
Stirling’s Approximation

Math 31B, Fall 2014
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Since the limit exists and is finite, an and bn either both converg
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2 Establishing Stirling’s approximation

I will derive a fairly tight bound on Stirling’s approximation using only techniques that we have learned in
this course. In fact, it uses many of these techniques: integration and differentiation of logarithms, trapezoid
rule, midpoint rule, Taylor series manipulation, alternating series approximations.
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Next, we can use midpoint rule to get another approximation, which this time overestimates functions that
are concave down.∫ n+ 1
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I need a bound on ln
(
1 + 1
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)
, which I can get from what we know about series
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Finally, I can finish up the lower bound.
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To see how tight this bound is,
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Note that I have not used the error bounds for trapezoid rule or midpoint rule. The problem with them
is that I am doing a very coarse discretization (in fact, ∆x = 1), and their error bounds are accordingly
entirely inadequate. Instead, I have used both trapezoid rule and midpoint rule in such a way as to obtain
lower and upper bounds. This gives me an effective error bound far stronger than I could have obtained
from the error bounds in the book.

3 Establishing divergence with bounds

Although these bounds are not as strong in some sense as the approximation used at the beginning, they
are more than strong enough to establish divergence of the original series. In this case, I have bounds rather
than a limit, so I will accordingly use the comparison test instead of the limit comparison test.
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4 Alternating version

Determining the divergence or convergence of the series
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requires showing that the series is alternating, and has terms that are decreasing monotonically to zero. The
fact that it is alternating is obvious. The fact that its terms are decreasing in magnitude can be shown
directly
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The terms go to zero proportional to n−
1
2 as shown in the positive case. The series converges by the Leibniz

test. Since the corresponding non-alternating series diverges, this series converges conditionally.
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