
Math 142-2, Final

Solutions

Problem 1

A point with mass m is attached to two fixed points (−d, 0) and (d, 0) by
identical springs with rest length ℓ and spring constant k. Let (0, x(t))
be the location of the mass at any time. Find the the total energy of
the system and an ODE of the form ẍ = f(x, ẋ, t) that describes the
evolution of the system.

m

d d

−x

Each spring has length L =
√
x2 + d2, displacement ∆x = L − ℓ =

√
x2 + d2 − ℓ, and thus potential

energy φs =
k
2
∆x2 = k

2
(
√
x2 + d2 − ℓ)2. The total energy is

E =
m

2
ẋ2 + k(

√

x2 + d2 − ℓ)2 +mgx

The ODE is obtained by differentiation of Ė = 0.

0 = Ė

= mẋẍ+ 2k(
√

x2 + d2 − ℓ)
d

dt

√

x2 + d2 +mgẋ

= mẋẍ+ 2k(
√

x2 + d2 − ℓ)
xẋ√

x2 + d2
+mgẋ

0 = ẍ+ 2k(
√

x2 + d2 − ℓ)
x

m
√
x2 + d2

+ g

ẍ =
2kx

m

(

ℓ√
x2 + d2

− 1

)

− g
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Problem 2

Sketch the phase plane for the ODE ẍ−x = 0. Your sketch should include representative trajectories with
arrows, including trajectories through unstable equilibria (if any). Mark all stable (“•”) and unstable
(“◦”) equilibria.

Equilibria occur when ẋ = ẍ = 0, so x = 0. This equilibrium is unstable (it corresponds to a potential
energy maximum). The energy is

0 = ẍ− x

0 = ẋẍ− ẋx

E =
1

2
ẋ2 − 1

2
x2

The energy curves are hyperbolas.
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Problem 3

Sketch the phase plane for the ODE ẍ+ x2 = 0. Your sketch should include representative trajectories
with arrows, including trajectories through unstable equilibria (if any). Mark all stable (“•”) and
unstable (“◦”) equilibria.

Equilibria occur when ẋ = ẍ = 0, so x = 0. This equilibrium is unstable (it corresponds to a potential
energy saddle point, so nearby configurations exist that lead away from equilibrium). The energy is

0 = ẍ+ x2

0 = ẋẍ+ ẋx2

E =
1

2
ẋ2 +

1

3
x3

When x > 0, the system appears stable, so we would expect trajectories that are “ellipse-like,” as was the
case for the stable linear spring. When x < 0, the system appears unstable, so we would expect trajectories
that are “hyperbola-like,” as was the case in the previous problem. The equilibrium energy is E = 0, which
corresponds to the curve v2 =

√
−x3.
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Problem 4

Sketch the phase plane for the ODE ẍ+ẋ = 0. Your sketch should include representative trajectories with
arrows, including trajectories through unstable equilibria (if any). Mark all stable (“•”) and unstable
(“◦”) equilibria.

The easiest way to plot the phase plane for this one is to solve it. The equation is v̇ + v = 0, which has
the solution v = v0e

−t. Then, ẋ = v = v0e
−t, so x = x0 + v0(1− e−t). Combining these, x+ v = x0 + v0, so

the trajectories are straight lines with slope −1. Since v0 = 0 always corresponds to no force (ẍ = 0 when
v0 = 0), the entire v = 0 axis is an equilibrium. The solution for v is exponential decay to v = 0, so the
equilibrium is stable.
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Problem 5

Five energy levels for a system are shown in the phase plane below. (a) List the energy levels (red,
orange, green, blue, violet) in order from lowest energy to highest energy. (b) Mark all stable (“•”) and
unstable (“◦”) equilibria. (c) Sketch energy contours corresponding to all unstable equilibria (energy
contours may contain more than one component; be sure to sketch them all). (d) Add arrows to all
contours, including the ones you have added. (e) Sketch the potential energy function and show the
energy levels corresponding to the five colored energy contours.

Order: red, blue, green, violet, orange.
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Problem 6

A long road has an initial uniform traffic density ρ(x, 0) = ρ
3
. At t = 0, a traffic accident occurs at

x = 0, which effectively limits the flow rate past x = 0 to q(0, t) = 3

16
umaxρmax. Determine the traffic

density for t > 0. Assume û(ρ) = umax

(

1− ρ
ρmax

)

.

This is essentially the same problem as the light turning red. The only difference is the flow rate. First,
we find the densities that correspond to the flux for the accident location.

q = ρumax

(

1− ρ

ρmax

)

ρumax

(

1− ρ

ρmax

)

=
3

16
umaxρmax

ρ2 − ρρmax +
3

16
ρ2max = 0

(

ρ− 1

4
ρmax

)(

ρ− 3

4
ρmax

)

= 0

ρ =
1

4
ρmax,

3

4
ρmax

Of these, ρ = 1

4
ρmax corresponds to a forward moving characteristic and ρ = 3

4
ρmax corresponds to a

backward moving characteristic. Thus, I expect ρ = 1

4
ρmax in front of the accident and ρ = 3

4
ρmax behind it.

