Chain rule in computation

Consider line segments with vertices

$$
\mathbf{p}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle \quad \mathbf{q}=\left\langle x_{4}, x_{5}, x_{6}\right\rangle \quad \mathbf{r}=\left\langle x_{7}, x_{8}, x_{9}\right\rangle
$$

The edge vectors are

$$
\mathbf{u}=\mathbf{p}-\mathbf{q} \quad \mathbf{v}=\mathbf{q}-\mathbf{r}
$$

The angle between the edges is given by

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

The line segments are connected by a spring whose rest angle is zero. The potential energy of the spring can be written as

$$
\phi=\frac{1}{2} k \theta^{2} .
$$

The forces can then be computed as

$$
\mathbf{f}=-\nabla \phi=\left\langle-\frac{\partial \phi}{\partial x_{1}},-\frac{\partial \phi}{\partial x_{2}},-\frac{\partial \phi}{\partial x_{3}},-\frac{\partial \phi}{\partial x_{4}},-\frac{\partial \phi}{\partial x_{5}},-\frac{\partial \phi}{\partial x_{6}},-\frac{\partial \phi}{\partial x_{7}},-\frac{\partial \phi}{\partial x_{8}},-\frac{\partial \phi}{\partial x_{9}}\right\rangle
$$

In practice, we also want to use

$$
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta
$$

With these,

$$
\theta=\tan ^{-1} \frac{\|\mathbf{u} \times \mathbf{v}\|}{\mathbf{u} \cdot \mathbf{v}}
$$

Breaking up these computations into more manageable pieces:

$$
\mathbf{u}=\mathbf{p}-\mathbf{q} \quad \mathbf{v}=\mathbf{q}-\mathbf{r} \quad d=\mathbf{u} \cdot \mathbf{v} \quad \mathbf{c}=\mathbf{u} \times \mathbf{v} \quad m=\|\mathbf{c}\| \quad r=\frac{m}{d} \quad \theta=\tan ^{-1} r \quad \phi=\frac{1}{2} k \theta^{2}
$$

To compute the partial derivative $\frac{\partial \phi}{\partial x_{k}}$, differentiate each equation.

$$
\left.\begin{array}{rlrlrl}
\frac{\partial \mathbf{u}}{\partial x_{k}} & =\frac{\partial \mathbf{p}}{\partial x_{k}}-\frac{\partial \mathbf{q}}{\partial x_{k}} & \frac{\partial \mathbf{v}}{\partial x_{k}} & =\frac{\partial \mathbf{q}}{\partial x_{k}}-\frac{\partial \mathbf{r}}{\partial x_{k}} & \frac{\partial d}{\partial x_{k}} & =\frac{\partial \mathbf{u}}{\partial x_{k}} \cdot \mathbf{v}+\mathbf{u} \cdot \frac{\partial \mathbf{v}}{\partial x_{k}}
\end{array} \frac{\partial \mathbf{c}}{\partial x_{k}}=\frac{\partial \mathbf{u}}{\partial x_{k}} \times \mathbf{v}+\mathbf{u} \times \frac{\partial \mathbf{v}}{\partial x_{k}}\right)
$$

This is how the chain rule is often applied in practice.

In the case of this application, first derivatives are not sufficent. Second derivatives are required as well. This is fairly straightforward, though more tedious, to deal with. Note that

$$
\frac{\partial^{2} \mathbf{p}}{\partial x_{k} \partial x_{\ell}}=\frac{\partial^{2} \mathbf{q}}{\partial x_{k} \partial x_{\ell}}=\frac{\partial^{2} \mathbf{r}}{\partial x_{k} \partial x_{\ell}}=\frac{\partial^{2} \mathbf{u}}{\partial x_{k} \partial x_{\ell}}=\frac{\partial^{2} \mathbf{v}}{\partial x_{k} \partial x_{\ell}}=\mathbf{0}
$$

Next, we differentiate our first derivative formulas a second time.

