Midterm 1

Name: \qquad ID: \qquad Section: \qquad
You have 50 minutes to complete this quiz. You must show your work to receive credit. There are more problems on the back.

Problem 1 ($\mathbf{1 0}$ points): Evaluate: $\int e^{-x} \sin x d x$ and $\int e^{-x} \cos x d x$.
Use integration by parts twice to get one of them.

$$
\begin{aligned}
\int e^{-x} \sin x d x & =e^{-x}(-\cos x)-\int\left(-e^{-x}\right)(-\cos x) d x \\
& =-e^{-x} \cos x-\int e^{-x} \cos x d x \\
& =-e^{-x} \cos x-e^{-x} \sin x+\int\left(-e^{-x}\right) \sin x d x \\
\int e^{-x} \sin x d x & =-\frac{1}{2} e^{-x} \cos x-\frac{1}{2} e^{-x} \sin x+C
\end{aligned}
$$

Then substitute back to get the other.

$$
\begin{aligned}
\int e^{-x} \cos x d x & =-e^{-x} \cos x-\int e^{-x} \sin x d x \\
& =-e^{-x} \cos x-\left(-\frac{1}{2} e^{-x} \cos x-\frac{1}{2} e^{-x} \sin x+C\right) \\
& =-\frac{1}{2} e^{-x} \cos x+\frac{1}{2} e^{-x} \sin x+C_{2}
\end{aligned}
$$

Problem 2 (10 points): Evaluate: $\int x e^{-x} \sin x d x$.

Use integration by parts again, reusing the results of previous problems.

$$
u=x \quad d u=d x \quad d v=e^{-x} \sin x d x \quad v=-\frac{1}{2} e^{-x} \cos x-\frac{1}{2} e^{-x} \sin x
$$

$$
\begin{aligned}
\int x e^{-x} \sin x d x & =x\left(-\frac{1}{2} e^{-x} \cos x-\frac{1}{2} e^{-x} \sin x\right)-\int\left(-\frac{1}{2} e^{-x} \cos x-\frac{1}{2} e^{-x} \sin x\right) d x \\
& =-\frac{1}{2} x e^{-x} \cos x-\frac{1}{2} x e^{-x} \sin x+\frac{1}{2} \int e^{-x} \cos x d x+\frac{1}{2} \int e^{-x} \sin x d x \\
\int x e^{-x} \sin x d x & =-\frac{1}{2} x e^{-x} \cos x-\frac{1}{2} x e^{-x} \sin x-\frac{1}{2} e^{-x} \cos x+C
\end{aligned}
$$

Problem 3 (10 points): Evaluate: $\lim _{x \rightarrow 0^{+}} \frac{x^{2 x}-1}{x \ln x}$
The denominator tends to zero. To see if the numerator does, I need to know $\lim _{x \rightarrow 0^{+}} x^{2 x}$.
$\ln \left(\lim _{x \rightarrow 0^{+}} x^{2 x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{2 x}\right)=\lim _{x \rightarrow 0^{+}} 2 x \ln x=2 \lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=2 \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=-2 \lim _{x \rightarrow 0^{+}} x=0$
Thus, $\lim _{x \rightarrow 0^{+}} x^{2 x}=e^{0}=1$, and the numerator is also zero. Now I can apply L'Hôpital's rule, which means I must now differentiate $x^{2 x}$, which I can do with logarithmic differentiation.

$$
\begin{aligned}
y & =x^{2 x} \\
\ln y & =\ln \left(x^{2 x}\right)=2 x \ln x \\
\frac{y^{\prime}}{y} & =2 \ln x+2 \frac{x}{x}=2(\ln x+1) \\
y^{\prime} & =2(\ln x+1) x^{2 x}
\end{aligned}
$$

From here, L'Hôpital's rule finishes things up pretty quickly.

