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Abstract—Automatic semantic labeling of strokes in online
handwritten documents is a crucial task for many applications
such as diagram interpretation, text recognition, and search.
We formulate this task as a stroke classification problem
in which each stroke is classified as a cross-out, free body
diagram, or text. Separating free body diagram and text in this
work is different than the traditional text/non-text separation
problem because these two classes contain both text and
graphics. The text class includes textual notes, mathematical
symbols/equations, and graphics such as arrows that connect
other elements. The free body diagram class also contains
graphics and various alphanumeric characters and symbols
that mark or explain the graphical objects. In this work, we
present a novel deep neural network model for classification
of strokes in online handwritten documents. There are two
input sequences to the network. The first sequence contains
the trajectories of the pen strokes while the second contains
features of the strokes. Each of these sequences is fed to its
own CNN-BLSTM channel to extract features and encode
relationships between nearby strokes. The output of the two
channels is concatenated and used as the input to a CRF
layer that predicts the best sequence of labels for given input
sequences. We evaluated our model on a dataset of 1,060 pages
written by 132 students in an undergraduate statics course. Our
model achieved an overall classification accuracy of 94.70% on
this dataset.
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I. INTRODUCTION

Semantic labeling of online documents is a crucial prereq-
uisite in document analysis and understanding tasks such as
retrieval, recognition, and beautification. In online handwrit-
ten documents, semantic labeling is the task of classifying
pen strokes into meaningful classes. A pen stroke is a
series of time-stamped coordinates beginning when the pen
touches the page and ending when the pen leaves the page.
Researchers have developed various domain-dependent clas-
sification algorithms for specific types of data and specific
tasks [1]. Additionally, general methods have also been
developed for classification of unconstrained documents [2]–
[4]. However, these methods do not produce satisfactory
accuracy for some problems. Therefore, classification of pen
strokes in unconstrained documents remains a challenging
problem that requires more attention from researchers.

Figure 1: A typical answer to a free response question in
statics course contains a mixture of free body diagrams,
equations, text and cross-outs. Free body diagram, cross-
out and text classes are shown in blue, red and green,
respectively.

In this paper, we are interested in the task of classifying
strokes from students’ handwritten homework assignments.
More specifically, our dataset comprises handwritten free
response solutions to statics problems. Statics is the branch
of mechanics that examines the equilibrium of bodies sub-
jected to forces. Participants were students enrolled in an
undergraduate statics course. The students used Livescribe
smartpens throughout the quarter to take lecture notes and
answer questions on exams and homework. The smartpens
are used with special dot-patterned paper. A camera at the
tip of the pen uses the dots to digitize the writing. Each
handwritten page is recorded as a series of strokes that
are represented as a sequence of time-stamped coordinates.
Our semantic labeling task is to classify strokes into the
following three classes, which are illustrated in Figure 1:



• Free body diagram (FBD): Diagrams used to represent
the forces acting on a mechanical systems. Free body
diagrams include drawings, text labels and arrows.

• Cross-out: A cross-out is a set of strokes used to cross-
out writing. For example, an "X" is a common cross-out
mark.

• Text: This class comprises all writing that is not free
body diagrams or cross-outs. This category primar-
ily comprises equations, but also includes explanatory
notes, organizational information (e.g. problem number,
student name, etc.), and lines and arrows showing
relationships between other writing.

In this work, we introduce a novel deep neural net-
work model for classifying strokes into these three classes.
This model employs two Convolutional Neural Networks
(CNNs), one that extracts features from pen trajectories and
another that extracts domain-dependent stroke features. The
output of each CNN is fed into a Bidirectional Long Short
Term Memory (BLSTM) network to encode the information
between sequences of strokes. Finally, the outputs of the
two BLSTM networks are concatenated and passed to a
Conditional Random Field (CRF) layer which assigns the
final classifications.

The rest of the paper is organized as follows. In Section
II we review related work. We present the details of our
model in Section III. We discuss the system workflow and
network training in Section IV. In Section V, we describe
the dataset and empirical evaluation. Finally, in Section VI,
we conclude the paper.

II. RELATED WORK

Classification in online handwritten documents has been
the subject of much research. Many algorithms have been
proposed for this task. In the literature, this task is sometimes
called text/graphics separation, text/non-text division, and so
on. Here we review existing approaches to this classification
task.

