in the background; we then sliced the
authentication phrase from it manually, and replayed the slice within
the malware. For Siri, we manually performed the same attack.

4.3.1 Windows
The OS-level check applied to the accessibility library on Windows
is called User Interface Privilege Isolation (UIPI) [23]. UIPI is a
mandatory access control (or mandatory integrity control (MIC) in
Microsoft’s terminology) that sets an integrity level (IL) for every
process and file, and enforces a relaxed Biba model [5, 22]: no
write/send to a higher integrity level. The integrity levels (IL) are
divided in 5 categories: Untrusted, Low, Medium, High, and System.

Regular applications run at Medium IL, while processes executed
by an active administrator runs at High IL. As an MIC, the IL
of a process is inherited by all of its child processes, and takes
the minimum privilege when two or more ILs are applied on the
process.

UIPI prevents attackers from sending input to higher IL processes.
For example, malware cannot spoof UAC through a synthesized
click because normal programs including malware run at either
Medium IL (when launched by the user) or Low IL (when launched
by browser, i.e., drive-by attacks), while the UAC window runs at
System IL. Furthermore, malware cannot take control of applications
that are executed by the administrator, which has a higher IL (High
IL).

Unfortunately, the protection provided by UIPI is not complete:
since most applications are running at the same Medium IL as
malware, UIPI allows malware to control most other applications
via AT.

Furthermore, the lack of security checks at the assistive technol-
ogy and application levels results in more vulnerabilities: missing
input validation in the built-in natural language user interface allows
privilege escalation attacks through Speech Recognition (attack #1);
missing application level checks enables escalation of privilege (at-
tack #2), and theft of user passwords (attack #3).

Attack #1: privilege escalation through Speech Recognition. Con-
trol of Speech Recognition is security sensitive for several reasons.
First, although there is a setup phase, it can be bypassed as men-
tioned in Section §4.2. After setup, any process can start Speech
Recognition. Second, Speech Recognition always runs with ad-
ministrative privilege (High IL) regardless of which process runs
it. This allows it to control almost all other applications on the sys-
tem, including applications running with administrative privileges.
Because of these “features” of Speech Recognition and the prob-
lems mentioned previously (i.e., no input validation, and accepting
self-played voice), malware running at Medium or even Low IL can
escalate itself to administrative privilege through synthetic voice.

Figure 5 shows the workflow of the privilege escalation attack
from a Medium IL malware. The first step is to launch Speech
Recognition through CreateProcess()with the argument sapisvr
.exe -SpeechUX. Second, the malware launches the msconfig.exe

107

1. Invoke Speech Recognition Commander

2. Invoke msconfig.exe (run as HIGH IL)

3. Play artificial speech using text-to-speech library

Tools!	 Page	 Down!	
Command	 Prompt!	

Launch!	

4. Administrative Command Prompt has launched

5. Execute Stage-2 Malware by Speech
(Run as HIGH IL)

Type	 D,	 Type	 I,	 Type	 R	
Press	 ENTER!	

Figure 5: Workflow of privilege escalation attack with Windows Speech
Recognition.

Figure 6: Dialog that pops-up when Explorer.exe tries to copy a file
to a system directory. The dialog runs at the same Medium IL as
Explorer.exe. Thus, any application with Medium IL can send a syn-
thetic click to the “Continue” button, and proceed with writing the file.

application through CreateProcess(). Since msconfig.exe is
an application for an administrator to manage the system configura-
tion, it automatically runs at High IL. While malware cannot send
input events to this process (prevented by UIPI), Speech Recog-
nition can. After launching msconfig.exe, the malware can use
voice commands to launch a command shell by choosing an item
under the tools tab of msconfig.exe. This is accomplished by
playing a piece of synthetic speech “Tools, Page Down, Command
Prompt, Launch!”. Once the command shell that inherits the High
IL from msconfig.exe is launched, the malware then says “cd” to
its directory, says its own executable name and “Press Enter” to be
executed with administrative privileges.

Attack #2: privilege escalation with Explorer.exe. Explorer
.exe is a special process in Windows that has higher privilege than
its running IL. Unlike other Medium IL processes, Explorer.exe
has the capability of writing to High IL objects such as the System32
directory. Although this capability is protected by a UAC-like dia-
log (Figure 6), i.e., Explorer.exe asks for the user confirmation
before writing to a system directory of Windows, the dialog belongs
to Explorer.exe itself. Since this action requires user consent, the
application should check whether the input comes from the user
or AT. However, there is no such check. As a result, malware can
overwrite files in system directories by clicking the confirmation
dialog through the accessibility library.

Some system applications in system directories are automatically
escalated to the administrative privilege at launch. On Windows,
when a process tries to load a DLL, the dynamic linker first looks
for the DLL from the local directory where the executable resides.

A) Before clicking Eye B) After clicking Eye

Figure 7: Password Eye on the Gmail web application, accessed with
Internet Explorer 10. In Windows 8 and 8.1, this Eye is attached to
password fields not only for web applications, but also regular applica-
tions. By left-clicking the Eye, the box reveals its plaintext content.

Once malware injects malicious DLLs into the directory containing
these applications, it can obtain the administrative privilege when
the applications are run, thus bypassing UAC. An example of such
an application is sysprep, which will load Cryptbase.DLL from
the local directory. By sending synthetic clicks to Explorer.exe
and injecting a malicious Cryptbase.DLL, malware can achieve
privilege escalation.

Attack #3: stealing passwords using Password Eye and a screen-
shot. On Windows, passwords are protected in several ways. They
are not shown on the screen; and even with real user interactions,
the content in a password box cannot be copied to the clipboard.
Furthermore, as will be described in detail in Section §4.4, it is
also not possible to retrieve password content directly through the
accessibility library. However, the lack of input validation on the
password box UI component opens up a method of stealing the
plaintext of a password.

