
Chain rule in computation
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Consider line segments with vertices

p = 〈x1, x2, x3〉 q = 〈x4, x5, x6〉 r = 〈x7, x8, x9〉.

The edge vectors are
u = p− q v = q− r.

The angle between the edges is given by

u · v = ‖u‖‖v‖ cos θ.

The line segments are connected by a spring whose rest angle is zero. The potential energy of the spring can
be written as

φ =
1

2
kθ2.

The forces can then be computed as
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In practice, we also want to use
‖u× v‖ = ‖u‖‖v‖ sin θ.

With these,

θ = tan−1
‖u× v‖

u · v

Breaking up these computations into more manageable pieces:

u = p− q v = q− r d = u · v c = u× v m = ‖c‖ r =
m

d
θ = tan−1 r φ =

1

2
kθ2

To compute the partial derivative ∂φ
∂xk

, differentiate each equation.
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This is how the chain rule is often applied in practice.
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In the case of this application, first derivatives are not sufficent. Second derivatives are required as well.
This is fairly straightforward, though more tedious, to deal with. Note that
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Next, we differentiate our first derivative formulas a second time.
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For the next one, we can simplify matters a bit by first rewriting
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For the next one, it helps to introduce a new variable
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This is a tedious but very practical application of calculus to a real problem. These calculations are typcial
of what you might expect to see in areas such as numerical optimization, numerical simulation, or machine
learning.
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