Text/non-text separation: Many approaches in this cat-
egory combine the local features of strokes with contextual
information to classify the strokes into text and non-text
classes. Techniques proposed by Bishop et al. [5], Zhou and
Liu [6] and Delaye et al. [7], initially perform isolated stroke
classification and then use a Hidden Markov Model (HMM),
Markov Random Fields (MRF), and a CRF, respectively, to
model the interactions between neighboring strokes. The ap-
proach by Jun-Yu et al. [8] jointly trains a CRF and a neural
network (NN) model to combine contextual information with
local features. Our task is different as some of our classes
contain both text and non-text.

Text line segmentation: This is the task of splitting text
strokes into text lines. Shilman et al. [9] use temporal and
spatial features of pen strokes to simultaneously perform
classification and segmentation of free-form handwritten
notes using a dynamic programming approach. Blanchard

Figure 2: The overall architecture of CNN-BLSTM-CRF
model.

and Artieres [10] developed a Probabilistic Feature Grammar
system for detecting text lines. However, many approaches
in this category are not designed to handle heterogeneous
documents containing both text and non-text elements.

General segmentation techniques: The approaches in
this group present a flexible framework to handle document
segmentation for a variety of problems. A first attempt was
made by Jain et al. [2]. They build a minimum spanning tree
of the non-text strokes and hand-tune the cutting criterion.
The system is error-prone because it classifies strokes using
only local features. Delaye and Lee [3] construct pairwise
distances between strokes and use them with a single linkage
clustering strategy to cluster strokes into meaningful objects.
To apply the system to new problems requires feature
selection and parameter tuning.

III. PROPOSED CNN-BLSTM-CRF MODEL FOR
STROKE CLASSIFICATION

In this section, we present our hybrid neural network
model for classifying pen strokes from online handwritten
documents into three classes: free body diagram, cross-out,
and text. Figure 2 shows an overview of the system. In this
network, two sets of input sequences are generated from
the pen strokes. The first contains the coordinates of the
strokes, and the second consists features computed from the
strokes. Each of the input sequences is fed to a separate
CNN-BLSTM network that extracts new features from the
input sequence and encodes the information between stroke
sequences. The outputs of the BLSTM layers are concate-
nated and becomes the input to the CRF layer which decodes
this information and generates a probable label for each
stroke. Brief description of each layer are provided below.

A. Input sequencing

The input to the network is a page of handwritten pen
strokes. Each stroke comprises a sequence of time-stamped
coordinates. The ith stroke is represented as

Si = {[x(i)1 ,y(i)1 ], ..., [x(i)m ,y(i)m ]}, (1)

where [x(i)j ,y(i)j ] are the coordinates of the jth point. Strokes
can have an arbitrary number of trajectory points, but in our



approach, we represent them as having a fixed number of
points (m). The parameter m is set to 250 in our experiments
to accommodate most of the strokes in our dataset. If a
stroke has fewer than m points, zeros are added to the end.
If a stroke has more than m points, it is broken down into
smaller strokes each have equal numbers of points. The first
input sequence is constructed by concatenating the trajectory
points of all of the strokes on the page:

I1 = {[x(1)1 ,y(1)1 ], ..., [x(1)m ,y(1)m ], ..., [x(n)1 ,y(n)1 ], ..., [x(n)m ,y(n)m ]}
(2)

The value of n is set to the largest number of strokes
observed on a page in our dataset. If the page has fewer than
n strokes, strokes containing zero coordinates are added to
the end of the sequence.

We extract a 16-dimensional feature vector for each stroke
and concatenate them together to form the second input
sequence:

I2 = {[ f (1)1 , ..., f (1)16 ], ..., [ f (n)1 , ..., f (n)16 ]} (3)

where [ f (i)1 , ..., f (i)16 ] is the 16-dimensional feature vector
corresponding to the ith stroke. Here again if the page has
fewer than n strokes, zero features are added to the end of
the sequence.

Table I provides an overview of the 16 features, which are
taken from [1]. (See [1] for details.) The first 10 features
were designed for identifying cross-out strokes. fBW and
fBH are the height and width of the minimum bounding
box containing the stroke, respectively. fD characterizes
the density of the pen stroke as cross-out strokes may
be drawn as a dense "blob". Some cross-out strokes are
straight lines; fSR characterizes the straightness of a stroke.
Sometimes cross-out comprise sets of parallel strokes or
strokes that form an "X". fp and fX are boolean-valued
features indicating whether a stroke is part of a parallel line,
or a cross respectively, with nearby strokes. fAO and fAU are
the fraction of the strokes that were drawn earlier or later,
respectively. Finally, fTU is the time difference between the
stroke and the earliest underlying stroke.