ρmax

3

ρmax

3

3ρmax

4

ρmax

4 shockshock

x

t

Label the regions ρr, ρb, and ρg (red, green, blue).

ρr =
ρmax

3
qr = ρrumax

(

1− ρr

ρmax

)

=
2

9
ρmaxumax

ρg =
3ρmax

4
qg =

3

16
ρmaxumax

ρb =
ρmax

4
qb =

3

16
ρmaxumax

Next, we compute the shock speeds for the red-green and blue-red shocks.

dsrg

dt
=

qr − qg

ρr − ρg
=

2

9
ρmaxumax − 3

16
ρmaxumax

ρmax

3
− 3ρmax

4

= − 1

12
umax

dsbr

dt
=

qb − qr

ρb − ρr
=

3

16
ρmaxumax − 2

9
ρmaxumax

ρmax

4
− ρmax

3

=
5

12
umax
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Finally, we can assemble the solution.

ρ(x, t) =



















ρmax

3
x < − 1

12
umaxt

3ρmax

4
− 1

12
umaxt < x < 0

ρmax

4
0 < x < 5

12
umaxt

ρmax

3

5

12
umaxt < x
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Problem 7

Solve the PDE
∂z

∂t
+

∂z

∂x
+ z + t = 0 subject to z(x, 0) = f(x).

Use the method of characteristics. Let y(t) be the path of an observer.

d

dt
z(y(t), t) =

∂z

∂t
(y(t), t) +

∂z

∂x
(y(t), t)

dy

dt
(t)

=
∂z

∂t
(y(t), t) +

∂z

∂x
(y(t), t) where

dy

dt
= 1

= −z − t

z′ = −z − t

z = Ae−t + rt+ s (Solve z′ = −z, guess at rest of solution.)

z′ = −Ae−t + r

−Ae−t + r = −(Ae−t + rt+ s)− t

r + s = −rt− t

r = −1

s = 1

z = Ae−t − t+ 1

z0 = z(0) = A+ 1

z = (z0 − 1)e−t − t+ 1

Solving the ODE for y(t) we have y(t) = t+ y0.
Now, we can compute z(x, t). First, we must compute y0, the observer’s starting location. x = y(t) =

t+ y0 implies y0 = x− t. Then, z0 = z(y0, 0) = f(x− t). Finally,

z(x, t) = (f(x− t)− 1)e−t − t+ 1
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Problem 8

Identify the location of the shock (“S”) and rarefaction (“R”) in the initial density profile (red line).
Sketch the density profile at the time when the shock and rarefaction first meet. Try to be accurate in

your sketch, but do not attempt to solve the PDE analytically. Assume û(ρ) = umax

(

1− ρ
ρmax

)

.

x

ρ

ρmax

x

ρ

ρmax

R S

x

ρ

ρmax
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Problem 9

Sketch the density distribution at the time of the first shock. Try to be accurate in your sketch, but do

not attempt to solve the PDE analytically. Assume û(ρ) = umax

(

1− ρ
ρmax

)

.

x

ρ

ρmax

x

ρ

ρmax
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Problem 10

The green lines in the illustration below show the locations of the shocks that occur when some piecewise
constant initial density profile evolves in time. There are no rarefactions. Sketch the initial density profile
and indicate which portions represent light or heavy traffic. Be sure to explain your reasoning. Assume

û(ρ) = umax

(

1− ρ
ρmax

)

.

x

t

Since the initial density is piecewise constant, each change in density will be a discontinuity. A discon-
tinuity where density decreases is a rarefaction, which does not occur here. Discontinuities where density
increases are shocks, of which there are initially two. Thus, the initial density profile has three parts, which
meet at the initial shock locations. The profile is increasing. Lets call them ρ0 < ρ1 < ρ2.

The tools needed to estimate the traffic’s density are that (a) light traffic has characteristics that move
forward while the opposite happens for heavy traffic and (b) for the car following model û(ρ) we are using,
the shock velocity is the average of the characteristic velocities for the densities that it separates. Let the
characteristics be c0 > c1 > c2.

Since the merged shock does not move, c0+c2
2

= 0, which immediately implies c0 > 0 > c2. Let the
velocity of the left shock be s0 and the velocity of the right shock be s2. It is clear from the diagram that
|s0| > |s2| and s0 > 0 > s1, so s0 + s1 > 0. Then, c0+c1

2
+ c1+c2

2
> 0, which leads to c1 > 0. ρ0 and ρ1

represent light traffic. ρ2 represents heavy traffic. Note that ρ0 + ρ2 = ρmax.

heavy

light x

ρ

ρmax
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