$$
\begin{aligned}
\frac{\partial^{2} d}{\partial x_{k} \partial x_{\ell}} & =\frac{\partial^{2} \mathbf{u}}{\partial x_{k} \partial x_{\ell}} \cdot \mathbf{v}+\frac{\partial \mathbf{u}}{\partial x_{k}} \cdot \frac{\partial \mathbf{v}}{\partial x_{\ell}}+\frac{\partial \mathbf{u}}{\partial \ell} \cdot \frac{\partial \mathbf{v}}{\partial x_{k}}+\mathbf{u} \cdot \frac{\partial^{2} \mathbf{v}}{\partial x_{k} \partial x_{\ell}} \\
& =\frac{\partial \mathbf{u}}{\partial x_{k}} \cdot \frac{\partial \mathbf{v}}{\partial x_{\ell}}+\frac{\partial \mathbf{u}}{\partial \ell} \cdot \frac{\partial \mathbf{v}}{\partial x_{k}} \\
\frac{\partial^{2} \mathbf{c}}{\partial x_{k} \partial x_{\ell}} & =\frac{\partial^{2} \mathbf{u}}{\partial x_{k} \partial x_{\ell}} \times \mathbf{v}+\frac{\partial \mathbf{u}}{\partial x_{k}} \times \frac{\partial \mathbf{v}}{\partial x_{\ell}}+\frac{\partial \mathbf{u}}{\partial \ell} \times \frac{\partial \mathbf{v}}{\partial x_{k}}+\mathbf{u} \times \frac{\partial^{2} \mathbf{v}}{\partial x_{k} \partial x_{\ell}} \\
& =\frac{\partial \mathbf{u}}{\partial x_{k}} \times \frac{\partial \mathbf{v}}{\partial x_{\ell}}+\frac{\partial \mathbf{u}}{\partial \ell} \times \frac{\partial \mathbf{v}}{\partial x_{k}} \\
\frac{\partial^{2} m}{\partial x_{k} \partial x_{\ell}} & =-\frac{1}{m^{2}} \frac{\partial m}{\partial x_{\ell}} \mathbf{c} \cdot \frac{\partial \mathbf{c}}{\partial x_{k}}+\frac{1}{m} \frac{\partial \mathbf{c}}{\partial x_{\ell}} \cdot \frac{\partial \mathbf{c}}{\partial x_{k}}+\frac{\mathbf{c}}{m} \cdot \frac{\partial^{2} \mathbf{c}}{\partial x_{k} \partial x_{\ell}} \\
& =\frac{1}{m}\left(-\frac{\partial m}{\partial x_{\ell}} \frac{\partial m}{\partial x_{k}}+\frac{\partial \mathbf{c}}{\partial x_{\ell}} \cdot \frac{\partial \mathbf{c}}{\partial x_{k}}+\mathbf{c} \cdot \frac{\partial^{2} \mathbf{c}}{\partial x_{k} \partial x_{\ell}}\right)
\end{aligned}
$$

For the next one, we can simplify matters a bit by first rewriting

$$
\begin{aligned}
\frac{\partial r}{\partial x_{k}} & =\frac{1}{d} \frac{\partial m}{\partial x_{k}}-\frac{m}{d^{2}} \frac{\partial d}{\partial x_{k}} \\
& =\frac{1}{d}\left(\frac{\partial m}{\partial x_{k}}-r \frac{\partial d}{\partial x_{k}}\right) \\
\frac{\partial^{2} r}{\partial x_{k} \partial x_{\ell}} & =-\frac{1}{d^{2}} \frac{\partial d}{\partial x_{\ell}}\left(\frac{\partial m}{\partial x_{k}}-r \frac{\partial d}{\partial x_{k}}\right)+\frac{1}{d}\left(\frac{\partial^{2} m}{\partial x_{k} \partial x_{\ell}}-\frac{\partial r}{\partial x_{\ell}} \frac{\partial d}{\partial x_{k}}-r \frac{\partial^{2} d}{\partial x_{k} \partial x_{\ell}}\right) \\
& =\frac{1}{d}\left(-\frac{\partial d}{\partial x_{\ell}} \frac{\partial r}{\partial x_{k}}+\frac{\partial^{2} m}{\partial x_{k} \partial x_{\ell}}-\frac{\partial r}{\partial x_{\ell}} \frac{\partial d}{\partial x_{k}}-r \frac{\partial^{2} d}{\partial x_{k} \partial x_{\ell}}\right)
\end{aligned}
$$

For the next one, it helps to introduce a new variable

$$
\begin{aligned}
s & =\frac{1}{r^{2}+1} \\
\frac{\partial s}{\partial x_{\ell}} & =-\frac{2 r}{\left(r^{2}+1\right)^{2}} \frac{\partial r}{\partial x_{\ell}}=-2 r s^{2} \frac{\partial r}{\partial x_{\ell}} \\
\frac{\partial \theta}{\partial x_{k}} & =s \frac{\partial r}{\partial x_{k}} \\
\frac{\partial^{2} \theta}{\partial x_{k} \partial x_{\ell}} & =\frac{\partial s}{\partial x_{\ell}} \frac{\partial r}{\partial x_{k}}+s \frac{\partial^{2} r}{\partial x_{k} \partial x_{\ell}} \\
\frac{\partial^{2} \phi}{\partial x_{k} \partial \ell} & =k \frac{\partial \theta}{\partial x_{\ell}} \frac{\partial \theta}{\partial x_{k}}+k \theta \frac{\partial^{2} \theta}{\partial x_{k} \partial x_{\ell}}
\end{aligned}
$$

This is a tedious but very practical application of calculus to a real problem. These calculations are typcial of what you might expect to see in areas such as numerical optimization, numerical simulation, or machine learning.

