Final
Name: \qquad ID: \qquad Section: \qquad

Problem	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	total
Score																

You have 180 minutes to complete this final. You must show your work to receive credit. This exam contains 15 questions.

Problem 1 (5 points): Find the sum $\sum_{n=0}^{\infty} e^{-2 n}$.

This is a geometric series.

$$
\sum_{n=0}^{\infty} e^{-2 n}=\sum_{n=0}^{\infty}\left(\frac{1}{e^{2}}\right)^{n}=\frac{1}{1-e^{-2}}
$$

Problem 2 (5 points): Determine (with justification) whether the series $\sum_{n=0}^{\infty} \frac{(n!)^{2}}{(2 n)!}$ converges, or diverges.

Using the ratio test,

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\frac{((n+1)!)^{2}}{(2 n+2)!}}{\frac{(n!)^{2}}{(2 n)!}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{(2 n+2)(2 n+1)}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\left(1+n^{-1}\right)^{2}}{\left(2+2 n^{-1}\right)\left(2+n^{-1}\right)}\right| \\
& =\frac{1}{4}
\end{aligned}
$$

Since $\rho<1$, the series converges absolutely.

Problem 3 (5 points): Determine (with justification) whether the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^{4}-n-1}}$ converges, or diverges.

Let $a_{n}=\frac{1}{\sqrt{n^{4}-n-1}}$ and $b_{n}=n^{-2}$. Then,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{\sqrt{n^{4}-n-1}}}{n^{-2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{\sqrt{n^{4}-n-1}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1-n^{-3}-n^{-4}}}=1 .
$$

The series $\sum_{n=2}^{\infty} b_{n}$ converges absolutely (convergent p-series), so the original converges by the limit comparison test.

Problem 4 (5 points): Determine (with justification) whether the following series S converges absolutely, converges conditionally, or diverges:

$$
S=\frac{1}{1}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}+\ldots
$$

The series $\left|a_{n}\right|=\frac{1}{n}$ is a divergent p-series, so the series cannot converge absolutely. Note that the terms of the series can be grouped:

$$
S=\left(\frac{1}{1}+\frac{1}{2}\right)-\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)-\left(\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}\right)-\left(\frac{1}{11}+\frac{1}{12}\right)+\ldots
$$

In this form, the series is alternating and has monotonically decreasing terms, so it must converge. The series converges conditionally.

Problem 5 (5 points): Determine the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n+1}$.

Using the ratio test,

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+1} x^{n+1}}{n+2}}{\frac{2^{n} x^{n}}{n+1}}\right| \\
& =2|x| \lim _{n \rightarrow \infty}\left|\frac{n+1}{n+2}\right| \\
& =2|x|
\end{aligned}
$$

If $2|x|<1$, convergence is absolute. If $2|x|>1$, the series diverges. Next, we need to determine the endpoints, $x= \pm \frac{1}{2}$.

$$
\sum_{n=0}^{\infty} \frac{2^{n}}{n+1}\left(\frac{1}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{n+1} \quad \sum_{n=0}^{\infty} \frac{2^{n}}{n+1}\left(-\frac{1}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}
$$

The first series is a divergent p-series. The second is an alternating series with decreasing terms and thus converges. The interval of convergence is $\left[-\frac{1}{2}, \frac{1}{2}\right)$.

Problem 6 (Extra Credit ${ }^{1}$: 10 points): Determine the function $f(x)$ whose Taylor series is $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n+1}$ and use it to evaluate the series $\sum_{n=0}^{\infty} \frac{2^{-n}}{n+1}$.

$$
\begin{aligned}
\sum_{n=0}^{\infty} z^{n} & =\frac{1}{1-z} \\
\int\left(\sum_{n=0}^{\infty} z^{n}\right) d z & =\int \frac{d z}{1-z} \\
\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1} & =-\ln |1-z| \\
\sum_{n=0}^{\infty} \frac{z^{n}}{n+1} & =-\frac{\ln |1-z|}{z} \\
\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n+1} & =-\frac{\ln |1-2 x|}{2 x} \\
\sum_{n=0}^{\infty} \frac{2^{-n}}{n+1} & =-\frac{\ln \left|1-2\left(\frac{1}{4}\right)\right|}{2\left(\frac{1}{4}\right)} \\
& =2 \ln 2
\end{aligned}
$$

