
Preventing Drive-by Download via Inter-Module
Communication Monitoring

Chengyu Song Jianwei Zhuge
∗

Xinhui Han Zhiyuan Ye
Key Laboratory of Network and Software Security Assurance (Peking University)

Ministry of Education, China
Institute of Computer Science and Technology, Peking University, China

{songchengyu,zhugejianwei,hanxinhui,yezhiyuan}@icst.pku.edu.cn

ABSTRACT
Drive-by download attack is one of the most severe threats to
Internet users. Typically, only visiting a malicious page will
result in compromise of the client and infection of malware.
By the end of 2008, drive-by download had already become
the number one infection vector of malware [5]. The down-
loaded malware may steal the users’ personal identification
and password. They may also join botnet to send spams,
host phishing site or launch distributed denial of service at-
tacks.

Generally, these attacks rely on successful exploits of the
vulnerabilities in web browsers or their plug-ins. There-
fore, we proposed an inter-module communication monitor-
ing based technique to detect malicious exploitation of vul-
nerable components thus preventing the vulnerability being
exploited. We have implemented a prototype system that
was integrated into the most popular web browser Microsoft
Internet Explorer. Experimental results demonstrate that,
on our test set, by using vulnerability-based signature, our
system could accurately detect all attacks targeting at vul-
nerabilities in our definitions and produced no false positive.
The evaluation also shows the performance penalty is kept
low.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive software

General Terms
Security

Keywords
Drive-by download, malicious script, inter-module commu-
nication, intrusion detection, ActiveX

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASIACCS’10 April 13–16, 2010, Beijing, China.
Copyright 2010 ACM 978-1-60558-936-7/10/04 ...$10.00.

1. INTRODUCTION
A drive-by download (also mentioned as web-based mal-

ware in [32]) is a download which user indirectly authorized
but without understanding the consequences or any down-
load that happens without knowledge of the user. As more
and more computers are connected to the Internet, this kind
of attack has become the most widely use attack vector to
deliver malicious code [5, 2, 31]. These malicious codes could
be Trojans which steal identification, password of your on-
line game or any other information that can be sold on black
market [49]. They may also be bot that used to build bot-
nets [7] to send spams [19], host phishing sites [22], or launch
distributed denial of service (DDoS) attacks [21].

A typical drive-by download attack scene has been clearly
explained in [30], The general steps may include:

1. Attackers prepare the exploit payloads and malwares.
The payloads could be malicious JavaScript, VBScript,
browser plug-ins, Adobe Flash or a combination of
them. These payloads are then put onto exploit servers
and malwares are put onto malware servers.

2. Attackers then embed links pointing to these payloads
into legitimate pages 1 by cracking the web sites or
buying web visit traffics from the evil or unwitting
webmasters.

3. When victims visit these polluted pages, they are redi-
rected to the exploit servers.

4. The browser downloads the exploit payloads and tries
to handle them. During the handling procedure, these
malicious payloads launch attacks.

5. Once the victims are compromised, the prepared mal-
wares are downloaded and executed.

This new, web-based attack has several advantages over
traditional attacks. One advantage is the ability to launch
heap-spray attack [27, 8, 38], to increase the success rates of
exploitation. But a more deadly one is that, by using this
form of attack, it is much easier to bypass most detection
mechanisms used by existing protection systems.

Generally, detection mechanisms can be classified into
content-based and behavior-based. And protection systems

1In this paper, we define a page as all the content (html files,
scripts, images, et al.) that will be download automatically
by browser during a browsing session.

can be divided into network-based and host-based. Fire-
wall and network-based intrusion detection system (NIDS)
are two typical network-based protection systems. Antivirus
(AV) software and host-based intrusion detection system
(HIDS) are two typical host-based protection systems.

To detect malicious content effectively, the content must
have special characteristics distinguishing itself from benign
ones. Before drive-by download attack emerged, researchers
[41, 29, 28] had found some viable methods to identify ma-
licious network flows by detecting the plain text or light-
encoded shellcode within these flows. However, in drive-by
download attacks, by utilizing the powerful capacities pro-
vided by the script engine of browsers or their plug-ins, at-
tackers can encode their shellcode in much more variable
ways during transfer, and then decode them just before the
exploitation. Currently, the most widely used encode mech-
anism is JavaScript obfuscation [14, 32]. And attackers have
begun using some more complex mechanisms, such as em-
bedding the malicious script into encrypted Adobe Flash
files [47]. Moreover, as the scripting engine getting more
and more powerful, attackers may even write a new inter-
preted language [37] to implement the exploitation.

AV softwares have been fighting against different encoding
and morphing mechanisms for many years, and have many
mature countermeasures. But most of them still use static
scanning strategy to detect malicious content on the web.
Although some of them have included script execution en-
gines, comparing with the complex browsers, these engines
are so primitive that sometimes they cannot handle the ma-
licious scripts correctly.

In short, current ‘unpack’ or anti-morphing technologies
used by content-based detection mechanisms are not power-
ful enough to handle these web-based malicious codes. Be-
sides, the scanning strategy is also problematic. Most exist-
ing scanners use file or network flow as scanning granularity.
However, to help web application developers, most browsers
have the ability to let scripts include other scripts. By lever-
aging this feature, attackers can split one exploit script into
several files without affecting the correct functionality. As
a result, scanners without a mature reassemble mechanism
will be bypassed.

By using behavior-based detection mechanism, the un-
packing and reassembling problem stated above could be
avoided. But the situation for existing behavior-based pro-
tection systems is no better. Firewalls can block illegal traf-
fics, yet from the perspective of firewall, since drive-by down-
load attack is almost the same as legitimate visiting web
pages, it has no reason to block this kind of traffic. Even
though black lists (e.g. Google Safe Browsing API [18]) can
be used to prevent visiting malicious servers, these lists trend
to be incomplete and sometimes outdated.

Most HIDSs use system behaviors (e.g. system call in-
vocations) to detect malicious programs. However, as the
malicious activities involved in drive-by download attacks
(e.g. installing plug-ins, downloading and executing pro-
grams) are indistinguishable from legitimate activities at
this level, either the false negatives or the false positives
will be too high to be acceptable.

The limitation of behavior-based detection mechanism can
be attributed to the absence of decisive semantic information
from the exploitation scene. That is, the information they
gathered are so general that the characteristics of these in-
formation are not typical enough for attack detection. This

is similar to detecting malicious behaviors happening in the
guest operating system at the virtual machine monitor level.

To overcome this limitation, we propose monitoring inter-
module communication (IMC) to detect and prevent drive-
by download attacks. The motivation is: if we cannot get the
decisive semantic information outside the browser, maybe we
could get them from the inside. Luckily, after we analyzed
the attack scene more carefully, we found the following facts:
(1) modern web browsers are modularized, from the basic
HTML parsing and rendering engine to the diverse plug-ins,
are all implemented as modules; (2) no matter how the ma-
licious content reach the victim and how attackers prepare
the exploits, the essence of most exploitations is malicious
invocations of functions provided by the vulnerable module;
(3) these invocations are from the modules which handle
the malicious content; and (4) when the vulnerable func-
tion is invoked, the content has usually been deobfuscated.
Therefore, we could treat the invocations as communications
between modules and by checking these communications, at-
tacks are much easier to detect.