The next six features are designed to distinguish free
body diagram from text strokes. Stahovich and Lin [1]
observed that the earliest-drawn strokes are more likely to
be part of free body diagrams rather than equations. fNT
is a normalized time where the earliest-drawn stroke has a
normalized time value of 0, and the latest-drawn has a value
of 1. fLS has a value of 1 if a stroke is three times taller
or wider than the average stroke height. fNL denotes the
number of nearby long strokes. Here, two strokes are nearby
only if the minimum point-to-point distance between them
is less than twice the average stroke height. Strokes written
in an equation are typically separated from one another,
whereas, many pen strokes on free body diagram intersect

Table I: Domain dependant stroke features [1].

Category Name Description

Cross-out fBW Bounding box width
fBH Bounding box height
fD Ink density
fSR Straightness ratio
fX Part of a cross?
fP Part of a set of parallel lines?
fAU Area fraction under the stroke
fAO Area fraction over the stroke
fUH Average underlying stroke height
fTU Time to first underlying stroke

Miscellaneous fNT Normalized time
fLS Is long stroke?
fNL Number of nearby long strokes
fIN Number of intersecting strokes
fID Density of intersecting strokes
fD2N Direction to the next stroke

each other. This property is captured by fIN which shows the
number of intersecting strokes. fID represents the density of
the intersecting strokes and is computed as:

fID =
L2

ABB
(4)

where L is the sum of the arc lengths of the intersecting
strokes and ABB is the area of the bounding box of the stroke.
Equation strokes are likely to be drawn from left to right.
fD2N is the direction from a stroke to the one drawn next.

As shown in Figure 2, the input sequences I1 and I2
are used as the input to the left and right CNN-BLSTM
networks, respectively.

B. CNN (feature extractor)

CNN layers have shown outstanding performance in de-
riving effective features from images, sequence data, and
the like. Each CNN layer performs a linear and a non-linear
operation to transform the input data. In this study, CNN
layers have one-dimensional kernels which are convolved
with the input sequence over a single dimension. Details
of the parameter settings are shown in Table II. A CNN
network comprises neurons that are arranged in multiple
one-dimensional arrays. Each neuron is connected to the
neighboring small region of neurons of the previous layer
via feed-forward connections. We use a Rectified Linear
Unit (ReLU) activation function to apply non-linearity to
the neuron values.

C. BLSTM (encoder)

Recurrent neural networks (RNNs) have shown great
promise in processing sequential data. Unlike feed-forward
networks that pass information in one direction, RNNs are
capable of capturing time dynamics through cyclic connec-
tions. LSTM networks are a popular and successful type of



RNN that were introduced by Hochreiter and Schmidhuber
[11]. Each LSTM unit is equipped with multiple gates that
enable it to control the flow of information. Input, output,
and forget gates are at the core of an LSTM cell. More
specifically, the input gate (i) monitors the incoming data,
the forget gate ( f ) decides what to be discarded from past
memory dynamics, and the output gate (o) determines what
piece of information to flow out of the cell.

Formally, we use following equations to update an LSTM
unit at time step t:

it = σ(Whiht−1 +Uxixt +bi)

ft = σ(Wh f ht−1 +Ux f xt +b f )

ot = σ(Whoht−1 +Uxoxt +bo)

c̃t = tanh(Whcht−1 +Uxcxt +bc)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

(5)

where the input vector at time step t is xt , the hidden state
at t is ht . Uxi ,Ux f ,Uxo , and Uxc are weight matrices for the
gates, and Wxi ,Wx f ,Wxo , and Wxc are weight matrices for
the hidden state. bi,b f ,bo, and bc are biases for the hidden
state. c̃t is an intermediate value that is used to update the
cell state ct . Pointwise multiplication operation is denoted
by �. σ and tanh are the sigmoid and hyperbolic tangent
functions, respectively.

LSTM units are capable of capturing long-term, past
dependencies in their hidden states. Our network computes
two sets of contextual information from neighboring strokes.
The LSTM network on the right channel of our network (as
shown in Figure 2) produces contextual information from
domain-dependent features extracted from the pen strokes.
The LSTM network on the left channel of our network
produces contextual information directly form the pen stroke
coordinates.