[^0]Problem 7 (10 points): Evaluate: $\lim _{x \rightarrow 0^{+}} \frac{x^{x}-1}{x \ln x}$
Note that this question is virtually identical to a problem on the first midterm and can be solved in exactly the same way. The denominator tends to zero since

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-1}}=\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-x^{-2}}=-\lim _{x \rightarrow 0^{+}} x=0
$$

Next, I need

$$
\lim _{x \rightarrow 0^{+}} x^{x}=\lim _{x \rightarrow 0^{+}} e^{x \ln x}=e^{\lim _{x \rightarrow 0^{+}} x \ln x}=e^{0}=1
$$

This shows that the denominator also tends to zero. Now I can apply L'Hôpital's rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}} \frac{x^{x}-1}{x \ln x} & =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x}\left(x^{x}-1\right)}{\frac{d}{d x}(x \ln x)} \\
& =\lim _{x \rightarrow 0^{+}} \frac{\frac{d}{d x} e^{x \ln x}}{\ln x+1} \\
& =\lim _{x \rightarrow 0^{+}} \frac{e^{x \ln x} \frac{d}{d x}(x \ln x)}{\ln x+1} \\
& =\lim _{x \rightarrow 0^{+}} \frac{e^{x \ln x}(\ln x+1)}{\ln x+1} \\
& =\lim _{x \rightarrow 0^{+}} e^{x \ln x} \\
& =1
\end{aligned}
$$

Problem 8 (10 points): The differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=0$ has the general solution $y=A e^{a t}+B e^{b t}$, where $a \neq b$ and the scalars A and B are arbitrary. Find a and b (the choice is not unique; pick one). The scalars A and B depend on the initial conditions. Use the conditions $y(0)=0$ and $y^{\prime}(0)=1$ to find A and B.

$$
\begin{aligned}
y & =A e^{a t}+B e^{b t} \\
y^{\prime} & =A a e^{a t}+B b e^{b t} \\
y^{\prime \prime} & =A a^{2} e^{a t}+B b^{2} e^{b t} \\
0 & =y^{\prime \prime}+3 y^{\prime}+2 y \\
& =\left(A a^{2} e^{a t}+B b^{2} e^{b t}\right)+3\left(A a e^{a t}+B b e^{b t}\right)+2\left(A e^{a t}+B e^{b t}\right) \\
& =A e^{a t}\left(a^{2}+3 a+2\right)+B e^{b t}\left(b^{2}+3 b+2\right)
\end{aligned}
$$

Since this must hold for any A and B, it must hold when $A=1$ and $B=0$, so that $0=a^{2}+3 a+2=(a+1)(a+2)$. It must then also be true that $0=b^{2}+3 b+2=(b+1)(b+2)$. Lets choose $a=-1$ and $b=-2$. (The choice $a=-2$ and $b=-1$ is also okay.)

$$
\begin{aligned}
y & =A e^{-t}+B e^{-2 t} \\
y(0) & =A+B=0 \\
B & =-A \\
y^{\prime} & =-A e^{-t}-2 B e^{-2 t} \\
y^{\prime}(0) & =-A-2 B=1 \\
A & =1 \\
B & =-1 \\
y & =e^{-t}-e^{-2 t}
\end{aligned}
$$

Problem 9 (10 points): Integrate $\int \frac{d x}{x^{2}\left(1-x^{2}\right)}$.