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2 x}-1}{x \ln x}=\lim _{x \rightarrow 0^{+}} \frac{2(\ln x+1) x^{2 x}}{\ln x+1}=2 \lim _{x \rightarrow 0^{+}} x^{2 x}=2
$$

Problem 4 (10 points): For a falling object of mass m, free-fall with air resistance can be modeled with $v^{\prime}=-\frac{k}{m}\left(v+\frac{m g}{k}\right)$. The object starts at rest and tends towards a terminal velocity v_{1}. How long does it take the object to reach half its terminal velocity? (Note that $v_{1}<0$, since the object is falling.)

At terminal velocity, $v^{\prime}=0$, so that $v_{1}=-\frac{m g}{k}$, or $k=-\frac{m g}{v_{1}}$. The object's velocity will be $v=C e^{-\frac{k}{m} t}-\frac{m g}{k}$. Since $v(0)=0, C=\frac{m g}{k}$. Finally,

$$
\begin{aligned}
v & =\left(e^{-\frac{k}{m} t}-1\right) \frac{m g}{k} \\
& =-\left(e^{\frac{g}{v_{1}} t}-1\right) v_{1}
\end{aligned}
$$

The time T required to reach half terminal velocity $\frac{v_{1}}{2}$ is

$$
\begin{aligned}
-\left(e^{\frac{g}{v_{1}} T}-1\right) v_{1} & =\frac{v_{1}}{2} \\
e^{\frac{g}{v_{1}} T}-1 & =-\frac{1}{2} \\
e^{\frac{g}{v_{1}} T} & =\frac{1}{2} \\
\frac{g}{v_{1}} T & =-\ln 2 \\
T & =-\frac{v_{1} \ln 2}{g}
\end{aligned}
$$

Problem 5 (10 points): Evaluate: $\int_{0}^{\pi} \frac{\sin x}{2 \cos x+3} d x$
Use the substitution $u=2 \cos x+3, d u=-2 \sin x d x . \quad x=0 \Longrightarrow u=2 \cos 0+3=5$. $x=\pi \Longrightarrow u=2 \cos \pi+3=1$.

$$
\int_{0}^{\pi} \frac{\sin x}{2 \cos x+3} d x=-\frac{1}{2} \int_{5}^{1} \frac{d u}{u}=-\frac{1}{2}[\ln |u|]_{5}^{1}=-\frac{1}{2}(\ln 1-\ln 5)=\frac{1}{2} \ln 5
$$

Problem 6 (10 points): Given the function $f(x)=x e^{x}$. (2 points each)
(a) Identify the critical points.
(b) Use the second derivative test to identify each critical point as a local minimum or local maximum.
(c) Identify the inflection points.
(d) Evaluate the limits $\lim _{x \rightarrow 0} f(x), \lim _{x \rightarrow \infty} f(x)$, and $\lim _{x \rightarrow-\infty} f(x)$.
(e) Use this information to sketch the function.

First, lets compute the derivatives.

$$
\begin{gathered}
f^{\prime}(x)=\frac{d}{d x}\left(x e^{x}\right)=x e^{x}+e^{x}=(x+1) e^{x} \\
f^{\prime \prime}(x)=\frac{d}{d x}\left((x+1) e^{x}\right)=(x+1) e^{x}+e^{x}=(x+2) e^{x}
\end{gathered}
$$

(a) We require $f^{\prime}(x)=0$. Since $e^{x}>0$, the only critical point is $x=-1$.
(b) Since $f^{\prime \prime}(-1)=((-1)+2) e^{-1}=e^{-1}>0$, the critical point is a local minimum.
(c) We require $f^{\prime \prime}(x)=0$. The only inflection point is $x=-2$.
(d) The first limit is $\lim _{x \rightarrow 0} x e^{x}=(0) e^{0}=0$, and the second limit is $\lim _{x \rightarrow \infty} x e^{x}=\infty$. The third limit can be evaluated with L'Hôpital's rule.

$$
\lim _{x \rightarrow-\infty} x e^{x}=\lim _{x \rightarrow-\infty} \frac{x}{e^{-x}}=\lim _{x \rightarrow-\infty} \frac{1}{-e^{-x}}=\lim _{x \rightarrow-\infty}-e^{x}=0 .
$$

(e) The function is, with some of its features labeled,