Generally, the proposed detection mechanism works as:
(1) monitoring the communications to the vulnerable mod-
ules during a browsing session; and (2) checking the commu-
nication content to identify known attacks, for improving the
detect precision, here we use vulnerability-based signatures
[46, 4] instead of traditional attack-based signatures. To
verify this idea, we implemented a proof-of-concept system
that is integrated into Microsoft Internet Explorer (MSIE)
browser. And we tested this prototype system on over one
hundred cached drive-by download attack samples.

In summary, the contributions of this paper are:

• We proposed an IMC monitoring based detection
mechanism to detect and prevent the drive-by down-
load attacks;

• We described a proof-of-concept implementation of our
approach, which can be integrated into the most widely
used browser, MSIE;

• We analyzed 19 popular vulnerability reports and gen-
erated 37 signatures for those vulnerabilities;

• We evaluated our prototype using 119 cached drive-
by download attack samples and the Alexa top ranked
sites. The experimental results demonstrate that our
system has a high detection effectiveness and low false
positive rate, while the performance overhead is kept
low.

The rest of this paper is structured as: In Section 2, we in-
troduce the related work and compared our work with them.
In Section 3 we present the design of our approach and in
Section 4 we describe the implementation of our prototype
system. In Section 5 we evaluate the prototype and dis-
cuss its limitation and future work in Section 6. At last, we
conclude our work in Section 7.

2. RELATED WORK
As drive-by download attack is becoming more and more

popular, besides the protection and detection systems men-
tioned in the introduction section, many other approaches
have been proposed to detect, analyze and mitigate this se-
vere threat.

General studies. To get a better understanding of this
threat, Provos et al. investigated web-based malware in [32],
in which they studied the ways adversaries used to place
exploits and the different exploit techniques. In [49] Zhuge
et al. gave an empirical study of the black market behind
drive-by download attack and reported about 1.49% of the
web site returned by search engine is malicious. [31, 9] also
studied the malicious web site ratio on Internet.

Server-side detection. To detect injection attacks
against benign web pages, Halfond and Orso [16] proposed a
static technique to detect SQL injection. In [1] Bandhakavi
et al. describes a similar mechanism. Later they extended
this mechanism to detect cross site script (XSS) attack [3].
Based on dynamic taint analysis, researchers proposed sev-
eral methods to detect script injection attack [26, 25, 40]
and SQL injection attack [17, 36]. While our work aimed at
detecting and preventing drive-by download attacks at the
client-side, these works tended to stop the drive-by down-
load attack from the source. However, as some malicious
web sites are set up on purpose [49], only detecting server-
side exploitations cannot solve the problem once and for all.

Client-side detection. To detect drive-by download at-
tack, by adopting the honeypot idea, Microsoft proposed
HoneyMonkey system [45]. On contrary to server-side hon-
eypots that passively wait for attacks, honeypots of this kind
(i.e. client honeypot) will actively visit the Internet to trig-
ger web-based attacks. Since legitimate activities are re-
ducing to zero in honeypots, HIDS could be used without
producing false positives. However, as most existing high-
interaction client honeypot systems [45, 32, 39] still rely on
events at system API level, the abnormal behaviors they
detected are more likely to be from the malicious activi-
ties of downloaded malware, rather than activities directly
from the malicious web pages. Hence, if the malware is not
downloaded successfully, or the malware does not perform
any suspicious activities during the detection time window
(e.g. keep silent in virtual machines), a false negative would
rise. Since our approach detect the essential exploit behav-
ior, it can detect the attack more precisely than traditional
high-interaction client honeypots.

Since high-interaction honeypots are sometimes too heavy,
Jose introduced PHoneyC, a low-interaction client honey-
pot to detect malicious web pages in [24]. Unlike high-
interaction client honeypot, PHoneyC uses ActiveX emu-
lation to detect web-based exploits and uses AV scanner to
detect known malicious content. Wepawet [20] provides an
online service where people can submit suspicious URL for
analysis. It uses similar ideas like PHoneyC but is imple-
mented in Java. The disadvantage of these systems is similar
to antivirus software, i.e. though they can provide certain
level of interaction, today’s browsers are too complex to be
emulated perfectly. As a result, attackers can use features
not easily imitable to detect and bypass these emulators (e.g.
innerHTML). Since our approach can be integrated into real
browser, we could avoid such problems.

Since most exploits are implemented in script languages,
more precisely, in JavaScript [23], detecting and analyzing
malicious JavaScript is also gaining more and more atten-
tions. Egele et al. [13] and Ratanaworabhan et al. [33] pro-
posed techniques to identify drive-by download attacks by
detecting shellcode in JavaScript variables or heap memory.
While our approach is able to detect shellcode-based attacks
as well, it also can detect attacks without using shellcode.

Improving reliability of plug-in and browser. As
most drive-by download attacks rely on exploiting client-
side vulnerabilities, a lot of research has been done on miti-
gating vulnerabilities or limiting the damages. In Secunia’s
report [35], it is indicated that many of the vulnerabilities
being exploited are from browser plug-ins, especially Ac-
tiveX controls. To reduce this kind of vulnerabilities, in [10]
Dormann and Plakosh introduced an automated ActiveX
control fuzzing system to detect security flaws. To solve
this problem from source, Yee et al. [48] and Douceur et
al. [11] proposed two new plug-in frameworks named Native
Client and Xax. In these frameworks, plug-ins are restricted
inside sandboxes like what is done to Java applets but the
performance penalty is kept acceptable.

To push these restrictions further, Grier et al. [15] pre-
sented OP browser, in which not only different principles are
handled in different sandboxed processes, but the scripts and
plug-ins used in one principle are also handled in different
processes. This browser architecture also emphasizes the
important to use centralized, explicit IMC for auditing and
security checking. Based on the same idea, Microsoft also
developed the Gazelle browser [43]. Although these solutions
can provide better security, they are still prototype and most
Internet users are tending to use old browsers with which
they are familiar. For example, IE6 and IE7 still occupy
the biggest portion of the browser market [42]. Comparing
with them, our work could provide a more secure browsing
experience before the revolution of browser architecture.

Vulnerability-based signature. Vulnerability-based
signatures have been use in the Shield system [44] intro-
duced by Wang et al. Later, this work was extended to pre-
vent web-based exploits in [34]. Our work, while also aims
at preventing web-based exploits, differs from BrowserShield
in the interception level. BrowserShield instruments HTML
and JavaScript content of a web page but our system inter-
cepts the communications made between browser modules.
Since the malicious content is not necessarily in the HTML
files or JavaScript files, we believe our architecture could
detect more attack forms.