Starting with Windows 8, Microsoft introduced Password Eye as
a new UI feature to give visual feedback to users to correct a typo
in a password input box (Figure 7). This “Eye” appears when a
user provides input to a password box, and clicking it will reveal
the plaintext of the password. Unfortunately, since Password Eye
cannot distinguish hardware input from synthetic input, malware
can click it as long as UIPI permits. Again, since most applications
run at the same IL as malware, malware can send a left-click event
to reveal the content of the password dialog (Figure 7), and can
extract it from a screenshot.

4.3.2 Ubuntu Linux Desktop
Since Ubuntu does not have a built-in natural language user inter-
face, we only consider the attacks enabled by missing checks in the
OS or an application. The missing check at the OS level allows
malware to control any application and thus break the boundary
enforced by other security mechanisms (attack #4). The missing
check at the application level does not provide additional capabili-
ties beyond those already provided by the missing OS level check.

Attack #4: bypassing the security boundaries of Ubuntu. Since
neither the OS nor applications authenticate input, malware can
send synthetic input to any application in the GUI, i.e. the current
X Window display. The display here does not mean the physical
display (i.e., a monitor screen) of the device; rather, it refers to the
logical display space (e.g.,:0.0) of the X Window Server.

In this setting, the lack of security checks for input breaks two
security boundaries in Ubuntu. The first violation is regarding user
ID (UID) boundaries. Regardless of the UID of the display service,
a launched process will run with the UID of the user who launched
it. For example, if a non-root user runs a GUI application with
sudo (e.g., sudo gparted or a GUI shell with root privileges), the

108

application runs in the same display space of the non-root user
account, even though it runs as the root UID. Since AT-SPI allows
control of any application on the display, malware with a non-root
UID can send synthetic input to control other applications, even
those with root privileges.

Second, process boundaries can be bypassed by sending synthetic
input. Starting with Ubuntu 10.10, Ubuntu adopted the Yama secu-
rity module [8] to enhance security at the kernel level. In particular,
one feature in Yama prohibits a process from attaching to another
process using the ptrace system call, unless the target process is a
descendant of the caller. Thus, a process cannot attach or read/write
other processes’ memory if the target is not created by itself or
its descendants. However, malware can bypass this restriction: it
can write values or perform UI actions to change application status
through synthetic inputs or interfaces available by AT-SPI such as
settextvalue() and invokemenu().

4.3.3 iOS
iOS 6 lacks security checks at all levels. Missing input validation in
its natural language user interface, Siri, allows an attacker to abuse
its privileges to perform sensitive operations and access sensitive in-
formation (attack #5). Furthermore, missing OS-level checks allows
malware to 1) bypass sandbox restrictions to control other apps (at-
tack #6), 2) spoof the remote view mechanism to programmatically
authorize access permissions to sensitive resources (attack #7), and
3) bypass password protection (attack #8). Finally, since there are
no available checks at the application level, synthetic input from
a malicious app cannot be prevented or detected by the targeted
application.

Attack #5: bypassing passcode lock using Siri.6 iOS allows sev-
eral security-sensitive actions to be carried out through Siri even
when the device is locked with a passcode. Such actions include
making phone calls, sending SMS messages, sending emails, post-
ing messages on Twitter and Facebook, checking and modifying
the calendar, and checking contacts by name. Since there is no
input validation, any attacker who has physical access to the iOS
device can launch the attack without any knowledge of the passcode.

Attack #6: bypassing the iOS sandbox. App sandboxing [3] in
iOS enforces a strict security policy that strongly isolates an app
from others. The data and execution state of an app is protected
so that other apps cannot read or write its memory, or control its
execution (e.g., launching the app). However, the lack of OS-level
security checks on accessibility makes it possible for malware to
control other apps by sending synthesized input. With synthetic
touch, malware can perform any actions available to a user, such as
launching other apps, typing keystrokes, etc. That is, malware can
steal capabilities of other apps across the app sandbox.

Attack #7: privilege escalation with remote view. In addition
to app sandboxing, iOS protects its security sensitive operations
with the remote view mechanism [4]. Protected operations include
sending email, posting on Twitter or Facebook, and sending SMS.
Remote view works as follows: when an app tries to access any
protected operation, the underlying service (which is a different
process) pops up a UI window to seek user consent. For example, if
an app wants to send an email, it invokes a remote function call to
the email service, which would then pop up a confirmation window.

6 We note that this attack on Siri was not originally discovered by
us. The attack has been publicly known since September 2013 [11],
but we include this in the paper due to the importance of its security
implications on built-in AT.

Figure 8: Screenshot of passcode and password input in iOS. For pass-
code (left), typed numbers can be identified by color differences on the
keypad. For the password (right), iOS always shows the last character
to give visual feedback to the user.

The email message can only be sent after the user clicks the “Send”
button in the pop-up window.

Remote view is considered an effective defense mechanism to
prevent misuse of sensitive operations. However, the lack of input
validation in iOS allows malware to send synthetic touches to spoof
user input to remote view and execute these privileged operations.

Attack #8: bypassing password protection on iOS. Another pro-
tection mechanism in iOS is passwords. This is utilized in two
system apps: the lock screen and the App Store.

The lock screen prevents any unauthorized access to the device
and is applied not only to UI events, but also to security data such
as KeyChain and encrypted files. Moreover, once the screen is
locked, all touch events are blocked; thus malware is no longer able
to manipulate apps other than the lock screen.

The App Store asks for an Apple ID and password for each
purchase. Although malware can generate “clicks” to initiate the
purchase, without knowing the password, it is not possible to finish
the transaction.

Unfortunately, since iOS always displays the last character of a
passcode/password in plaintext (Figure 8) and background screen-
shots can be taken through the private API call createScreenIOSur
face in UIWindow class, it is possible to steal the user’s passcode
and password. With a stolen password, since both the lock screen
and the App Store accept synthesized input, malware can program-
matically unlock the device and make malicious transactions.