$$
\begin{aligned}
\frac{1}{x^{2}\left(1-x^{2}\right)} & =\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x+1}+\frac{D}{x-1} \\
-1 & =A x(x+1)(x-1)+B(x+1)(x-1)+C x^{2}(x-1)+D x^{2}(x+1) \\
-1 & =B(1)(-1) \quad(x=0) \\
B & =1 \\
-1 & =D 1^{2}(2) \quad(x=1) \\
D & =-\frac{1}{2} \\
-1 & =C(-1)^{2}(-2) \quad(x=-1) \\
C & =\frac{1}{2} \\
-1 & =A(2)(3)(1)+(1)(3)(1)+\frac{1}{2}\left(2^{2}\right)(1)-\frac{1}{2}\left(2^{2}\right)(3) \quad(x=2) \\
A & =0 \\
\int \frac{d x}{x^{2}\left(1-x^{2}\right)} & =\int \frac{d x}{x^{2}}+\frac{1}{2} \int \frac{d u}{x+1}-\frac{1}{2} \int \frac{d x}{x-1} \\
& =-x^{-1}+\frac{1}{2} \ln |x+1|-\frac{1}{2} \ln |x-1|+C
\end{aligned}
$$

Problem 10 (10 points): Show that the integral $\int \csc ^{2} x \sec x d x$ can be converted into $\int \frac{d u}{u^{2}\left(1-u^{2}\right)}$ using a substitution.

$$
\begin{aligned}
\int \csc ^{2} x \sec x d x & =\int \frac{1}{\sin ^{2} x \cos x} d x \\
& =\int \frac{\cos x}{\sin ^{2} x \cos ^{2} x} d x \\
& =\int \frac{\cos x}{\sin ^{2} x\left(1-\sin ^{2} x\right)} d x \\
& =\int \frac{d u}{u^{2}\left(1-u^{2}\right)} \quad u=\sin x, d u=\cos x d x
\end{aligned}
$$

Problem 11 (10 points): Find the surface area of the solid obtained by revolving $y=\sqrt{x}$ about the x axis in the interval $[0,1]$.

$$
\begin{aligned}
& A=2 \pi \int_{0}^{1} y \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& A=2 \pi \int_{0}^{1} \sqrt{x} \sqrt{1+\left(\frac{1}{2 \sqrt{x}}\right)^{2}} d x \\
& A=2 \pi \int_{0}^{1} \sqrt{x} \sqrt{1+\frac{1}{4 x}} d x \\
& A=2 \pi \int_{0}^{1} \sqrt{x+\frac{1}{4}} d x \\
& A=2 \pi \int_{\frac{1}{4}}^{\frac{5}{4}} \sqrt{u} d u \quad u=x+\frac{1}{4}, d u=d x \\
& A=2 \pi\left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right]_{\frac{1}{4}}^{\frac{5}{4}} \\
& A=\frac{4}{3} \pi\left(\left(\frac{5}{4}\right)^{\frac{3}{2}}-\left(\frac{1}{4}\right)^{\frac{3}{2}}\right) \\
& A=\frac{\pi}{6}(5 \sqrt{5}-1)
\end{aligned}
$$

Problem 12 (10 points): Find the length of the curve $y=\ln (\sec x)$ in the interval $x \in\left[0, \frac{\pi}{6}\right]$.

$$
\begin{aligned}
L & =\int_{0}^{\frac{\pi}{6}} \sqrt{1+\left(y^{\prime}\right)^{2}} d x \\
& =\int_{0}^{\frac{\pi}{6}} \sqrt{1+\left(\frac{d}{d x} \ln (\sec x)\right)^{2}} d x \\
& =\int_{0}^{\frac{\pi}{6}} \sqrt{1+\tan ^{2} x} d x \\
& =\int_{0}^{\frac{\pi}{6}} \sec x d x \\
& =[\ln |\sec x+\tan x|]_{0}^{\frac{\pi}{6}} \\
& =\ln \left|\sec \frac{\pi}{6}+\tan \frac{\pi}{6}\right|-\ln |\sec 0+\tan 0| \\
& =\ln \left|\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}\right| \\
& =\ln \left|\frac{3}{\sqrt{3}}\right| \\
& =\frac{\ln 3}{2}
\end{aligned}
$$

Problem 13 (10 points): Integrate $\int_{0}^{2} x \ln (x+1) d x$.