In [4], besides giving the formal definition of vulnerability-
based signature, Brumley et al. described an automated,
data flow analysis based way for generating vulnerability
signatures. And in [6], Cui et al. proposed an automatic
way to generate vulnerability-based signatures for unknown
vulnerabilities. Therefore, though in our prototype system,
the signatures are manually generated, we can use these pro-
posed methods to generate vulnerability-based signatures in
automated manner, to increase the detection scope.

3. SYSTEM DESIGN
In this section we describe the design of our approach.

Firstly, we discuss the threat model and system boundaries
that guide our design. Then we give an overview of our
approach and describe the functionality of each component.

3.1 Threat model and system boundaries
We designed our system to handle drive-by download at-

tacks. We assume attackers could have the complete control
over the web server. Therefore, they can prepare any kind of
exploit that could be delivered through web browsing. We
also assume the exploits may arrive at the browser by any
means, in any format and may target at any part of the
browser, including its plug-ins.

We only consider attacks that originate from web and
target at web browsers and their plug-ins. We also limit
our system only to detect attacks that require invocation of
inter-module communication.

3.2 System Overview
Our system consists of two main components, a Monitor

which monitors the IMC and generates security events; and
a Detector that identifies attacks targeting at known vulner-
abilities from the event trace..

Although IMC is also a kind of local function invocation,
in many browsers, it is different from calling an applica-
tion program interface (API). An API is permanent, always
available to be called. But most component model (COM,
XPCOM) used in web browsers use objects that are created
at demand, and destroyed when no longer needed to pro-
vide functionalities. For example, when visiting Youtube, an
Adobe Flash Player object is created to play the video; and
as soon as you leave that page, this object is freed thus not
available for reuse. From this perspective, IMC is more sim-
ilar to network communication where communication can
have a session. Therefore, in our system, we define three
kinds of events to stand for the whole procedure of IMC:

Object creation. A creation of a component object indi-
cates the beginning of a new communication session.

Method invocation. Invocations of methods constitute
the main part of the communication.

Object free. The free of a component object indicates the
end of the session.

3.3 The Monitor
The IMC Monitor is in charge of generating the three

kinds of events. In our approach, it is an abstract component
that can be implemented in different ways.

If integrated into current browsers (e.g. MSIE, Firefox),
where implicit IMC is used, the Monitor can be implemented
as a plug-in that will be loaded at the startup time. This
plug-in then intercepts the system calls for object creation to
generate corresponding events. However, after the compo-
nent objects are created, the IMC is made implicitly. There-
fore, method invocation events and object free events must
be generated differently. A general method is to hook ev-
ery method the created object offers, including the object’s
destructor. After that, when a hooked function is called, a
method invocation event is generated. And whenever the
destructor is called, an object free event is generated.

In future browser architectures like the OP browser, IMC
must be invoked explicitly by calling the IMC API provided
by the browser kernel, and the kernel will monitor and au-
dit these invocations. Under this circumstance, the Monitor
can simply be registered as a handler for the three kinds of
events. Or it could be implemented as a parser that gener-
ates these events from the audit log.

The Monitor can also be built into a low-interaction client
honeypot. For example, by modifying the ActiveX emula-
tion component already exists in PHoneyC.

3.4 The Detector
The Detector is responsible for detecting known attacks

by matching the generated IMC events with signatures in its
vulnerability definitions. To improve the detection precision,
we use the vulnerability-based signature to detect attacks.

In [4], a vulnerability signature is formally defined as a
matching function which, for an input x returns either EX-
PLOIT or BENIGN without running the original vulnerable
program P . The authors also introduced three main signa-
ture representation classes, the Turing machine signatures,
the symbolic constraint signatures and the regular expression
signatures. The Turing machine signatures are precise but
may take an unbounded time for matching. Matching regu-
lar expression signatures are efficient but the language itself
has fundamental limitations that may tamper the precision.
Therefore, in our system, the Detector uses the symbolic
constraint signatures for detection.

One modification here is the definition of input x. Some of
the vulnerabilities require several method invocations before
the components can be successfully compromised. For ex-
ample, exploiting MS08-041 requires first setting the Snap-

shotPath, then setting the CompressedPath. Hereby, we
need to track the session state to indicate what input has
already been received by the vulnerable object. Because one
object may contain more than one vulnerability (e.g. CVE-
2007-4816), the session state must be tracked separately for
each signature.

In consideration of these facts, we formally define a sig-
nature used in our system as a deterministic finite state au-
tomaton (DFA)

S = (Q,Σ, δ, q0, F)

Each state q ∈ Q indicates the current state of the session,
and q0 is the initial state. When an object is created, the
instantiated signatures for this object are initialized with q0.
Σ represents the possible input symbol for the object and
Σ∗ is all the possible input x for that object. δ is a symbolic
constraint resolver that checks if the input x ∈ Σ∗ at state
qa satisfies the symbolic constraint on qa. If it does, the
signature transits to the new state qb; otherwise it remains
in current state. There are two final states f1, f2 ∈ F . f1
represents EXPLOIT and f2 represents BENIGN. As soon
as the state transits to f1, an attack is detected. And for
the reason that each component object may be exploited at
any time during its life time, f2 state can only be reached
when the object free event is received.

4. PROTOTYPE IMPLEMENTATION
In this section, we describe the implementation of our pro-

totype system in detail. In the first part, we provide a short
overview of the Microsoft Internet Explorer browser and its
plug-in system ActiveX. Then we present the implementa-
tion of COMSniffer (the Monitor) and MwDetector (the De-
tector).

4.1 MSIE and ActiveX
MSIE is a series of graphic web browsers developed by

Microsoft, and included as part of the Microsoft Windows
since 1995. It has been the most widely used web browser
since 1999. Although the latest version IE8 has many se-
curity improvements to mitigate drive-by download, XSS
and phishing attacks, the most widely used version is still
IE6. MSIE uses a componentized architecture built with the
Component Object Model (COM) , which is also the basic
of its plug-in framework – ActiveX. For client-side scripting,
MSIE supports JavaScript and VBScript by default. It can
also support CLI-languages through Silverlight.

The COM technology is introduced by Microsoft in 1993
as an extension of its OLE model. The key idea is to imple-
ment a component developing model that is Object Oriented
(OO). Thereby, compare with dynamic link library (DLL),
COM components are more similar to classes in OO lan-
guages. The functionalities of a component are provided by
objects. Each object has its own private data, and offers the
functionalities through different methods of the interfaces it
implements. And Components also support reuse. The most
significant difference is that COM objects’ interface is binary
compatible, thus can be implemented in any languages on
any platform. Another important feature of COM is process
transparency. That is, when using a COM component, the
user does not need to care whether the component is im-
plemented as a DLL inside its process or a separate process
on local system, or even a process on remote server. Each
COM component is identified by a global unique id called
classid (CLSID).