4.3.4 Android
The Android platform has the most complete input validation among
the four evaluated platforms. First, Touchless Control [27], a natural
language user interface for the Moto X, utilizes voice authentication:
the user is required to register his/her voice with Touchless Control
at first boot; the app then constantly monitors microphone input
for the fixed authentication phrase “OK Google Now” from the
user. Once the command is captured, it checks whether the phrase
matches the voice signature extracted from the registered phrase;
if so, it then launches the Google Now application to execute a
voice command. Nonetheless, like other non-challenge-response-
based authentication, this voice authentication is vulnerable to replay
attacks (#9).

Second, as discussed in Section §4.2, Android requires explicit
user consent to acquire accessibility capabilities. However, its pro-
tection is incomplete. Specifically, Android has no runtime security
check for AT. Once an app is allowed to be an AT, it can leverage the
accessibility library to create a new inter-process communication
(IPC) channel that is not protected by the ordinary Android permis-
sion system (#10). As a result, a malicious AT can easily achieve the
same effect as capability leakage attacks [7, 9, 13, 16, 34] and infor-
mation leakage attacks [18, 36]. Moreover, unlike UIPI, Android’s

109

OK,	 Google	
Now!	

1. Record authentication phrase in background

OK,	 Google	
Now!	

2. Play authentication phrase when the user is away.

Call	
Alice!	

3. Command Touchless Control with Text-to-Speech API

Figure 9: Workflow of the attack on the Moto X’s Touchless Control.
Malware in the background can record a user’s voice, and replay it to
bypass voice authentication.

OS level access control on accessibility does not protect system
apps. In particular, we found that our malware can change system
settings through AT, which offers us many powerful capabilities.

The only missing check in Android is at the application level.
Similar to the iOS case, we did not find new capabilities beyond
what is enabled due to inconsistent OS-level checks.

Attack #9: bypass Touchless Control’s voice authentication. Frag-
ile authentication for AT leads to a vulnerability in Touchless Control
on the Moto X. In particular, voice authentication can be bypassed
by a replay attack shown in Figure 9. First, an attacker can build
malware as a background service that constantly monitors sound
from the microphone. As the phrase “OK Google Now” is the only
authentication phrase, the user is likely to repeat it frequently. The
malware can easily record the authentication phrase. Once recorded,
the malware can play the recorded phrase through the device speaker
to activate Touchless Control. Since Touchless Control accepts self-
played sound from the speaker to the microphone, it subsequently
launches Google Now. After this, the malware can play arbitrary
commands using the default TTS library for Google Now. Since
there is no further authentication for the command phrase, the mal-
ware can utilize a variety of commands to make phone calls, send
SMS, send email, set alarms, and launch applications.

Attack #10: bypassing Android sandboxing and more. Sand-
boxing in Android [1] provides isolation between apps to protect
memory and filesystem access, and prohibits an app from interfering
with the execution of other apps. Furthermore, its permission system
restricts an app’s access to sensitive resources.

However, once an app is activated as an AT, there are no further
restrictions. A malicious AT can then read UI structure (including
location, type, text, etc.) of the whole system and deliver user actions
to any UI element, such as the click of a button, a scroll up or down,
a cut/copy/paste of text, a change of focus, and expand/dismiss of
UI. Therefore, malware can control other apps as if it is the user.
Malware can abuse the permissions of other apps, e.g., even without
network permission, our malware can control the Gmail application
to exfiltrate stolen data.

In addition, malware can change system settings such as user-
configurable settings, and install/uninstall apps. Moreover, malware

can programmatically enable developer mode (e.g., by sending 7
synthetic clicks) which can put a device at risk for further infection.

4.4 Vulnerabilities in Output Validation
Table 3 summarizes the evaluation results of each platform compared
against our output reference model in Figure 4. iOS does not support
alternative output, so its result is omitted in this section.

Platform Reading of
UI Structure Password Protection

Windows UIPI Yes
Ubuntu None Yes*

iOS N/A N/A
Android None Settings*

Table 3: Status of output validation on each platform. * means the
check enforces an inconsistent security policy.

Across all platforms, only Windows enforces an OS-level check
(UIPI) for output. However, since UIPI does not have any protection
among applications in the same IL, Windows suffers from the same
UI-level attacks described below.

Reading UI state of other applications. All platforms except iOS
allow an AT to access UI structures. The library provides not only
the metadata for the UI such as type of element, location, and size,
but also the content of the UI element. Hence, a malicious AT can
monitor other applications in a fine-grained manner. For example,
malware can detect the current state of the target application using
1) available UI structures, 2) UI events such as change of focus,
movement of window, change of contents, and 3) user interaction
events. With these capabilities, malware can spy on every action a
user takes, as well as maintain an accurate status of an application.

All three platforms (Windows, Ubuntu, and Android) protect the
plaintext content of a password in a password dialog box by default.
However, in Ubuntu, AT-SPI fails to block all paths for retrieving
the plaintext of password (#11). Android can be configured to allow
reading keystrokes on password dialog boxes; this can be enabled
by malware implemented as an AT (as mentioned in #10).

Implementation of attacks. For extracting passwords in Ubuntu
(attack #11), we implemented proof-of-concept malware that looks
for authentication windows, obtains the plaintext, and prints out the
plaintext on the console using AT-SPI. For attack #12, we imple-
mented malware that enables the speaking of passwords via acces-
sibility services and registers itself as the TTS subsystem for the
accessibility service. In this twofold manner, malware can receive
and transmit the contents of a password to an attacker.

4.4.1 Windows
With UIPI, Windows is the only platform where the OS applies
access control on the reading of UI structures. Although UIPI
prohibits accessing the structures of an application that has higher
IL than the caller, access on the same or lower IL is still permitted.

The application level output check exists for password boxes by
default, which disallows 1) obtaining the password via WM_GETTEXT
or ValuePattern in UI Automation, and 2) copying the password
via "WM_COPY"or by generating a Ctrl-C input event. Therefore,
malware cannot steal passwords through the accessibility library.