$$
\begin{aligned}
\int_{0}^{2} x \ln (x+1) d x & =\left[\frac{x^{2}}{2} \ln (x+1)\right]_{0}^{2}-\int_{0}^{2} \frac{x^{2}}{2} \frac{1}{x+1} d x \\
& =2 \ln 3-\frac{1}{2} \int_{0}^{2} \frac{x^{2}}{x+1} d x \\
& =2 \ln 3-\frac{1}{2} \int_{1}^{3} \frac{(u-1)^{2}}{u} d x \quad x+1=u, d x=d u \\
& =2 \ln 3-\frac{1}{2} \int_{1}^{3} u-2+u^{-1} d x \\
& =2 \ln 3-\frac{1}{2}\left[\frac{u^{2}}{2}-2 u+\ln |u|\right]_{1}^{3} \\
& =2 \ln 3-\frac{1}{2}\left(\frac{3^{2}}{2}-2(3)+\ln |3|-\frac{1^{2}}{2}+2(1)-\ln |1|\right) \\
& =2 \ln 3-\frac{1}{2} \ln 3 \\
& =\frac{3}{2} \ln 3
\end{aligned}
$$

Problem 14 (10 points): Derive a recurrence relation relating $\Gamma(z+1)$ and $\Gamma(z)$, where $\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x$ is the gamma function and $z>0$. You may assume $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$ for any real number n.

$$
\begin{aligned}
\Gamma(z+1) & =\int_{0}^{\infty} x^{z} e^{-x} d x \\
& =\left[-x^{z} e^{-x}\right]_{0}^{\infty}-\int_{0}^{\infty}\left(z x^{z-1}\right)\left(-e^{-x}\right) d x \\
& =z \int_{0}^{\infty} x^{z-1} e^{-x} d x \\
& =z \Gamma(z)
\end{aligned}
$$

Problem 15 (Extra Credit ${ }^{2}$: 10 points): Recall that atmospheric pressure decays exponentially with height. Find the pressure on a wall of a building that has width w and height h. The atmospheric pressure at the bottom of the building is measured to be p_{0}, and the atmospheric pressure at the top of the building is measured to be p_{1}.

Let the pressure be $p(y)=a e^{r y}$.

$$
\begin{aligned}
p_{0} & =p(0)=a \\
p_{1} & =p(h)=a e^{r h} \\
e^{r h} & =\frac{p_{1}}{p_{0}} \\
r h & =\ln p_{1}-\ln p_{0} \\
r & =\frac{\ln p_{1}-\ln p_{0}}{h}
\end{aligned}
$$

Next, consider a thin strip from the wall of the building. The strip i has height Δy_{i} and length w, so its area is $A_{i}=w \Delta y_{i}$. The pressure on this strip is $p\left(y_{i}\right)=p_{0} e^{r y_{i}}$. The force is then

$$
\begin{aligned}
F & \approx \sum_{i} F_{i} \\
& =\sum_{i} p\left(y_{i}\right) A_{i} \\
& =\sum_{i} p_{0} e^{r y_{i}} w \Delta y_{i} \\
F & =\int_{0}^{h} p_{0} e^{r y} w d y \\
& =p_{0} w \int_{0}^{h} e^{r y} d y \\
& =p_{0} w\left[\frac{e^{r y}}{r}\right]_{0}^{h} \\
& =p_{0} w\left(\frac{e^{r h}}{r}-\frac{1}{r}\right) \\
& =\frac{p_{0} w\left(e^{r h}-1\right)}{r} \\
& =\frac{p_{0} w\left(\frac{p_{1}}{p_{0}}-1\right)}{\frac{\ln p_{1}-\ln p_{0}}{h}} \\
& =\frac{w h\left(p_{1}-p_{0}\right)}{\ln p_{1}-\ln p_{0}}
\end{aligned}
$$

[^1]
[^0]: ${ }^{1}$ Making this question extra credit helps students using the final for their midterm grade. It makes little difference when computing the final grade, since the final result will be curved.

[^1]: ${ }^{2}$ Making this question extra credit helps students using the final for their midterm grade. It makes little difference when computing the final grade, since the final result will be curved.