Interface is one of the core concepts in COM. One inter-
face represents a certain set of functionalities (e.g. IHTML-
Document) provided by an object. Object must implement
at least one interface, but it may implement several inter-
faces as well. Similar to COM components, every interface
has a global unique id called interface id (IID). The basic
and most important interface is IUnknown interface. Ev-
ery interface must ‘inherit’ this interface and implement the
three methods of this interface: AddRef, Release and Query-

Interface.
The basic steps to utilize a COM component are: (1) cre-

ate a component object; (2) use the object’s QueryInterface
method to query the interface that contains the demanded
method; and (3) call the method.

To manage large amount of COM components, Microsoft
also introduced the concept of COM library. COM library
provides interfaces to register, query, create and remove
COM components. It also provides utility functions to han-
dle common COM data structures and to manage memory
usage.

ActiveX framework is the plug-in system for MSIE in-
troduced in 1996 as a competitor to Java applet. A plug-
in implemented using ActiveX is usually called an ActiveX
control. Since ActiveX control is also a kind of COM com-
ponent, it can provide much richer abilities than applet. But
on the other hand, it also increases security risks. These se-
curity risks exacerbate after MSIE allows client-side scripts
to interact with ActiveX controls.

4.2 COMSniffer
In this section, we first describe how COMSniffer gen-

erates the three kinds of IMC events. Then we discuss the
performance optimization and some implementation details.

4.2.1 Generating object creation events
An object creation event for COM object contains two

piece of information: the object’s CLSID and the object’s
address. The CLSID helps the Detector decide what signa-
tures should be used for this session. For the reason that a
COM object is used directly as an interface pointer, in our
prototype system, we use the object’s address as the ID of
an object. Since an object represents a session, this address
is also used as the ID of the session.

To generate the object creation events, we need to un-
derstand the procedure of creating a COM object. Most

vtbl

Per-object
data

vtbl

Per-object
data

vtbl

Per-object
data

AddRef

Release

QueryInterface
QueryInterface
Implementation

AddRef
Implementation

Release
Implementation

Figure 1: Binary Format of COM Interface

COM objects used by MSIE are created in two ways. The
first one is to call the CoCreateInstanceEx API 2 provided
by the COM library, with the required CLSID and IID. If
succeeds, this API directly returns the required object. Be-
cause CLSID and created object’s address is passed either as
an input parameter or as an output parameter, to monitor
objects created through this way, we intercept the CoCre-

ateInstanceEx API.
The second way is to call the CoGetClassObject API with

the required CLSID. Unlike CoCreateInstanceEx, this API
does not return a object of that CLSID, but a class factory
object (object that implements IClassFactory interface). To
create the ‘real’ object, the caller then calls the CreateIn-

stance method of the class factory with the demanded IID.
As a result, monitoring object created in this way is more
complicated. Not only because the CLSID information and
object’s address is involved in two function calls, but also
because the later function is not a system API. To solve
this problem, we first intercept the CoGetClassObject API.
When a class factory object is created, we hook its Create-
Instance method and its CLSID is recorded. Then, when
the CreateInstance method is invoked, we could obtain the
object’s address. The next step is to correlate the CLSID
and the object’s address. In our system, this is done by map-
ping the CLSID to the class factory object’s virtual function
table. This is feasible because the binary structure of COM
object (Fig. 1) is similar to a C++ object. The first ele-
ment of an object is a pointer that pointed to the interface’s
virtual function table (vtbl). And all objects from the same
component, with the same interface use the same vtbl. So,
when a class factory object is created, we save the CLSID
- IClassFactory vtbl pair. And when the hooked CreateIn-

stance method is called, we obtain the vtbl address through
This pointer 3, get the corresponding CLSID, and generate
a creation event.

4.2.2 Generating method invocation events
A method invocation event contains three pieces of infor-

mation: the object address, the method name and the pa-
rameters. The method name, together with the parameters,
forms the input to be checked.

The ordinary way to monitor function invocation is to in-

2The CoCreateInstance API is also implemented by this
function.
3Like C++ and other OO languages, the first parameter of
any COM interface’s mehtod is a ‘this’ pointer.

tercept the very function, by adding a hook, setting a debug
break point or et al. However, since the number of COM
components and their interfaces is extremely large, writ-
ing callback functions for every method is too expensive.
Luckily, when creating the ActiveX framework, Microsoft
also defined the standard interface through which client-side
scripts can interact with the ActiveX controls. This interface
is also the interface every ActiveX control must implement
and the only way to interact with scripts. Its name is IDis-
patch interface 4. The two key methods of this interface are
GetIDsOfNames and Invoke. When a script wants to use
an ActiveX control, after creating the object via <object>

tag or ActiveXObject function, it cannot directly call the
method. Rather, the scripting engine (e.g. JScript) will
query the IDispatch interface of that object, and calls the
GetIDsOfNames method to check if that component has this
method. If it does, GetIDsOfNames will return the corre-
sponding dispatch ID (DISPID). The engine then calls the
Invoke method to finish the method invocation, using the
DISPID.

Therefore, to generate method invocation events, after a
successful creation of a COM object, we check if this com-
ponent supports IDispatch interface. If it does, we hook the
GetIDsOfNames and Invoke method of this object. When
the hooked GetIDsOfNames is called, we save the method
name - DISPID pair. And when the hooked Invoke method
is called, we obtain the corresponding method name of the
given DISPID, gather the parameters information and gen-
erate a method invocation event.

To prevent the exploit, we make COMSniffer work in in-
line mode. When in this mode, COMSniffer will wait until
the Detector returns the checking result. If an attack is
detected, COMSniffer reports the attack and then prevents
the original method invocation by directly returning an error
code.

4.2.3 Generating object free event
Generating object free events is easier. COM standard

defines: when the calling of Release method returns 0, this
object is going to be released. Hence, we monitor the Re-

lease method by hooking this method of every COM object
on their creation. And when the original function returns 0,
an object free event is generated.

4.2.4 Performance Optimization
Since MSIE is built around COM and most of its com-

ponents support IDispatch, COMSniffer may generate too
much noise information. To reduce these noises, we only
monitor CLSIDs that exist in our vulnerability definitions.
This optimization will not affect the detection because our
Detector only detects attacks targeting known vulnerabili-
ties.

4.2.5 Implementation
Although most security plug-ins for MSIE are implemented

as browser helper objects (BHO), COMSniffer is not. This
is because by the time BHOs are loaded, some of the core
components object of MSIE have already been created, thus
cannot be monitored by COMSniffer. So we implement it as
a DLL that will be loaded by MSIE immediately after the

4Microsoft later extended this interface with IDispatchEx
interface, but for our prototype, IDispatch is enough.

process is created. And once loaded, it will automatically
start monitoring.

4.3 MwDetector
In this section, we describe the implementation of MwDe-

tector, the Detector in our prototype system.