4.4.2 Ubuntu Linux Desktop
In Ubuntu, the application level check for passwords exists, but its
implementation (in ATK) is inconsistent with the UI (in GTK).

Attack #11: stealing sudoer passwords from authentication di-
alogs. On Ubuntu, we found a password stealing vulnerability using

110

Figure 10: Administrator authentication dialog of GNOME on Ubuntu
13.10. It asks for the password of the current user to gain root permis-
sions.

AT-SPI. The security checks at the OS level are incomplete. For
a password box, there exists an API call, gettextvalue(), on
the Linux Desktop Testing Project (LDTP, a wrapper over AT-SPI
and ATK). It throws a “Not Implemented” exception when called,
meaning that reading passwords through this API is unavailable.
However, AT-SPI missed security checks on a critical accessibility
function of a password box: copytext(). Although physically
or synthetically pressing Ctrl-C does not copy the value of a pass-
word box, copytext() from AT-SPI does copy the plaintext of
a password to the clipboard. The clipboard then can provide the
plaintext content of a password. Figure 10 shows a sudo dialog that
is vulnerable to this attack. Once the sudoer’s password is acquired
in this manner, malware can easily gain root privileges.

4.4.3 Android
While Android prohibits reading of password content from its ac-
cessibility service, this can be disabled via user preferences. In
conjunction with the vulnerability of input validation (attack #10),
this restriction can easily be bypassed.

Attack #12: keylogger on Android. Although Android provides
protections for accessing the plaintext of a password, incomplete
protections at the OS-level lead to a vulnerability. Once an app is
enabled as an AT (see Attack #10 for detail), the app can change
any settings on the device without user consent. Android provides
an option called “Speak passwords” in its accessibility settings. If
enabled, keystrokes on a password box are delivered through the text-
to-speech (TTS) processor. We register malware as a TTS output
application. Once registered, the malware can receive password
contents via the OS-level accessibility service.

5 Discussion
In this section, we explain how accessibility libraries are making
it possible to implement our attacks, discuss the limitations of our
attacks, analyze the root causes of the vulnerabilities, and consider
open problems for future work.

5.1 Complexity of Accessibility Attacks
As we mentioned in section §2, accessibility libraries provide three
capabilities: 1) obtaining events representing UI change, 2) provid-
ing a way of programmatically probing/accessing UI widgets, and
3) synthesizing inputs to UI widgets.

With these functionalities, an attacker can create malware capable
of performing successful attacks with a degree of relative ease when
compared to other non-AT methods that achieve the same ends. As
an example, we will describe how the “Password Eye” attack (#3)
can be implemented using accessibility libraries. To achieve the
“Password Eye” attack, malware needs to: 1) detect when the user
types a password, 2) identify the UI “eye” and click on it, and 3) lo-
cate the password field to grab its text in a screenshot. To determine
whether the user is typing password, we can use the first capability
of the accessibility libraries to keep track of which UI component
is currently focused. In particular, on the Windows platform, this

can be easily achieved by registering an event handler in the plat-
form’s accessibility framework that receives the focused UI element
at any change of focus. After being handed a focused element, we
can check whether the element is a password box with an “eye” by
assessing its properties reported by the accessibility libraries. For ex-
ample, a TRUE value of isPassword property indicates a password
box. Once we determine that the focused element is a password box,
we can use the second capability of the accessibility libraries to get
the “eye” button. In particular, since we know the relative position
of the focused text box and the “eye” button, we can walk the UI
widget tree provided by the accessibility library and calculate the
position of the “eye”. Then, we can use the third capability to click
it. Finally, the handle to the focused password box we obtained
in the first step can also be used to retrieve the location of the box
on screen, and allow us to grab the actual password typed from a
screenshot. A point worth noting here is that developing attacks
using accessibility libraries is very similar to how one manipulates
DOM (Document Object Model) objects using Javascript in a web
page.

One may point out that the same attack can be achieved on the
Windows platform by sending traditional Windows Messages (such
as WM_CLICK), or using tools such as AutoIt. However, we argue
that the use of the accessibility library greater ease and reliability.
In particular, without the first capability of the accessibility libraries,
one may need to constantly probe the current state of UIs to deter-
mine if the user is typing a password. Secondly, while it maybe
trivial to use a hardcoded coordinate to click the “eye” button in a
testing environment such as AutoIt, this strategy will be very fragile
in a real attack; factors such as variation in screen size and resizing/-
moving of the target window may break the hardcoded approach in
a real attack. Using hardcoded locations to extract a password from
screenshots will face a similar issue. Even though it may be possible
to reliably implement our attacks without accessibility libraries, this
implementation would be more complex and require greater effort
on the part of the author.

5.2 Limitations of the Attacks
Since attacks through accessibility libraries perform actions over
user interfaces, they have an inherent limitation in that they are not
stealthy. For example, if the target application is running in the
foreground when an attack is unfolding, the user may recognize
visual cues of the attack, such as button presses, opening of a new
UI window, etc. Furthermore, attacks via voice commands play
sounds, and are thus audible; or they fail if the speaker is turned off.

However, we argue that these attacks can be launched in a stealthy
way. First, malware can detect whether the user is using the device
or not. For desktop machines, the presence of a user can be detected
by monitoring physical keystroke or mouse movement. Malware
can exploit a time period when the user is absent to launch UI-
intensive attacks. If necessary, the malware can blank the screen
when launching the attack, because screen sleep after some period
of non-use is a natural and expected behavior of the system. For
mobile devices, prior researches [17, 31, 35] discussed how to track
the user’s behavior using an app on the device. With the help of
various sensors, such as the camera, face proximity detector, GPS
location, accelerometer, etc., malware can determine when the user
is not watching the screen, away from the device, or when the device
is in the user’s pocket. It can then launch an attack without being
exposed.