For many sequence labeling problems, accessing future
contextual information enables the model to encode more
complex contextual knowledge from the sequential data. As
proposed in [12], we use bi-directional LSTM (BLSTM)
units in our model. BLSTM layers are composed of two
separate LSTM networks where one of them processes the
input in the forward direction (i.e., from start to end) and
the other operates in the backward direction (i.e., from end
to start). The hidden states of the two anti-parallel LSTMs
are concatenated together to produce the final output.

D. CRF (decoder)

Many sequence labeling problems require incorporating
relations between neighbors in order to predict a label
for any individual in a given input sequence. Conditional
Random Fields (CRF) are a class of undirected graphical
models that are used to compute the conditional probability
of output nodes given the values in the input nodes. They

are able to jointly predict the best label for each element in
the input sequence.

Let h = {h1, ...,hn} denote an input sequence to the CRF
layer which is obtained by concatenating the outputs of the
two BLSTMs. More specifically, each hi comprises the ith

hidden state of both the forward and backward LSTMs from
both the left and right channels of the model. y = {y1, ...,yn}
is the output sequence of the CRF where each yi is the
predicted label for stroke Si.

We use a CRF from [13] to model our sequence labeling
task:

P(y|h;θ) =
1

Z(h)
exp{φ(h,y;θ)} (6)

where θ = {W,b} represents the set of parameters, and Z(h)
is the normalization factor. φ(h,y;θ) is the potential function
which is formulated as

φ(h,y;θ) =
n

∑
i=1

φU (hi,yi;θ)+
n−1

∑
i=1

φP(hi,hi+1,yi,yi+1;θ)

(7)
where φU (hi,yi;θ) is the unary potential function that
measures the compatibility of the ith stroke and the label
yi. φP(hi,yi,yi+1;θ) is the pairwise potential function that
captures the dependency between adjacent strokes. These
potential functions are formulated as

φU (hi,yi;θ) = hT
i θ

u
yi

φP(hi,hi+1,yi,yi+1;θ) = hT
i θ

p,1
yi,yi+1

+hT
i+1θ

p,2
yi,yi+1

(8)

Here, C is the number of classes. θ u
yi

, θ
p,1
yi,yi+1 and θ

p,2
yi,yi+1 are

the parameters of CRF.
For training purposes, we search for the optimal solution

to maximize the conditional likelihood in our training data.
We use the logarithm of the likelihood as follows:

L(θ) =
N

∑
i=1

log p(y|h;θ) (9)

Here, N is the number of instances (pages) in our train-
ing data. We employ a maximum likelihood estimation
technique to estimate parameters that maximize the log-
likelihood.

Finally, decoding is the task of finding the optimal label
sequence y∗ that achieves the highest conditional probability:

y∗ = argmax
y∈Y (h)

p(y|h;θ) (10)

We find the most probable label sequence by using the
Viterbi algorithm. Here the maximization occurs over all
of the possible labels for each stroke.



Table II: Model configuration

Layer
no.

Type Specifications

1 Convolution Filters = 16, Kernel size = 9, strides = 1
2 Convolution Filters = 32, Kernel size = 9, strides = 1
3 BLSTM Output dimension = 64
4 BLSTM Output dimension = 64
5 BLSTM Output dimension = 64

Table III: Frequencies of stroke types in each dataset.

Dataset Stroke Type
FBD Cross-out Text

Training Data 31.2% 1.2% 67.6%
Testing Data 20.5% 1.4% 78.1%

IV. SYSTEM WORKFLOW

We preprocess the pen strokes before feeding them to the
neural network. For the input sequence I1, we use min-max
normalization to linearly transform the x and y coordinate
values to map into the range [0,1]. Likewise, we use z-
normalization to normalize the feature values in the input
sequence I2.

As shown in Figure 2, I1 and I2 are fed to the right and
left CNN-BLSTM networks, respectively. We observed that
the BLSTM networks easily overfit the training data. As a
remedy, we apply dropout to the recurrent input signal on
the BLSTM networks. During network training, the dropout
rate is set to 0.2. The configuration of the CNN-BLSTM
networks is shown in Table II. Both of the CNN-BLSTM
networks utilize the same hyper parameters. The output
vectors of the BLSTM networks are combined together and
is used as the input to the CRF layer. Finally, the CRF layer
jointly predicts the best label sequence for the output nodes.

A. Network Training

We use Keras [15] to implement our neural network
model. The entire model contains 216,996 trainable param-
eters. The training and testing experiments were run on a
machine equipped with 2.66 GHz Xeon(R) CPU. For the
configuration described above, the model training requires
approximately 49 hours.