4.3.1 Signatures
In MwDetector, we store DFA definitions of signatures in

description files, one signature per file. The file content is
constructed as follows.

• The first line of a definition file is the CLSID of the
vulnerable component, and the rest content is divided
into one or more blocks, every block is separated by a
new line.

• Each block describes one part of the constraint.

• The first line of the block is the original state number.
The initial state uses number 1, and the attack state
uses number 0. The rest numbers (positive) are free
to use.

• The second line is the target state number. The num-
bering rule is the same as above.

• The third line is the method name, which according to
ActiveX standard, is case insensitive.

• The rest of the block is the expressions of symbolic
constraint associated with the original state. Since the
resolver used in our prototype system is Yices [12],
therefore these expressions are written in Yices Input
Language.

At runtime, MwDetector uses a signature manager to
manage the signatures in its vulnerability definitions.

4.3.2 Session manager
In MwDetector, the three kinds of IMC events are han-

dled by session manager. When an object creation event
is received, the session manager creates a new session ob-
ject. Then it uses the object’s CLSID to query the signa-
ture manager for matchers (discussed below) that belong to
this CLSID, and associates these matchers with the created
session. After that, this session object is put into the living
session list.

When a method invocation event is arrived, the session
manager uses the object address to find the corresponding
session in the session list. Once found, the session manager
feeds all the associated matchers with the method name and
parameters passed in. If any matcher enters the EXPLOIT
state, the session manager raises an attack alert. The alert
information is then returned to COMSniffer for further pro-
cessing.

To handle the object (COM object) free event, the session
manager first finds the session object the same way as above,
and removes the session object from the live session list.
Then, the session manager frees all the associated matchers
and the session object itself.

typedef struct tagDISPPARAMS
 {
 VARIANTARG *rgvarg;
 DISPID *rgdispidNamedArgs;
 UINT cArgs;
 UINT cNamedArgs;

 } DISPPARAMS;

Figure 2: Structure of DISPPARAMS

4.3.3 Matcher
In MwDetector, a matcher is an instance of a signature.

When MwDetector is loaded, the signature manager will
load all the signatures by parsing the definition files. When
the session manager queries for the matchers, the signa-
ture manager instantiates signatures registered for handling
events of this CLSID and returns the matchers to the session
manager.

There could be several kinds of matcher for different kinds
of input data. But every matcher class has to implement a
transition method. This method is called by the session
manager on the receiving of method invocation events. For
COM matchers, the transition method works as follows.

Firstly, the parameters are parsed into symbolic expres-
sions. The parameters used to invoke a method through
the IDispatch interface are stored in a DISPPARAMS struc-
ture (Figure 2). The cArgs member stores the number of
unnamed arguments, while the cNamedArgs member stores
the number of named ones. The information of each ar-
gument is store in rgvarg and rgdispidNamedArgs respec-
tively. Since most scripting languages are weakly-typed, to
support interaction with these languages, each unnamed ar-
guments is stored in a VARIANTARG structure. The first mem-
ber of this structure indicates the type of the argument.
Commonly used types include strings (VT_BSTR), integers
(VT_Ik, VT_UIk, k = 1, 2, 4, 8), objects (VT_DISPATCH) and
variables 5 (VT_VARIANT). The parser will generate expres-
sion according to the argument’s type. For example, a string
parameter will be expressed as:
(define arg#_index#::int)

(assert (= arg#_index# value))

Then the matcher locates the transition constraint accord-
ing to current state and the name of the invoked method.
Then the matcher calls Yices to check whether the input
is consistent with the constraint. If it is, the state of the
session transits to the target state. Else, the state remains
in current state. Since there could be several matchers for
one session, the session state is stored inside each matcher
to avoid interference.

5. EVALUATION
In this section, we discuss how our prototype is evaluated

and the experimental results. We first introduce the test
environment we used to carry out the rest evaluations. Then
we describe the three experiments. The first one evaluates
the detection effectiveness, i.e. false negative rates. The
second one evaluates the false positive rate. And the last
one measures the performance overhead.

5.1 Drive-by download attack replaying sys-
tem

5The type of this argument is unsure.

Drive-by download attack has been a hot topic for several
years, however, up till now, a standard test base for measur-
ing the effectiveness still has not emerged. In this section,
we give a brief introduction of our test environment which
is able to reliably replay the drive-by download attacks.

After drive-by download has become a major threat to the
Internet users, security research groups and companies have
built several system to detect these attacks. Some of them
will publish a list of recently detected malicious pages. These
pages should be used to evaluate new mitigation approaches.
Unfortunately, most of these malicious pages only live for a
short time before they are cleaned up. After that, they are
no longer capable to be used for evaluations.

To overcome this limitation, most researchers would store
a local copy of the malicious page. But a drive-by download
attack usually involve tens of files that distributed over sev-
eral web servers, by using <script>, <frame> and <iframe>

tags. If only one file is visited during the evaluation, the ex-
ploit may not be triggered correctly [13]. One would suggest
modifying the src attributes of those tags. For static tags,
this would work. But many malicious pages will dynamically
create those tags, and the pages themselves are heavily ob-
fuscated or even encrypted using the correct URL [13], hence
makes this approach infeasible.

To solve this problem, we build a proxy based replaying
system. Once we find a malicious page, we cache in local
every web content (HTML documents, scripts, images, bi-
nary files, et al.) involved in the attack. Thereafter, when
we want to revisit those pages to evaluate a system, we can
simply set the system to use that proxy, and then directly
visit the original URL, the replaying system will response
with all cached web content in the attack scene, therefore
restoring the original drive-by download attack scene.

5.2 ActiveX emulator
Most drive-by download attacks will try to exploit multi-

ple vulnerabilities to improve the success exploitation ratio.
Hence, to build a good detection system, it is necessary to
install as much vulnerable ActiveX controls as possible. Un-
fortunately, not all controls are compatible. For example,
during the development of our system, we found when Mi-
crosoft Access Snapshot Viewer (CVE-2008-2463) is in use,
other vulnerabilities cannot be exploited within the same
process. To solve this problem, in our detection environ-
ment, we create an universal ActiveX control that can be
instantiated as any ActiveX component. As a result, when-
ever a malicious page attempts to utilize an ActiveX control
that does not exist in our environment and invoke its vul-
nerable method, this attempt will succeed and the attack
will be detected by MwDetector. To trigger attacks that
rely on results of method invocations (e.g. the version of
RealPlayer), our ActiveX emulator is able to return this de-
manded information (not a dummy component).

Since most drive-by download attacks rely on ActiveX
controls, different kind of emulators have also been imple-
mented in previous works [24, 20]. However, most of these
emulators are implemented in scripting language, the same
level as the malicious scripts. Therefore, they are not com-
pletely invisible to drive-by download exploits. On the con-
trary, the simulation in our system is at COM level, a level
below the script engine. This means, it is not easily de-
tectable for malicious scripts.