Second, UI actions can be delivered in the background for some
platforms. Thus, an attack can be carried out even when the user is
actively using the device. In Windows, once a handle to a UI widget
is obtained while it is in the foreground, it can still be manipulated

111

even when it is in the background or minimized. In Linux, probing
the UI of a minimized application is possible. Furthermore, in the
worst case, malware can move a window to nearly off the screen, so
that the user does not notice any UI change. In our experiment, if
any pixel of an app is visible on the screen7, there is no limitation
on probing or performing actions on it.

Third, it is possible to make the attacks on natural language user
interfaces stealthy with the help of hardware. Common audio de-
vices such as the Realtek HD Audio device and other sound card
devices’ drivers provide functionality called Stereo Mix. Stereo
Mix sends the output of system sound to an internal microphone
input. Enabling this functionality does not require any special priv-
ilege. Malware can play audio internally to deliver text-to-speech
audio to a natural language user interface. The attack succeeds
without outputting audio to speakers, and also works when there is
no speaker device at all.

Finally, our experience with OS vendors shows that these threats
will be taken seriously. In May, 2013, before presenting an at-
tack [19] that takes advantage of private APIs for synthesizing
touches and taking screenshots on iPhone, we informed Apple of
our attack. In Aug, 2013, the exploited vulnerabilities were removed
from the then newly-released iOS 7.

5.3 Root Causes, and Design Trade-offs
We strongly believe that to fundamentally eliminate a11y-related
vulnerabilities, a new architecture for providing accessibility fea-
tures is necessary. However, proposing such an architecture is out of
the scope of this paper; instead, we present the findings of our root
cause analysis to illustrate why security checks spread across the AT,
OS, and application tend to fail, and to show some of the trade-offs
taken in the current implementation of accessibility features.

The first identified root cause is the emphasis of availability/com-
patibility of a11y support in all the studied systems. In every case
we have studied, native UI widgets include logic to handle requests
from accessibility libraries, and UI widgets provided by OS are
usually built to reuse the same interfaces/channels to handle both
real user inputs and a11y inputs. As a result, it is very hard for an
application to distinguish a11y inputs from real user inputs. This
design choice enables many attacks by accepting and processing
synthesized input as if it is a real input (A28). For instance, in An-
droid, physically tapping an UI widget with a finger will invoke the
performClick() function. Equally, on an a11y request, the same
performClick() function is invoked (see Example 1 in Appendix
for details). In Windows, just like user real input, clicks generated
by UIAutomation are delivered as a Windows Message WM_CLICK.
Similarly, for Ubuntu and iOS, a11y requests take the same path as
I/O requests within the UI widget. While this means all applications
that use the native UI widgets automatically and naturally work with
the requests from accessibility libraries, such design also imposes
a default security policy that makes every widget available to all
ATs. As we can see in attack #2 and #3, this is too permissive a
policy. Furthermore, in all the studied systems, if the application/UI
developers were to instead implement their own policy regarding
how an application should process requests from accessibility li-
braries, they would have to implement their own UI widgets (usually
by “subclassing” the native ones), and this comes with a non-trivial
cost.

Second, from both technical and economic perspectives, it is
challenging to perform complete validation and authentication for
certain inputs introduced by AT. As a result, new attack vectors

7For example, only one pixel of the window is visible, while all
others are invisible.
8Please refer to section §3.1 New Attack Paths for details.

become available due to missing security checks on processing
input (A2) and output (A3) requests from ATs or accessibility li-
braries. For example, in attack #11, simply pressing Ctrl-C will call
gtk_entry_copy_clipboard in which there is a security check
for preventing text in a password field from being copied (see Ex-
ample 2 in Appendix for details). However, a different function
copytext() will be executed in ATK, which takes a different exe-
cution path without security checks, potentially leading to password
leakages. We suspect that the ATK code was added to the OS by a
group of developers who were not aware of the principles of input
validation and complete mediation, or that the ATK code was added
to the OSs only recently and has thus not been through rigorous
security code review and testing when compared to older portions
of the OS.

There are also technical and economic reasons for a lack of valida-
tion and authentication. For example, for the cases of attack #1 and
#9, the AT needs to check whether the voice input actually comes
from a real user, and also needs to further authenticate the authorized
user. Voice based validation and authentication requires non-trivial
technical support, with potentially high research and development
costs.

Finally, to improve the usability of ATs, OSs usually have weak
access control on accessibility libraries; while this makes the instal-
lation and use of ATs (their intended purpose) easy, it is not a good
security practice. In particular, accessibility libraries can usually be
accessed by any application on a system. For example, in Windows,
iOS 6, and Linux, any program can be an AT without any autho-
rization. This also opens paths for attack so that any (malicious)
program can abuse accessibility functionalities to launch the attacks
described in this paper. The exception is Android; it has a setup
menu for enabling an app’s use of the accessibility library, though
this check is only performed at initial app setup.

5.4 Recommendations and Open Problems
Based on the root cause analysis in Section §5.3, we present rec-
ommendations on how to alleviate (if not eliminate) the security
risks created by a11y support. Our recommendations are intended
to work with the current architecture for supporting accessibility
features, and thus are limited by the inherent difficulties that come
with this architecture; nonetheless, we believe they will help the
community to improve security for a11y before the introduction of
a complete a11y security policy occurs. We will also discuss some
open problems involved in implementing these recommendations.

Our first recommendation is to have fine-grained access control
over which program can access specific functionality of the accessi-
bility library. From our study, we find that both Linux and iOS have
no such access control at all, while Windows allows all programs
to use the accessibility library to control/read the content of any
other program with the same integrity level. Android appears to
be the only system that has access control policy specific for the
accessibility library: the user has to specifically grant the AT the
privilege to use the accessibility library. However, once this privi-
lege is granted, the AT has full access to all the capabilities of the
accessibility library. In many cases, this violates the principle of
least-privileged access. For example, a screenreader will only need
to read the content of other apps through the accessibility library,
but it does not need to be able to interact with other apps. Based on
this observation, we recommend the privilege of using the accessi-
bility library be at least split into two, one for reading the content of
other apps and one for the more privileged capability of interacting
and controlling other apps. While this may present an extra hurdle
for users who need AT, it will only incur a one-time set up cost,

112

which we feel is an acceptable trade-off for the extra security against
misuse of the accessibility library.