B. Optimization method

We use RMSProp [16] to optimize the parameters of the
network. At each step of network training we feed batches
of size 10 to the network. The learning rate is initially set
to 0.001 and at each step is updated according to [16]. Our
model achieves the highest accuracy on the validation set
(we discuss the validation set in Section V) at 278 epochs.

V. EXPERIMENT

We evaluate the performance of our model on a database
of homework assignments, quizzes, and exams collected

Table IV: Performance of our model and three base line
networks.

Model Accuracy Precision Recall F1 Score
CNN-BLSTM1−CRF 88.30% 88.42% 88.30% 88.36%
CNN-BLSTM2−CRF 91.34% 91.43% 91.22% 91.32%
CNN-BLSTM 90.76% 89.51% 90.46% 89.98%
CNN-BLSTM-CRF 94.70% 96.14% 94.54% 95.33%

from 132 undergraduate students enrolled in a mechanical
engineering course on statics. The students produced the
writing using LiveScribe digital pens. These pens are used
with special dot-patterned paper. A camera integrated into
the tip of the pen uses the dots to digitize the writing as
time-stamped coordinates.

6,562 pages of handwritten coursework were collected
from 12 exam problems, 30 homework problems, and 7
quiz problems. From this, we manually labeled 1,060 pages
comprising solutions to 5 exam problems (293 pages) and 8
homework problems (776 pages). The exam pages contained
122,058 pen strokes and homework pages contained 298,527
pen strokes. The frequencies of the various stroke types
labeled exam and homework pages are shown in Table III.
We used the homework data for training and the exam data
for testing. We held out 155 pages from the training set for
validation.

A. Results for Various System Configurations

To evaluate the power of each part of our model, we com-
puted the accuracy with various parts of the model removed.
More specifically, we considered 3 sub-models: (1) The
CNN-BLSTM1-CRF model uses only the I1 input sequence
(i.e., the pen stroke coordinates) for input and excludes the
CNN-BLSTM network on the right of the network (i.e.,
the domain-dependent features). (2) Conversely, the CNN-
BLSTM2-CRF model uses only the I2 input sequence and
ignores the CNN-BLSTM network on the left side. (3) The
CNN-BLSTM model removes the CRF layer and replaces
it with a dense layer. All of these networks utilize the same
hyper-parameters as displayed in Table II. As shown in Table
IV, our complete model achieved higher accuracy than any
of the sub-models, indicating the importance of all of the
elements of our model.

B. Comparison with Related Methods

We benchmark our model with three existing meth-
ods: (1) The method of Stahovich and Lin ; (2) the
GSC26_BCC26_19Q method [14]; and (3) the CRF_NN [8].
The method first of these methods was specifically designed
for free-form statics solutions, while the other two are the
top-performing systems for classifying strokes into text/non-
text classes on the IAMonDo database [17].

Table V compares the performance of our method to
that of the three benchmark methods on the testing dataset.
Our method performed better than the GSC26_BCC26_19Q



Table V: Performance of models for stroke classification task.

Model Accuracy Precision Recall
FBD Cross-out Text FBD Cross-out Text

Our Model 94.7% 88.57% 15% 96.14% 87.88% 0.68% 97.00%
Stahovich and Lin [1] 92.23% 77.32% 53.91% 97.26% 87.74% 74.26% 93.59%
CRF_NN [8] 89.55% 71.84% 9.49% 93.95% 78.24% 0.97% 93.66%
GSC26_BCC26_19Q [14] 91.33% 79.97% 27.65% 93.61% 74.81% 0.74% 96.61%

and CRF_NN methods on all performance measures. Our
method also achieved the highest overall accuracy of 94.7%.
For the most part, our method performed better than the
method from [1] for FBD and text strokes: Our method
achieved higher recall rates for both types of strokes and
achieved a higher precision rate for FBD strokes. The
precision of our method for text strokes was only slightly
less (about one percentage point) than that of the method
from [1]. Due to the small number of cross-out instances in
the training set, most of the systems have low performance
in recognizing cross-out strokes. However, [1] uses a spe-
cial purpose, hand-coded cross-out detection technique that
achieves high accuracy for this class.

VI. CONCLUSION

In this paper we present a novel model for classifying
strokes of online handwritten documents into FBD, cross-
out, and text classes. The model is composed of two channels
for extracting features and encoding information from pen
trajectories and stroke features. The outputs of these chan-
nels are concatenated together to form the input to a CRF
layer that predicts the best classes for the strokes. We show
that our method outperforms other state-of-the-art methods
for the stroke classification task.
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