5.3 Detection effectiveness
To measure the detection effectiveness of our prototype,

we first evaluated it on 119 in-the-wild drive-by download
attack samples (1010 html and script files) that were cached
by our replay system. All samples were detected by our own
high-interaction honeypot. These samples are visited in a
batch mode, each given 2 minutes to process.

The tested system is integrated into IE6 browser on a
clean installed Windows XP SP2 with no more patches. In
addition, Adobe Flash Player 9.0.47.0 is installed. We use
this configuration because it is a typical vulnerable environ-
ment for web browsing. However, in theory our prototype
can also be integrated with other MSIE versions on different
Windows versions.

For this evaluation, we manually generated 37 signatures
from 19 vulnerability reports (listed in Appendix A). Since
all these signatures are extracted from vulnerable compo-
nents, there is no training samples used in this evaluation.

The result is, with the help of the ActiveX emulator, our
detection system successfully detected 895 exploit instances
(one sample may contain several attacks targeting the same
vulnerability) from 99 samples (Figure 3). This yields an
initial detection effectiveness of 83%, i.e. a false negative
ratio of 17%. To understand why our system did not report
any attack on the remaining 20 pages, we reanalyzed them
with our high interaction honeypot. The reexamination re-
vealed that none these samples are active. This is due to
cache problem of our replay system, more precisely, not all
files involved in these samples are successfully cached. Af-
ter excluding these inactive samples from our dataset, we
compute a detection rate of 100%.

Besides the detection effectiveness, this experiment also
showed two interesting results. The first one is, by using
the emulator, in addition to the vulnerabilities that do exist
in test environment (CVE-2006-0003), our system also de-
tected attacks tried to exploit other 14 vulnerabilities. The
other one is, though vulnerabilities which can be exploited
without shellcode (CVE-2006-0003, CVE-2008-2463, CVE-
2007-4105, CVE-2008-6442) is relatively rare, the number of
attacks that target them is much larger than those aiming at
exploiting vulnerabilities of other kinds. This means, exist-
ing memory protection mechanisms like data execution pre-
vention (DEP), address space layout randomization (ASLR)
and shellcode-based detection systems [13, 33] are not suffi-
cient to protect users from drive-by download attacks.

From the perspective of detecting malicious pages, the de-
tection rate of our system is perfect. However, since most
of the cached samples contain more than one exploit, this
result cannot fully represent the detection effectiveness of
all detectable exploits. Therefore, we further chose 5 sam-
ples with disparate attack payloads 6 and manually analyzed
them to find out all the exploits. Then we compared this
result with attacks detected by our system. The result is
shown in Table 1. The detection rate on this small dataset
decreased to 52%. The reason for this decrease is that those
undetected exploits are aiming at vulnerabilities that are
not included in our definitions yet. This is an unavoidable
weakness of all signature-based detection systems. But our
system detected all attacks targeting at vulnerabilities in
our definitions.

6Although the initial page of every sample is different, the
exploit files involved could be similar or even the same.

474

450

500 474

300

350

400

450

500 474

255
250

300

350

400

450

500 474

255

150

200

250

300

350

400

450

500 474

255

58
20 18 15 13 11 11 6 5 5 2 1 1

0

50

100

150

200

250

300

350

400

450

500 474

255

58
20 18 15 13 11 11 6 5 5 2 1 1

0

50

100

150

200

250

300

350

400

450

500 474

255

58
20 18 15 13 11 11 6 5 5 2 1 1

0

50

100

150

200

250

300

350

400

450

500 474

255

58
20 18 15 13 11 11 6 5 5 2 1 1

0

50

100

150

200

250

300

350

400

450

500

Figure 3: Exploit instances detected on the 119
cached samples.

Table 1: Exploit instances detected on the manually
analyzed samples

Sample ID Exploits found Exploits detected
1 6 6
6 3 1
24 9 6
26 13 2
67 3 3

5.4 False positive evaluation
In the context of our system, a false positive is a page

that is detected as containing at least one exploit, but in
fact does not. To evaluate the likelihood of false positives,
we drive our prototype to visit the home page of the top 100
sites of Alexa global ranking and of the top 100 site within
China. All these pages are known to be benign. And we
consider them as a reasonable test set that represents the
most commonly visit content of Internet users.

On this dataset, our prototype did not produce any false
positive. This ‘perfect’ result is expected. There are two rea-
sons. The first one is, the detection is based on vulnerability-
based signature, and most vulnerabilities we met are rela-
tively simple (e.g. stack overflow), hence the false positive
and false negative should be naturally low. And the second
one is, most of these commonly visited sites did not instanti-
ate any of the vulnerable ActiveX controls, or did not invoke
the vulnerable methods that exist in our vulnerability defi-
nitions.

5.5 Performance
Though the detector can be fed by a log parser (i.e. works

offline), our prototype is implemented in online mode. That
is, the detection is performed at the same time when the
MSIE handles the page. Thence, we evaluated the perfor-
mance penalty caused by our prototype in this section.

This experiment is carried out on the Alexa top 100 sites
within China. We first uninstalled our system and drove IE6
to visit the dataset and recorded the time used (wall-clock
time). This is done by installing a BHO that record the
time elapsed between the BeforeNavigate2 event and the
DocumentComplete event from the root frame. After that,

Table 2: Page load times (sec) with and without our
detection system.

Native MSIE With detection
Total time 410 471
Average time 4.10 4.71
Average Overhead 0 0.61
Factor 1 1.15

we reinstalled our detection system on the same machine
(without the ActiveX emulator, works as a prevention sys-
tem) and ran the same test again. The local cache, history
information and are cookies cleared before every test.

The evaluated system was of the same configuration as
previous experiments and was installed on a virtual ma-
chine with Intel Core 2 Duo 2.4G CPU (one CPU mode) and
256MB of main memory. An ADSL of bandwidth 2Mb/s is
used to visit the Internet.

The result is presented in Table 2. On average, native
MSIE uses 4.1 seconds to load a page. This time includes
downloading all the files within the principle, parsing and
rendering it and executing all dynamic content. After inte-
grated our system, the average load time increased to 4.71
seconds, i.e. an overhead of about 15%. Although most
Internet user would expect the browsing experience as fast
as possible, comparing with the protection provided by our
system, we believe this penalty is a fair tradeoff.

6. DISCUSSION AND FUTURE WORK
Our prototype system has several limitations. First, it

only detected attacks using explicit malicious content. That
is, the malicious content is directly passed to the vulnerable
component in the arguments. However, some attacks will
use implicit malicious content. For example, some pages
may instantiate an Adobe Flash Player control and pass it a
URL leading a malicious flash file (CVE-2007-0071). Other
examples include malicious PDF files (CVE-2007-5659), mal-
formatted picture files (CVE-2007-0038) and et al. To detect
such attacks, we can extend our system to (1) monitor the
uniform resource identifier (URI) passed to the vulnerable
component; (2) intercept the downloading procedure; and
(3) once a monitored URI finished downloading, before the
content is passed to the component, check if this content
contains any exploit.