Our second recommendation is to provide mechanisms for a
UI developer to flag how different widgets in their UI will handle
various requests from the AT, rather than requiring the UI developer
to handle this task themselves. For example, in many UI libraries, a
developer can flag a text field as a password field, and the underlying
logic of the UI will make the content in the field invisible to both
the display and the ATs. However, this generally appears to be the
only instance of such a flag, and it only applies to text fields. We
believe more such flags should be available to specify various a11y
related security policies, and such flags should be made applicable
to various kinds of widgets (e.g. attack #2 and #3 can be easily
eliminated if a security flag is applicable to buttons). As future
work, we will study what kind of a11y related security policies UI
developers usually need to specify, and what language features are
needed for specifying such policy as attributes of widgets in the UI.

Our final recommendation can be considered a new security com-
ponent in the current a11y architecture, and can significantly limit
the damage caused by exploitation of a11y-related vulnerabilities.
We propose to extend accessibility support to user-driven access
control mechanisms like UAC in Windows or Remote View in iOS.
While this recommendation may not be directly derived from our
root cause analysis, we believe it will fundamentally eliminate many
a11y related security issues discussed in this paper. In particular,
OS vendors should develop versions of access control mechanisms
to support various disabilities. For example, for visually impaired
users, the system can read out (through the speaker) the message
seeking permission, and have the user confirm or abort by clicking
the “F” or “J” button on the keyboard (which are tactilely different
from all other keys on the keyboard), and for the users who lack
fine motor skills, the permission granting can be driven by voice
recognition. We note that while this approach is not general enough
to support the need for all users with different kinds of disabilities, it
will significantly improve the security for all users that are covered.
Furthermore, in the case of voice recognition, the introduction of
a mechanism specifically designed for seeking vocal permission
may significantly simplify the task of authenticating user input (only
“yes” or “no” need be verified, rather than performing general voice
recognition), and thus move the burden of performing voice recogni-
tion from the AT developer to the OS vendor (who may have more
resources to research and develop a mechanism that is robust against
attack #1 and #9).

Finally, we acknowledge that our analysis requires significant
manual effort and reverse engineering work and thus is not exhaus-
tive. We will leave it as an open problem to design systems that can
automatically find a11y related vulnerabilities. We believe this will
be a challenging problem for the several reasons. First, automatically
detecting a11y functions and analyzing their related vulnerabilities
requires whole system analysis. Since an a11y request is regarded
as an I/O event, it is processed asynchronously. As a result, it is very
hard to find entry points. The complicated execution of a11y logic
extends to many different low-level modules, which usually make
use of many (function) pointers. Proprietary OSs do not provide
source code, and so researchers can only perform analysis with the
compiled binary, which makes the task even harder. Second, unlike
general programming errors, confirming a11y related vulnerabilities
requires a deep understanding of the semantics of an application,
which significantly limits the scalability of such analysis. We hope
that our work can motivate further studies toward this direction.

6 Related Work
Attacks on Windows. In 2007, it was reported that an attacker
could control a Windows Vista machine by playing sound to Speech
Recognition [28]. However, since the attack could not bypass UAC
and assumed Speech Recognition was already enabled, it was con-
sidered a minor bug at that time. Compared with this attack, our
attack (attack #1) does not require Speech Recognition to be enabled
before the attack, and we can bypass UAC on Windows 7 through
8.1 (due to policy changes in UAC [26]).

Just before the release of Windows 7, there was a UAC bypass
attack [10] that exploited the special capability of Explorer.exe
to write to system directories. In this attack, a malware process will
attach to Explorer.exe, inject code, and exploit its capability to
write to system directories. Our attack #2 follows the same strategy,
but instead of using low level function WriteProcessMemory() to
inject code into Explorer.exe, we used the accessibility library to
simply click the “OK” button.
Attacks on iOS. Recently, it was reported [11] that Siri in iOS 7
can be exploited to bypass the lock screen and send email, SMS,
post on Twitter and Facebook, make phone calls, etc. We referred to
this attack as attack #5 in the vulnerability section.

Although the accessibility library is a private API that is not
usable by regular app developers, the threat is real. Last year, an
attack [33] showed that it is possible to circumvent the Apple App
Store review process by successfully publishing an App Store app
that invoked private API calls.
Attacks on Android. In Android, there have been many attacks on
the permissions [7, 9, 13, 16, 34] and private information [18, 36] of
an app that demonstrate data leakage through Android’s IPC channel.
To address these problems, many mechanisms [6, 12, 16, 20] have
been proposed. Unfortunately, since all of the proposed mechanisms
were focused on the official IPC channel, they are not able to prevent
attacks through accessibility libraries. Furthermore, our attacks can
steal the capabilities and private information of other apps.

7 Conclusion
In compliance with the amendment to the Rehabilitation Act of
1973, software vendors have been continuously adding accessibility
features to their OSs. As the technology advances, accessibility
features have become complex enough to comprise a complete I/O
subsystem on a platform. In this paper, we performed an analysis of
the security of accessibility features on four popular platforms. We
discovered vulnerabilities that led to twelve practical attacks that are
enabled via accessibility features. Further analysis shows that the
root cause of the problem is due to the design and implementation of
a11y support requiring trade-offs between compatibility, usability,
and security. We conclude with proposing several recommendations
to either make the implementation of all necessary security checks
easier, or to alleviate the impact of incomplete checks.

Acknowledgments
The authors would like to thank the anonymous reviewers and
our shepherd, Trent Jaeger, for their help and feedback, as well
as our operations staff for their proofreading efforts. This mate-
rial is based upon work supported in part by the National Science
Foundation under Grants No. CNS-1017265, CNS-0831300, and
CNS-1149051, by the Office of Naval Research under Grant No.
N000140911042, by the Department of Homeland Security under
contract No. N66001-12-C-0133, and by the United States Air Force
under Contract No. FA8650-10-C-7025. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the

113

National Science Foundation, the Office of Naval Research, the
Department of Homeland Security, or the United States Air Force.

References
[1] Android Developers. Security tips. http://developer.
android.com/training/articles/security-
tips.html.

[2] Apple, Inc. Accessibility. http://www.apple.com/
accessibility/resources/, .

[3] Apple, Inc. The ios environment. https://
developer.apple.com/library/ios/documentation/
iphone/conceptual/iphoneosprogrammingguide/
TheiOSEnvironment/TheiOSEnvironment.html, .

[4] O. Begemann. Remote View Controllers in iOS
6. http://oleb.net/blog/2012/10/remote-view-
controllers-in-ios-6/.

[5] K. J. Biba. Integrity considerations for secure computer sys-
tems. Technical report, DTIC Document, 1977.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi,
and B. Shastry. Towards taming privilege-escalation attacks
on android. In 19th Annual Network & Distributed System
Security Symposium (NDSS), volume 17, pages 18–25, 2012.

[7] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing
inter-application communication in android. In Proceedings
of the 9th international conference on Mobile systems, appli-
cations, and services, pages 239–252. ACM, 2011.

[8] K. Cook. [patch] security: Yama lsm. http://lwn.net/
Articles/393012/.

[9] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy. Priv-
ilege escalation attacks on android. In Information Security,
pages 346–360. Springer, 2011.

[10] L. Davidson. Windows 7 uac whitelist: Proof-of-concept
source code. http://www.pretentiousname.com/misc/
W7E_Source/win7_uac_poc_details.html.

[11] J. Edwards. There’s a huge password security
quirk in ios 7 that lets siri control your iphone.
http://www.businessinsider.com/password-
security-flaw-in-ios-7-lets-siri-control-
your-iphone-2013-9.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-
Daniel, and A. Sheth. Taintdroid: An information-flow track-
ing system for realtime privacy monitoring on smartphones.
In OSDI, volume 10, pages 1–6, 2010.

[13] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In USENIX
Security Symposium, 2011.

[14] Go Launcher Dev Team. Go launcher ex notification.
https://play.google.com/store/apps/details?id=
com.gau.golauncherex.notification.

[15] Google Inc. Section 508 Compliance (VPAT). https://www.
google.com/sites/accessibility.html.

[16] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic de-
tection of capability leaks in stock android smartphones. In
Proceedings of the 19th Annual Symposium on Network and
Distributed System Security, 2012.

[17] J. Han, E. Owusu, L. Nguyen, A. Perrig, and J. Zhang. Ac-
complice: Location inference using accelerometers on smart-
phones. In Communication Systems and Networks (COM-
SNETS), 2012 Fourth International Conference on, pages 1–9,
Jan 2012.

[18] S. Jana and V. Shmatikov. Memento: Learning secrets from
process footprints. In IEEE Symposium on Security and Pri-
vacy (Oakland ’12), 2012.

[19] B. Lau, Y. Jang, C. Song, T. Wang, P. H. Chung, and P. Royal.
Mactans: Injecting malware into iOS devices via malicious
chargers. In Proceedings of Black Hat USA, 2013.

[20] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer and
communications security, pages 229–240. ACM, 2012.

[21] C. McLawhorn. Recent development: Leveling the acces-
sibility playing field: Section 508 of the rehabilitation act.
NORTH CAROLINA JOURNAL OF LAW & TECHNOLOGY,
3(1):63–100, 2001.

[22] Microsoft. Windows integrity mechanism design. http://
msdn.microsoft.com/en-us/library/bb625963.aspx,
.

[23] Microsoft. Windows vista integrity mechanism technical ref-
erence. http://msdn.microsoft.com/en-us/library/
bb625964.aspx, .

[24] Microsoft Corporation. Microsoft and section 508.
http://www.microsoft.com/enable/microsoft/
section508.aspx, .

[25] Microsoft Corporation. User account control.
http://windows.microsoft.com/en-us/windows7/
products/features/user-account-control, .

[26] S. Motiee, K. Hawkey, and K. Beznosov. Do windows users
follow the principle of least privilege?: investigating user ac-
count control practices. In Proceedings of the Sixth Symposium
on Usable Privacy and Security, SOUPS ’10, New York, NY,
USA, 2010. ACM.

[27] Motorola Inc. Moto X Features: Touchless Con-
trol. http://www.motorola.com/us/Moto-X-
Features-Touchless-Control/motox-features-
2-touchless.html.

[28] G. Ou. Vista Speech Command exposes remote ex-
ploit. http://www.zdnet.com/blog/ou/vista-speech-
command-exposes-remote-exploit/416.

[29] PoPs. Pops ringtons & notifications. https://play.google.
com/store/apps/details?id=com.pops.app.

[30] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan. User-Driven Access Control: Rethinking Permis-
sion Granting in Modern Operating Systems. In Proceedings
of the IEEE Symposium on Security and Privacy, 2012.

[31] R. Schlegel, K. Zhang, X. yong Zhou, M. Intwala, A. Kapadia,
and X. Wang. Soundcomber: A stealthy and context-aware
sound trojan for smartphones. In NDSS, 2011.

[32] The United States Government. Section 508 Of The Rehabili-
tation Act. http://www.section508.gov/Section-508-
Of-The-Rehabilitation-Act.

[33] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll on ios:
When benign apps become evil. In The 22nd USENIX Security
Symposium (SECURITY), 2013.

[34] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact
of vendor customizations on Android security. In ACM con-
ference on Computer and communications security (CCS ’13),
2013.