The second one is the limitation of all signature-based de-
tection systems: they can only detect known attacks. There-
fore, our system cannot detect new, zero-day attacks, or at-
tacks aiming vulnerabilities not in our definitions. There is
no ideal solution for this limitation now. But we still could
audit the IMC and add some heuristic rules to detect sus-
picious behaviors (e.g. string argument that is too long).
After that, we can manually or automatically analyze these
suspicious samples to see if they’re false positives or new,
unknown attacks.

The third one is that the signatures we used now are man-
ually generated. This work is time consuming and error-
prone. However, since the symbolic constraint is general
and has widely used in vulnerability analysis and mining
systems, we plan to develop our automated signature gen-
erating system in the future. Besides, the vulnerabilities we
analyzed now are either collected from published database
(e.g. CVE) or from captured attack samples. Once we have

an automatic signature generating system, we can further
modify it to dig common vulnerabilities (e.g. buffer over-
flows) in ActiveX controls.

7. CONCLUSION
Drive-by download attack is one of the most severe threats

to Internet users, and is now the number one source of in-
fecting malware. Most drive-by download attacks rely on
the success of the client-side exploits. Most of these exploits
are launched against the browser components that handle
the malicious content or other vulnerable browser plug-ins.
Therefore, in this paper, we proposed a novel approach to
detect and prevent such exploits by monitoring inter-module
communications between browser components and its plug-
ins. By using vulnerability-based signatures, our system is
able to detect the malicious exploitation of a vulnerable com-
ponent before the vulnerability is exploited.

To demonstrate the feasibility of our approach, we devel-
oped a prototype system that is integrated into Microsoft
Internet Explorer. Experiments on this prototype system
showed that, on our test set, our system has a detection rate
of 100% on exploit instances attacking vulnerabilities in our
definitions. And the false positive ratio is kept 0. And this
protection only introduced a performance overhead of 15%.

Because our solution is conceptually generic, it can also be
integrated into other browsers like Mozilla Firefox or even
new browser architectures like OP browser. By integrating
into low interaction client honeypot like PHoneyC, it also
can work like an intrusion detection system to identify ma-
licious web pages.

8. ACKNOWLEDGMENT
This work is supported by the Research Fund for the Doc-

toral Program of Higher Education of China under Grant
No.200800011019.

We would like to thank all the anonymous reviewers for
their insightful comments and feedback. We would like to
thank Tao Wei, Zhiyin Liang, Xiaorui Gong, Jinpeng Guo
and Jinhui Zhong for their comments on our research.

9. REFERENCES
[1] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N.

Venkatakrishnan. Candid: preventing sql injection
attacks using dynamic candidate evaluations. In CCS
’07: Proceedings of the 14th ACM conference on
Computer and communications security, pages 12–24,
New York, NY, USA, 2007. ACM.

[2] L. Beijing Rising International Software Co. Internet
security report for china mainland, 2009 h1.
http://it.rising.com.cn/new2008/News/NewsInfo/2009-
07-21/1248160663d53890.shtml, November
2008.

[3] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD:
Precise dynamic prevention of cross-site scripting
attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment, volume 5137 of Lecture
Notes in Computer Science, pages 23–43. Springer
Berlin / Heidelberg, 2008.

[4] D. Brumley, J. Newsome, D. Song, H. Wang, and
S. Jha. Towards automatic generation of
Vulnerability-Based signatures. In Proceedings of the

2006 IEEE Symposium on Security and Privacy, pages
2–16. IEEE Computer Society, 2006.

[5] M. Cruz. Most abused infection vector.
http://blog.trendmicro.com/most-abused-infection-
vector/, December
2008.

[6] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto.
Shieldgen: Automatic data patch generation for
unknown vulnerabilities with informed probing. In SP
’07: Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 252–266, Washington,
DC, USA, 2007. IEEE Computer Society.

[7] D. Dagon, G. Gu, C. P. Lee, and W. Lee. A taxonomy
of botnet structures. Computer Security Applications
Conference, Annual, 0:325–339, 2007.

[8] M. Daniel, J. Honoroff, and C. Miller. Engineering
heap overflow exploits with javascript. In WOOT ’08:
Proceedings of the 2nd USENIX Workshop on
Offensive Technologies, July 2008.

[9] O. Day, B. Palmen, and R. Greenstadt. Reinterpreting
the DisclosureDebate for web infections. In Managing
Information Risk and the Economics of Security,
pages 1–19. Springer US, 2009.

[10] W. Dormann and D. Plakosh. Vulnerability detection
in activex controls through automated fuzz test.
http://www.cert.org/archive/pdf/dranzer.pdf, 2008.

[11] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applications
on the web. In OSDI ’08: Proceedings of the 8th
USENIX Symposium on Operating Systems Design
and Implementation, December 2008.

[12] B. Dutertre and L. D. Moura. The yices smt solver.
Technical report, SRI International, 2006.

[13] M. Egele, P. Wurzinger, C. Kruegel, and E. Kirda.
Defending browsers against drive-by downloads:
Mitigating heap-spraying code injection attacks. In
DIMVA ’09: Proceedings of the 6th international
conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, July 2009.

[14] B. Feinstein and D. Peck. Caffeine monkey:
Automated collection, detection and analysis of
malicious javascript.
http://mirror.fpux.com/HackerCons/
BlackHat 2007/BlackHat/Presentations/
Feinstien and Peck/Whitepaper/
bh-usa-07-feinstien and peck-WP.pdf, 2007.

[15] C. Grier, S. Tang, and S. T. King. Secure web
browsing with the op web browser. Security and
Privacy, IEEE Symposium on, 0:402–416, 2008.

[16] W. G. J. Halfond and A. Orso. Amnesia: analysis and
monitoring for neutralizing sql-injection attacks. In
ASE ’05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software
engineering, pages 174–183, New York, NY, USA,
2005. ACM.

[17] W. G. J. Halfond, A. Orso, and P. Manolios. Using
positive tainting and syntax-aware evaluation to
counter sql injection attacks. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software
engineering, pages 175–185, New York, NY, USA,
2006. ACM.

[18] G. Inc. Google safe browsing api.
http://code.google.com/apis/safebrowsing/.

[19] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. M. Voelker, V. Paxson, and S. Savage.
Spamalytics: an empirical analysis of spam marketing
conversion. In CCS ’08: Proceedings of the 15th ACM
conference on Computer and communications security,
pages 3–14, New York, NY, USA, 2008. ACM.

[20] U. C. S. Lab. Wepawet. http://wepawet.iseclab.org/.

[21] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker,
and S. Savage. Inferring internet denial-of-service
activity. ACM Trans. Comput. Syst., 24(2):115–139,
2006.

[22] T. Moore and R. Clayton. An empirical analysis of the
current state of phishing attack and defence. In WEIS
’07: Proceedings of the Sixth Workshop on the
Economics of Information Security, 2007.