[35] N. Xu, F. Zhang, Y. Luo, W. Jia, D. Xuan, and J. Teng. Stealthy
video capturer: A new video-based spyware in 3g smartphones.
In Proceedings of the Second ACM Conference on Wireless
Network Security, WiSec ’09, New York, NY, USA, 2009.
ACM.

[36] Y. Zhou and X. Jiang. Detecting passive content leaks and
pollution in android applications. In Proceedings of the 20th
Annual Symposium on Network and Distributed System Secu-
rity, 2013.

114

http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://www.apple.com/accessibility/resources/
http://www.apple.com/accessibility/resources/
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosprogrammingguide/TheiOSEnvironment/TheiOSEnvironment.html
http://oleb.net/blog/2012/10/remote-view-controllers-in-ios-6/
http://oleb.net/blog/2012/10/remote-view-controllers-in-ios-6/
http://lwn.net/Articles/393012/
http://lwn.net/Articles/393012/
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.pretentiousname.com/misc/W7E_Source/win7_uac_poc_details.html
http://www.businessinsider.com/password-security-flaw-in-ios-7-lets-siri-control-your-iphone-2013-9
http://www.businessinsider.com/password-security-flaw-in-ios-7-lets-siri-control-your-iphone-2013-9
http://www.businessinsider.com/password-security-flaw-in-ios-7-lets-siri-control-your-iphone-2013-9
https://play.google.com/store/apps/details?id=com.gau.golauncherex.notification
https://play.google.com/store/apps/details?id=com.gau.golauncherex.notification
https://www.google.com/sites/accessibility.html
https://www.google.com/sites/accessibility.html
http://msdn.microsoft.com/en-us/library/bb625963.aspx
http://msdn.microsoft.com/en-us/library/bb625963.aspx
http://msdn.microsoft.com/en-us/library/bb625964.aspx
http://msdn.microsoft.com/en-us/library/bb625964.aspx
http://www.microsoft.com/enable/microsoft/section508.aspx
http://www.microsoft.com/enable/microsoft/section508.aspx
http://windows.microsoft.com/en-us/windows7/products/features/user-account-control
http://windows.microsoft.com/en-us/windows7/products/features/user-account-control
http://www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-features-2-touchless.html
http://www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-features-2-touchless.html
http://www.motorola.com/us/Moto-X-Features-Touchless-Control/motox-features-2-touchless.html
http://www.zdnet.com/blog/ou/vista-speech-command-exposes-remote-exploit/416
http://www.zdnet.com/blog/ou/vista-speech-command-exposes-remote-exploit/416
https://play.google.com/store/apps/details?id=com.pops.app
https://play.google.com/store/apps/details?id=com.pops.app
http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act
http://www.section508.gov/Section-508-Of-The-Rehabilitation-Act

APPENDIX
A Examples
// On real touch event
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction()) {
case MotionEvent.ACTION_UP:
{
// ...
// performClick() is called to handle real click event
performClick();
// ...

}
}

}

// On a11y request for click
boolean performAccessibilityActionInternal(int action,

Bundle arguments) {
// ...
switch (action) {
case AccessibilityNodeInfo.ACTION_CLICK:
{
if (isClickable()) {
// the same performClick() is invoked to handle a11y request
performClick();
return true;

}
} break;

}
// ...

}

Example 1: Code that handles real input (above), and code that han-
dles a11y input (below) for click, in View.java of Android. The same
function performClick() is used to handle both requests.

static void gtk_entry_copy_clipboard (GtkEntry *entry) {
GtkEntryPrivate *priv = entry->priv;
// ...
// ### security check for password box ###
if (!priv->visible)
{
// do not copy text to clipboard
gtk_widget_error_bell (GTK_WIDGET (entry));
return;

}
// ...

}

Example 2: Code that handles copy of text (pressing Ctrl-C) in GTK.
Inside the function, GTK checks the security flag priv->visible to de-
cide whether or not to provide selected text to the clipboard. If GtkEn-
try is set as password box (flag is true), then text will not be provided.

// A11y code snippet
void atk_editable_text_copy_text (Editable e, int start, int end) {
AtkEditableText *text;
// ...
*(iface->copy_text) (text, start_pos,);
// calls gtk_entry_accessible_copy_text()

}

static void gtk_entry_accessible_copy_text(AtkEditableText *t,
int start, int end) {

GtkEditable *e;
// ...
gchar *str = gtk_editable_get_chars (e, start, end);
// ...

}
// A11y code end, calls functions in Gtk UI

// Gtk code snippet
gchar* gtk_editable_get_chars (GtkEditable *e,

int start, int end) {
return (editable)->get_chars (e, start, end);
// calls gtk_entry_get_chars()

}

// Final function that returns text content
gchar* gtk_entry_get_chars (GtkEntry *e, int start, int end) {
gchar *text;
text = gtk_entry_buffer_get_text (get_buffer (entry));
// ### no security checks at all on getting text ###
return g_strndup (text + start_index, end_index - start_index);
// return text without checking priv->visible

}

Example 3: Code that handles an accessibility request (ATK) for copy-
ing text. In ATK, it calls a function of a module in GTK that supports
accessibility. The module then calls a function that directly interacts
with the UI widget (GTK functions). However, the module GtkEntryAc-
cessible calls a different function gtk_editable_get_chars(), which
misses required security checks of the password box.

115

	Introduction
	Overview of Accessibility
	Accessibility Features
	Accessibility Libraries
	Assistive Technologies

	Security Implications of A11y
	New Attack Paths
	Required Security Checks

	Security Evaluation of A11y
	Evaluation Methodology
	Availability of Accessibility Features
	Vulnerabilities in Input Validation
	Windows
	Ubuntu Linux Desktop
	iOS
	Android

	Vulnerabilities in Output Validation
	Windows
	Ubuntu Linux Desktop
	Android

	Discussion
	Complexity of Accessibility Attacks
	Limitations of the Attacks
	Root Causes, and Design Trade-offs
	Recommendations and Open Problems

	Related Work
	Conclusion
	Examples