[23] Mozilla. Spidermonkey (javascript-c) engine.
http://www.mozilla.org/js/spidermonkey/, 2009.

[24] J. Nazario. Phoneyc: A virtual client honeypot. In
LEET ’09: Proceedings of the 1st Usenix Workshop on
Large-Scale Exploits and Emergent Threats. USENIX
Association, 2009.

[25] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In Security and
Privacy in the Age of Ubiquitous Computing, volume
181 of IFIP International Federation for Information
Processing, pages 295–307. Springer Boston, 2005.

[26] T. Pietraszek and C. V. Berghe. Defending against
injection attacks through context-sensitive string
evaluation. In Recent Advances in Intrusion Detection,
volume 3858 of Lecture Notes in Computer Science,
pages 124–145. Springer Berlin / Heidelberg, 2006.

[27] J. Pincus and B. Baker. Beyond stack smashing:
Recent advances in exploiting buffer overruns. IEEE
Security and Privacy, 2(4):20–27, 2004.

[28] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Emulation-based detection of
non-self-contained polymorphic shellcode. In Recent
Advances in Intrusion Detection, volume 4637 of
Lecture Notes in Computer Science, pages 87–106.
Springer Berlin / Heidelberg, 2007.

[29] M. Polychronakis, K. G. Anagnostakis, and E. P.
Markatos. Network-level polymorphic shellcode
detection using emulation. Journal in Computer
Virology, 2(4):257–274, February 2007.

[30] T. H. Project. Know your enemy: Malicious web
servers, August 2007.

[31] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose. All your iframes point to us. In Security
’08: Proceedings of the 17th Usenix Security
Symposium, pages 1–15, Berkeley, CA, USA, 2008.
USENIX Association.

[32] N. Provos, D. McNamee, P. Mavrommatis, K. Wang,
and N. Modadugu. The ghost in the browser analysis
of web-based malware. In HotBots’07: Proceedings of
the first conference on First Workshop on Hot Topics
in Understanding Botnets, pages 4–4, Berkeley, CA,
USA, 2007. USENIX Association.

[33] P. Ratanaworabhan, B. Livshits, and B. Zorn. Nozzle:
A defense against heap-spraying code injection

attacks. In Security ’09: Proceedings of the 18th
USENIX Security Symposium, 2009.

[34] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and
S. Esmeir. Browsershield: Vulnerability-driven filtering
of dynamic html. ACM Trans. Web, 1(3):11, 2007.

[35] Secunia. 2008 report.
http://secunia.com/gfx/Secunia2008Report.pdf, 2008.

[36] R. Sekar. An efficient black-box technique for defeating
web application attacks. In NDSS ’09: Proceedings of
the 16th Annual Network & Distributed System
Security Symposium, San Diego, CA, Februry 2009.

[37] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic
reverse engineering of malware emulators. Security
and Privacy, IEEE Symposium on, 0:94–109, 2009.

[38] A. Sotirov. Heap feng shui in javascript.
http://www.phreedom.org/research/heap-feng-
shui/heap-feng-shui.html,
2008.

[39] R. Steenson and C. Seifert. Capture-hpc client
honeypot / honeyclient.
https://projects.honeynet.org/capture-hpc/.

[40] Z. Su and G. Wassermann. The essence of command
injection attacks in web applications. In POPL ’06:
Conference record of the 33rd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 372–382, New York,
NY, USA, 2006. ACM.

[41] T. Toth and C. Kruegel. Accurate buffer overflow
detection via abstract pay load execution. In Recent
Advances in Intrusion Detection, volume 2516 of
Lecture Notes in Computer Science, pages 274–291.
Springer Berlin / Heidelberg, 2002.

[42] W3Counter. Global web stats. 2009.

[43] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The multi-principal os
construction of the gazelle web browser. In Security
’09: 19th USENIX Security Symposium, August 2009.

[44] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: vulnerability-driven network filters for
preventing known vulnerability exploits. SIGCOMM
Comput. Commun. Rev., 34(4):193–204, 2004.

[45] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev,
C. Verbowski, S. Chen, and S. T. King. Automated
web patrol with strider honeymonkeys: Finding web
sites that exploit browser vulnerabilities. In
Proceedings of the Network and Distributed System
Security Symposium, NDSS 2006, San Diego,
California, USA, 2006.

[46] Y.-M. Wang, R. Roussev, C. Verbowski, A. Johnson,
M.-W. Wu, Y. Huang, and S.-Y. Kuo. Gatekeeper:
Monitoring auto-start extensibility points (aseps) for
spyware management. In LISA ’04: Proceedings of the
18th USENIX conference on System administration,
pages 33–46, Berkeley, CA, USA, 2004. USENIX
Association.

[47] J. Wolf. Heap spraying with actionscript.
http://blog.fireeye.com/research/2009/07/
actionscript heap spray.html, 2009.

[48] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native client: A sandbox for portable, untrusted x86
native code. In Proceedings of the 30th IEEE

Symposium on Security and Privacy, 2009.

[49] J. Zhuge, T. Holz, C. Song, J. Guo, X. Han, and
W. Zou. Studying malicious websites and the
underground economyon the chinese web. In Managing
Information Risk and the Economics of Security,
pages 1–20. Springer US, 2009.

APPENDIX
A. GENERATED SIGNATURES

For the evaluation, we generated 37 signatures from 19
vulnerability reports (listed in Table 3). These signatures
are manually generated by analyzing (e.g. debugging) the
vulnerable components and identifying the symbolic con-
straint required for an exploit. Note, consisting with the
signatures does not imply the attack will succeed. For ex-
ample, the local string buffer used by vulnerable method
Register from SSReader Pdg2 ActiveX control (CVE-2007-
5892) is 256 bytes long, and any string passed in longer than
this will be reported as an attack; but too overwrite the re-
turn address on stack, the string passed in should contain
least 264 characters.

Table 3: Signatures included in prototype imple-
mentation

Component Nam Vulneratibility
MS MDAC RDS.Dataspace CVE-2006-0003
Baidu Soba Search Bar CVE-2007-4105
Storm Player MPS CVE-2007-4816
Storm Player SPARSER CVE-2007-4943
RealNetworks RealPlayer CVE-2007-5601
SSReader CVE-2007-5807
Thunder PPlayer CVE-2007-6144
Ourgame HanGamePluginCn CVE-2008-0647
RealNetworks RealPlayer CVE-2008-1309
MS Access Snapshot Viewer CVE-2008-2463
MS Windows Media Encoder CVE-2008-3008
QVOD Player CVE-2008-4664
Sina UC Dloader CVE-2008-6442
UUSee Player CVE-2008-7168
MS Office Spreadsheet CVE-2009-1136
Chinagames iGame CVE-2009-1800
Ourgame GLWorld SA29118
Ourgame GLWEBAVT SA29446
SSReader NO-CVE(LoadPage)

